kneewastefulIA et Robotique

29 oct. 2013 (il y a 5 années et 2 mois)

170 vue(s)




[Abe01] Abelin, A.; Allwood, J.: Department of Linguistics, Göteborg University. In ICSA Workshop on
Speech and Emotion. Belfast, 2001.

Aha , D. W.; Kibler, D.; Albert, M. K.:
Instance based learning algorithms
. Machine Learning,


66, 1991.

Almuallim, H.; Dietterich, T.G.:
Learning with many irrelevant features
. In Proceedings of 9

National Conference on Artificial Intelligence, MIT Press, Cambridge, Massachusetts, 547


[Alt99] Alter K.; Rank E.; Kotz S.
A.; Pfeifer E.; Besson M.; Friederici A.D.; Matiasek J.:
On the relations
of semantic and acoustic properties of emotions
. In
Proceedings of the 14

Conference of Phonetic Sciences (ICPhS

San Francisco, California, p.2121, 1999.

0] Alter, K.; Rank, E.; Kotz, S.A.; Toepel, U.; Besson, M.; Schirmer, A.; Friederici, A.D.:
Accentuation and emotions

Two different systems?


ICSA Workshop on Speech and Emotion.
Belfast, 2000.

[Ami00] Amir, N.; Ron, S.; Laor, N.:
Analysis of an emot
ional speech corpus in Hebrew based on objective
ICSA Workshop on Speech and Emotion. Belfast, 2000.

[Ami01] Amir, N.:
Classifying emotions in speech: a comparison of methods.
Holon Academic Institute of
technology, EUROSPEECH 2001, Escandinavia

[Ban96] Bance, R.; Scherer, K.:
Acoustic Profiles in Vocal Emotion expression,
in Journal of Personality
and Social Psychology, 1996.

[Bat00] Batliner, Anton; Fischer, Kerstin; Huber, Richard; Spilker, Jörg; Nöth, Elmar:
Desperately Seeking
Emotions: A
ctors, Wizards, and Human Beings
. In: Proceedings of the ISCA
Workshop on Speech
and Emotion. Belfast, 2000.

Bobrowski, L.:
Feature selection based on some homogeneity coefficient.

In Proceedings of 9

International Conference on Pattern Recognit
ion, 544

546, 1988.

[Boe93] Boersma, Paul.:
Accurate short
term analysis of the fundamental frequency and the harmonics
noise ratio of a sampled sound
", Proceedings of the Institute of Phonetic Sciences of the
University of Amsterdam 17: 97
110. 1993.

[Bra65] Bracewell, R. N.:
The Fourier Transform and Its Applications
, New York: McGraw
Hill Book
Company, 1965.



[Bre83] Brenner, M.; Shipp, T.; Doherty, E.; Morrisey, P.:
Voice Measures of Physiological Stress

Laboratory field data.
In Titze & Scherer
(Eds.): Vocal Fold Physiology: Biomechanics,
Acoustics, and Phonatory Control. Dencer, Colorado, USA. 1983.

[Bri96] Breiman, L.:
Machine Learning.
Bagging predictors 1996.

Cahn, J. E.:
Generating expression in synthesized speech
. Technical Repor
t Boston: MIT Media
Lab. 1990.

[Cam00] Campbell, N.:
Databases of Emotional Speech.
In Cowie, R. Douglas
Cowie, E. & Schröder, M.
(Eds.) Proceedings of the ICSA Workshop on Speech and Emotion. Belfast, 2000.

[Cam01] Campbell, N.:
Building a corpus of nat
ural speech

and Tools for the Processing of Expressive

The JST CREST ESP Project.
In Proceedings of Eurospeech 2001, Aalborg, Denmark,

Carlson, R.; Granström, B.; Nord, L.:
Experiments with emotive speech

Acted utterances and
nthesized replicas
. In Proceedings of the International Congress on Spoken Language
Processing. 1992.

Cardie, C.:
Using decision trees to improve case
based learning
. In: Proceedings of 10

International Conference on Machine Learning, 25

32, 199

Caruana, R.; Freitag, D.:
Greedy attribute selection.
In Proceedings of 11

Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 28

36, 1994.

