Semester or Master project - LMIS4 - EPFL

yokeenchantingBiotechnology

Sep 29, 2013 (3 years and 6 months ago)

78 views

Laboratoire de Microsystèmes, STI
-
LMIS, Groupe Renaud


Projets d’étudiants


http://lmis4.epfl.ch/page7159.html


Semestre de
automne

2009




Sensor for intra
-
cochlear pressure measurement

Semester

project


The goal of this project (in collaboration with Phonak Acoustic Implants SA, active in the development and
sales of hearing implants for severe to profound hearing losses) is to perform a pre
-
study for a miniaturized
pressure sensor that could be adapted
for pressure measurement inside the cochlea (inner ear).


The main challenge lies in the small size and the fragility of this organ. Better knowledge of these pressures
would allow the refinement of the models used in the development of this kind of implan
ts.


Concretely, the project (semester project) would consist in a
research of the existing market and, ideally, in
the selection of a sensor, and then in the development of an adapted measurement setup. The project could
be continued (further semester or
master project)


Contact:

M. Gregoire Dao


Gregoire.Dao@acousticimplants.com



Microsondes i
mplantables

pour une interface électrique et chimique avec le cerveau

Projet de
Semestre


Nous travaillons en collaboration avec des biologistes de l’université d
e Fribourg pour développer des
microsondes flexibles en polyimide qui seront implantées sur des petits
mammifères (scandentiens) et des macaques dans le but de mener des
expériences sur les mécanismes d’apprentissage et leurs effets sur les
structures du c
ortex. Ces microsondes devront combiner

:


1)

Des électrodes de platine pour la stimulation et la mesure électrique

2)

Des canaux microfluidiques destinés à la libération de neurotransmetteurs dans le cerveau

3)

Des biocapteurs mesurant la concentration de neurotra
nsmetteurs émis