[Che98] Chen, L.S.; Tao, H.; Huang, T.S.; Miyasat, T.; Nakatsu,

Emotion Recognition From
Audiovisual Information
. In Proceedings IEEE Workshop on Multimedia Signal Processing, pp.
88. Los Angeles, CA, USA, 1998.

[Che01] Cheveigné Alain de; Kawahara, Hidaki :
Comparative evaluation of F0 estimation algorithms.
Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001.

Cosmides L:
Invariances in the acoustic expression of emotion in speech,

in Journal of
Experimental Psychology: Human Perception and Performance, 9, 6, 864
881. 1983.

[Cow95] Cowie, R.; D
Cowie, E.:
Speakers and hearers are people: Reflections on speech
deterioration as a consequence of acquired deafness
in “Profound Deafness and Speech
Communication”. London, 1995.

[Cow99a] Cowie, R.; Douglas
Cowie, E.; Romano, A.:
Changing Emotion
al Tone in Dialogue and its
Prosodic Correlates.
In Proc. ESCA Workshop on Dialogue and prosody, Eindhoven, The
Netherlands, 1999.

[Cow99b] Cowie, R.; Douglas
Cowie, E.; Apolloni, B.; Taylor, J.; Fellenz, W.:
What a neural net needs to
know about emotion

in Proc. 3

World Multiconf. On Circuits, Systems, Comms. And
Computers. Athens, Greece, July 1999.

[Cow00] Cowie, R.; Douglas
Cowie, E.; Savvidou, S.; McMahon, E.; Sawey, M.; Schröder, M.:
FEELTRACE’: An Instrument for Recording Perceived Emotion
in Real Time.

In, ISCA Workshop
on Speech and Emotion, Belfast 2000.

[Cow01] Cowie, R.; Douglas
Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; G. Taylor, J.:
Emotion recognition in human
computer interaction
in “IEEE signal processing

magazine”, pp.
January 2001.



[Dav75] Davis, M.; College, H.:
Recognition of facial expresions.
New York: Amo Press, 1975.

[Dat64] Davitz, J.R:
Auditory correlates of vocal expression of emotional feeling.
In The communication of
emotional meaning
, ed J.R. Davitz, 101
112. New York: McGraw
Hill, 1964.

[Dar65] Darwin, C.:
The Expresion of Emotions in Man and Animals,
John Murray, Ed.1872. Reprinted by
univ. Chicago Press, 1965.

[Das97] Dash, M.; Liu, H.:
Feature Selection for Classification.
ligent Data Analysis

An International
Journal, Elsevier, Vol. 1, No. 3, 1997

[Del96] Dellaert, F.; Polzin, T.; Waibel, A.:
Recognizing Emotion in Speech

ICSLP’96 Conference
Proceedings, Delaware. 1996.

Devijver, P.A.; Kittler, J.:
Pattern Rec
ognition: A Statistical Approach
. Prentice Hall, 1982.

Doak, J.:
An evaluation of feature selection methods and their application to computer security.

Technical report, Davis, CA: University of California, Department of Computer Science, 1992.

Domingos, P.:
sensitive feature selection for lazy learners
. Artificial Intelligence Review,

Doval, B.; d'Alessandro, C.:
Spectral correlates of glottal waveform models: an analytic study

Proc. ICASSP 97, Munich, pp 446

Duch, W.; Adamczak, R.; Jankowski, N.:
Initialization and optimization of multilayered
. Third Conference on Neural Networks and Their Applications, Kule, Oct
ober 1997,
pp. 105

Duch, W.; Jankowski, N.:
Transfer functions: hidden possibilities for better neural networks
. 9th
European Symposium on Artificial Neural Networ
ks (ESANN), Brugge 2001. De
publications, pp. 81

[Ekm73] Ekman, P.: Darwin and Facial Esxpresions. New York: Academic, 1973.

Redondo, M; Hernández
Espinosa, C.: Weight Initialization Methods for Multilayer
Feedforward. ESANN'
2001 proceedings

European Symposium on Artificial Neural Networks
Bruges (Belgium), 25
27 April 2001,

Friedhoff, A. J.; Alpert, M.; Kurtzberg, R. L.:
An effect of emotion on voice.

Nature, 193.Hansen, J.
(1999): Speech Under Simulated and Actual

Stress (SUSAS). LDC 99S78. 1962.

Gamberger, D; Lavrac, N
.: Conditions for Occam’s Razor applicability and noise elimination.

Proccedings of the Ninth European Conference on Machine Learning, 1997.

Gennari, J.H.; Langley, P.; Fisher,
Models of incremental concept formation.

Intelligence, (40):11

61, 1989.

[Gil01] McGilloway, S.; Cowie, R.; Doulas
Cowie, E.; Gielen, S.; Westerdijk, M.; Stroeve S.:
Automatic Recognition of Emotion from Voice: A Rough Benchmark



[Gra96] Graf, H.; Cossato, D.; Gibbon, D.; Kocheisen, Petajan, E.;
modal system for locating heads
and faces,
in Proc. Int. Conf. On automatic Face and Gesture recognition. Vermont, Oct, 1996,

[Gre95] Greasley, P.; Setter, J.; Watterman
, M. Sherrard, C.; Roach, P.; Arnfield, S.; Horton, D.:
Representation of prosodic and emotional features in a spoken language database.
Proceedings of
the 13

International Congress of Phonetic Sciences. Stockholm. 244
245. 1995.

Ghiselli, E. E
Theory of Psychological Measurement
. McGrawHill, New York, 1964.

[Gus01] Gustafson
Capková, S.:
Emotions in Speech: Tagset and Acoustic Correlates.
Speech technology,
term paper. Autumn 2001.

[Hag95] Hagen, A.:
Analyse verschiedenerGrundfrequenzenver
fahren an unterschiedlichen
, Studentwork, Lehrstuhl fuer Mustererkennung (informatics 5), Erlangen
Nuernberg University.

[Hal99] Hall, M. A.; Smith, L. A.:
Feature Selection for Machine Learning: Comparing a Correlation
based Filter Approac
h to the Wrapper.
Proceedings of the Florida Artificial Intelligence
Symposium, FLAIRS

[Har94] Harbeck, S.:
Entwicklung eines robusten Systemszum periodensynchronen Analyse der
Grundfrequenz von Sprachsignalen,
Diploma Thesis, Lehrstuhl fuer Must
ererkennung (Informatics
5), Erlangen
Nuernberg University.

Hecker M.; Stevens, K.; von Bismarck, G.; Williams, C. E.:
Manifestations of task
induced stress
in the acoustic speech signal
. Journal of the Acoustical Society of America. 1968.

] Henrich, N.; d'Alessandro, C.; Doval, B.:
Spectral correlates of voice open quotient and glottal
flow asymmetry: theory, limits and experimental data.
In EUROSPEECH 2001, Denmark,

[Hes83 ] Hess, W.:
Pitch Determination of Speech Signals,

Springer Series of Information
Verlag, Berlin, 1983.

[Hog77] Hogarth, R. M.:
Methods for aggregating opinions.

In H. Jungermann and G. de Zeeuw, editors,
Decision Making and Change in Human Affairs. D. Reidel Publishing, Dordrech
Holland, 1977.

[Hub98] Huber, R:
Prosodische Linguistische Klassifikation von Emotionen.
PhD Thesis.

[Hub98] Huber, R.; Nöth, E.; Batliner, A.; Buckow, J.; Warnke, V.; Niemann, H.:
You BEEP Machine

Emotion in Automatic Speech Understanding Systems”.

TSD’98, Brno, Masaryc University.

Ichino, M.; Sklansky, J.:
Feature selection for linear classifier.

In: Proceedings of the Seventh
International Conference on Pattern Recognition, volume 1, 124

127, July

Aug 1984.

[Ichi84b] Ichino, M.; Sklansk
y, J.:
Optimum feature selection by zero
one programming.
IEEE Trans. on
Systems, Man and Cybernetics, SMC

746, September/October 1984.

[Jan01] Jankowski, N.; Duch, W.:
ptimal transfer function neural networks

In 9th European Symposium
on Artificial Neural Networks (ESANN), Brugge 2001. De
facto publications, pp. 101

Iida, A.; Campbell, N.; Yasamura, M.:
Design and Evaluation of Synthesised Speech with Emo
Journal of Information Processing Society of Japan, 40 (2). 1998.



[Iwa95] Iwano, Y.:
Extraction of Speaker’s Feeling using Facial Image and Speech

in Proceedings IEEE
International Workshop on Robot an Human. Tokio, Japan, 1995.

[Joh99] Johnstone,

T.; Scherer, K.:
The effects of emotions on voice quality.
University of Geneva.
Proceedings of the XIVth Internationl Congress of Phonetic Sciences, 1999, San Francisco.

[Kap01] Kappas, A.:
What is emotion?
Department of Psychology, University of Hull.

United Kingdom,

[Kie96] Kiessling, A.; Kompe, R.; Batliner, A.; Niemman, H,; Nöth, E:
Classification of Boundaries an
accents in Spontaneous Speech
in proceedings of the CRIM/FORWISS Workshop, Montreal, Oct

[Kie97] Kiessling, A.:
und Klassifikation prosodischer Merkmale in der automatischen
Berichte aus der Informatik, Shaker, Aachen, 1997.

[Kie00] Kienast, M.: Sendlmeier, W.F.:
Acoustical analyisis of spectral and temporal changes in emotional


In Proceedings of ISCA Workshop on Speech and Emotion. Belfast,

[Kir92] Kira, K.; Rendell, L.A.:
The feature selection problem: Traditional methods and a new algorithm.

In: Proceedings of Ninth National Conference on Artificial Intellig
ence, 129

134, 1992.

[Kla97] Klasmeyer, G.:
The Perceptual Importance of Selected Voice Quality Parameters

in Proceedings
of ICASSP'97, Munich, Germany, 1997.

[Kla00] Klasmeyer, G.; Sendlmeier, W.F.:
Voice and emotional states.
In Kent, R.D. & Ball, M.J
. (eds.):
Voice quality measurement. San Diego, 2000.

Kleinginna, P.R.; Kleinginna, A.M.:
A categorized list of emotion definitions with suggestions for a
consensual definition.

Motivation and Emotion, 5, 345
379. 1981.

[Koh95] Kohavi, R.:
rs for Performance Enhancement and Oblivious Decision Graphs
. PhD thesis,
Stanford University, 1995.

[Koh96] Kohavi, R.; John, G.:
Wrappers for feature subset selection
. Artificial Intelligence, special issue on
relevance, 97(1

2): 273

324, 1996.


Koller, D.; Sahami, M.:
Toward optimal feature selection
. In: Proceedings of International
Conference on Machine Learning, 1996.

[Kom89] Kompe, R.:
Ein Mehrkanal verfahren zur Berechnung der Grungfrequenzkontour unter Einsatz
der Dinamischen Programmieru
, Diploma Thesis, The Chair for Pattern Recognition
(Informatics 5), Erlangen
Nuernberg University, 1989.

[Kon94] Kononenko, Igor:
Estimating Attributes: Analysis and Extensions of RELIEF.
Proceedings of
European Conference on Machine Learning, 171

82, 1994.

Langley, P.; Sage, S.:
Oblivious decision trees and abstract cases.

In Working Notes of the
94 Workshop on Case
Based Reasoning, Seattle, W.A, 1994. AAAI Press.

[Lan94b] Langley, P.; Sage, S.:
Scaling to domains with irrelevant fe
. In R. Greiner, editor,
Computational Learning Theory and Natural Learning Systems, volume 4. MIT Press, 1994.

[Lan94c] Langley, P.; Sage, S.:
Induction of selective Bayesian classifiers.

In Proceedings of the Tenth
Conference on Uncertainty in Art
ificial Intelligence, Seattle, W.A, 1994. Morgan Kaufmann.



[Lat92] Lathi, B. P.:
Linear Systems and Signals
. Carmichael, Calif: Berkeley
Cambridge Press, 1992.

Lee, C.M.; Narayanan, S.; Pieraccini, R.:
Recognition of

Negative Emotion in the Human

, Workshop on Auto. Speech Recognition and Understanding, Dec 2001.

Liu, H.; Setiono, R.:
A probabilistic approach to feature selection

a filter solution.
Proceedings of International Conference on Machine Learning, 319

327, 19

Liu, H.; Setiono, R.:
Feature selection and classification

a probabilistic wrapper approach.

Proceedings of Ninth International Conference on Industrial and Engineering Applications of AI
and ES, 284

292, 1996.

[Mar97] Marasek, K.:
roglottographic Description of Voice Quality.
Phonetic AIMS, 1997.

[Meh74] Mehrabian, A.; Russel, J.:
An approach to environmental psychology.
Cambridge: MIT Press.

[Mil90] Miller, A. J.:
Subset Selection in Regression
. Chapman and Hall, New York,

[Mja01] Mjahed, M.:
Classification of Multi
jet Topologies in e+ e

collisions using Multivariate Analysis
Methods and Morphological Variables.

Modrzejewski, M.:
Feature selection using rough sets theory.

In: Proceedings of the Europ
Conference on Machine Learning (P. B. Brazdil, ed.), 213

226, 1993.

[Mon02] Montero, J.M.; Gutiérrez
Arriola, J.; de Córdoba, R.; Enríquez, E.; Pardo, J.M.:
The Role of Pitch
and Tempo in Spanish Emotional Speech.

E. Keller, G. Bailly, A. Monaghan, J.

Terken, M.
Huckvale (eds) pp 246
251, John Wiley and Sons, ISBN 0471
4, 2002

Moore, A.W.; Lee, M.S.:
Efficient algorithms for minimizing cross validation error.

Proceedings of Eleventh International Conference on Machine Learning, Morg
an Kaufmann, New
Brunswick, New Jersey, 190

198, 1994.

[Moz00] Mozziconacci, S. J. L.:
The expression of emotion considered in the framework of an intonational

Keynote paper for
ITRW ‘Speech and Emotion: A

conceptual framework for research
Newcastle, Northern Ireland, 2000.

Murphy, P. M.; Aha, D. W.:
UCI Repository of Machine Learning Databases.

Irvine, CA:
University of California, Department of Information and Computer Science. 1994.

Mucciardi, A.N.; Gose, E.E.:
A comparison of seven techniques for choosing subsets of pattern

IEEE Transactions on Computers, C

1031, September 1971.

[Mur93] Murray, I.; Arnott, J.L.:
Towards the Simulation of emotion in Synthetic Spe
ech: A review of the
Literature on Human Vocal Emotion,.i
n Journal of the Acoustic Society of America, 1993, pp.

Narendra, P.M.; Fukunaga, K.:
A branch and bound algorithm for feature selection
Transactions on Computers, C

922, September 1977.

[Nie83] Niemann, H.:
Klassification von Mustern,
Verlag, Berlin, 1983.

[Not91] Noeth, E,:
Prosodische Information in der automatischen Spracherkennung

Berechung und
Niemeyer, Tubingen, 1991.



a, A. L.; Vincentelli, A.S.:
Constructive induction using a non
greedy strategy for feature

In: Proceedings of Ninth International Conference on Machine Learning, 355

Morgan Kaufmann, Aberdeen, Scotland, 1992.

[Osg57] Osgood, C.E.; Suci J.
G.; Tannenbaum P.H.:
The measurement of meaning.
University of Illinois
Press: Urbana. 1957.

[Pae00] Paeschke, A.; Sendlmeier, W.F.:
Prosodic Characteristics of Emotional Speech: Measurements of
Fundamental Frequency Movements.
Technical University Berli
n, Germany. In Proceedings ICSA
Workshop on Speech and Emotion. Belfast, 2000.

[Par86] Parsons, T.:
Voice and Speech Processing.
Hill. 1986.

[Pen93] Penkiaitis, W.:
Ein integriertes, sequentielles, robustes Verfahren zur Ermittlung der der
grundfrequenz in Sprachsinalen,
Studentwork, The Chair for Pattern Recognition
(Informatics 5), Erlangen
Nuernberg, 1993.

[Per00] Pereira, C.:
Dimensions of Emotional Meaning in Speech.
ISCA workshop on Speech and Emotion,
Belfast 2000.

[Pet99] Petrushi
n, V.A.:
Emotion in speech: Recognition and Application to Call Centers”.
Artificial Neu.
Net. In Engr. (ANNIE’99), pp. 7
10, Nov. 1999.

[Pet00] Petrushin, V.A.:
Emotion Recognition in Speech Signal: Experimental Study, Development and
2000, Beijing.

[Pin90] Pinto, N. B.:
Unification of perturbation measures in speech signals.
JASA, vol.87, nr.3, pp.1278
1289. 1990.

[Pit93] Pittam, J.; Scherer, K. R.:
Vocal expression and communication of

. In M. Lewis & J. M. Haviland (Eds.),

Handbook of emotions (pp. 185

New York: Guilford Press. 1993.

[Pre92] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.:
Numerical Recipes in C: the art
of scientific computing
, Second Edition, Cambridge University Press. 1992.

Prm96] Parmanto, B.; Munro, P.W.; Doyle, H.R.:

Improving committee diagnosis with resampling
In D.S. Touretzky, M.C. Mozer, and M. Hesselmo
(eds.) Advances in Neural
Information Processing Systems 8
, Cmbridge, Mass: MIT Press, 882
888. 1996.

Queiros, C.E.; Gelsema, E.S.:
On feature selection.

In: Proceedings of Seventh International
Conference on Pattern Recognition, 1:128

130, July
Aug 1984.

[Qui86] Quinlan, J.R.:
Induction of decision trees.

Machine Learning, 1:81

106, 1986.

Quinlan, J.R.:
C4.5: Programs for machine learning
. Morgan Kaufmann, Los Altos, California,

[Rab78] Rabiner, L.; Schafer, R.:
Dogital Processing of Speech Signals
, prentice Hall Inc., Englewood
Cliffs, New Jersey, 1978.

[Ros74] Ross, M.: Shaffer, H
.: Cohen, A.: Freudberg, R.; Manley, H.:
Average magnitude difference
function pitch extractor, IEEE Trans. on Acoustics, Speech and Signal Processing,
Nr.5, 1974, S.353



[Roy96] Roy, D.; Pentland, A.:
Automatic Spoken Affect Analysis an
d Classification
in Proceedings of the
International Conference of Automatic Face and Gesture Recognition, Killington, VT. 1996.

Rumelhart, D.E.; McClelland, J. L.:
Parallel Distributed Processing
, volume 1.
MIT Press, 1986.

[Rus94] Russell, A.:
Is there universal recognition of emotion from facial expression? A review of cross
cultural studies.

Psychol. Bull. 1994.

[Sca97] Scalaidhe, O.S.P; Wilson, F.A.W.; Goldman Rakic, P.D.:
, vol.278, pp. 1135
108, 1997.

Schlimmer, J.C.:
Efficiently inducing determinations: A complete and systematic search algorithm
that uses optimal pruning.
In: Proceedings of Tenth International Conference on Machine
Learning, 284

290, (1993).

[Seg84] Segen, J.:
ure selection and constructive inference.

In: Proceedings of Seventh International
Conference on Pattern Recognition, 1344

1346, 1984.

[Sen78] Sennef, S.:
Time harmonic pitch detector, IEEE Trans. on Acoustics,Speech and signal
6, Nr.4, 1978, S. 358

[Seh90] Sheinvald, J.; Dom, B.; Niblack, W.:
A modelling approach to feature selection
. In: Proceedings of
Tenth International Conference on Pattern Recognition, 1:535

539, June 1990.

Skinner, E. R.:
A calibrated recor
ding and analysis of the pitch, force and quality of vocal tones
expressing happiness and sadness
. Speech Monographs. 1935.

[Slu95] Sluijter, A.:
Phonetic Correlates os Stress and Accent.
Holland institute of Generative Linguistics.

[Sch84] Scherer
, K.; Ekman, P.:
Approaches to Emotion
. Mahwah, NJ: Lawrence Erlbaum associates,

[Sch94] Scherer, K. R.: Affect Bursts in
(S.H.M. van Goozen, N. E van de Poll, & J. A. Sergeant,
eds.) . hillsdale, NJ: Lawrence Erlbaum..

[Sch00] Scherer, K.
A Cross
Cultural Investigation of Emotion Inferences from Voice and Speech:
Implications for Speech Technology.
In ICSLP 2000, Beijing, China, Oct. 2000.

Schiffmann, W.; Joost, M.; Werner, R.:
Optimization of the Backpropagation Algorithm for
raining Multilayer Perceptrons.

September 29, 1994

[Scö00] Schröder, M.:
Experimental Study of Affect Bursts
in ISCA Workshop on Speech and Emotion,
Northern Ireland, 2000.

[Scö01] Schröder, M.; Cowie, R.; Douglas
Cowie, E.; Westerdijk, M.; Gielen, S.:
Acoustic Correlates of
Emotion Dimensions in View of Speech Synthesis.

Skalak, D.B.:
Prototype and feature selection by sampling and random mutation hill

In: Proceedings of Eleventh International Conference on Machine Learnin
g, Morgan
Kaufmann, New Brunswick, 293

301, 1994.

[Sti01] Stibbard, R. M.:

Vocal Expression of Emotions in Non
laboratory Speech: An Investigation of the
Reading/Leeds Emotion in Speech Project Annotation Data.
Unpublished PhD thesis. University
of Readin
g, UK. 2001.



[Tat02] Tato, R.; Santos, R.; Kompe, R.; Pardo, J.M.:
Emotional Space Improves emotion Recognition.

[Tar80] Tartter, V.C.:
Happy talk: Perceptual and acoustic effects of smiling on speech.
Perception and
Psychophysics. 1980.

Tic00] Tickle, A.:
English and Japanese Speakers’ Emotion Vocalisation and Recognition: A Comparison
Highlighting Vowel Quality
in ICSA Workshop on Speech and Emotion, Northern Ireland 2000,

[Tol90] Tollenaere, T.:
SuperSAB: Fast Adaptive Backp
ropagation with Good Scaling Properties
, Neural
, 561 (1990).

[Tra96] Trask, R. L.:
A Dictionary of phonetics and Phonology
. Routledge, London, 1996.

Vafaie, H.; Imam, I.F
.: Feature selection methods: genetic algorithms vs. greedy
ke search
. In:
Proceedings of International Conference on Fuzzy and Intelligent Control Systems, 1994.

[Wea89] Weaver, H. J.:
Theory of Discrete and Continuous Fourier Analysis.
Europe, 1989.

Williams, C. E.; Stevens, K. N.:

On determining

the emotional state of pilots during flight: An
exploratory study.
Aerospace Medicine, 40. 1969.

Williams, C. E.; Stevens, K. N.:

Emotions and speech: Some acoustical factors

in Journal of the
Acoustical Society of America, 52, 1238
1250. 1972.

[Wit82] Witten, I.:
Principles of Computer Speech
, Academic Press Inc. 1982.

Xu, L.; Yan, P.; Chang, T.:
Best first strategy for feature selection.

In: Proceedings of Ninth
International Conference on Pattern Recognition, 706

708, 1988.

[Yan01] Y
ang, L.:
Linking Form to Meaning: The Expression and Recognition of Emotions Through
in Proceedings on fourth ISCA Workshop on Speech Synthesis, 2001.

[Zaj62] Zajonic, R. B.:
A note on group judgements and group size.

Human Relations, 15:177



[Zel95] Andreas Zell, Günter Mamier, Michael Vogt, Niels Mache, Ralf Hübner, Sven Döring, Kai
Herrmann, Tobias Soyez, Michael Schmalzl, Tilman Sommer, Artemis Hatzigeorgiou, Dietmar
Posselt, Tobias Schreiner, Bernward Kett, Gianfranco Clemente,

Jens Wieland:
(SNNS Stuttgart
Neural Network Simulator, User Manual Version 4.1.
University of Stuttgart
, 1995.

[Zet01] Zetterholm, E.:
Prosody and voice quality in the expression of emotions.
Lund University. In SST
Proceedings of the 7

Australian In
ternational conference on SPEECH SCIENCE AND
TECHNOLOGY. Sydney, 1998.

[Zwi67] Zwicker, E.; Feldtkeller, R.:
Das Ohr als Nachrichtenempfaenger,
Hirzel Velag, Stuttgart, 1967.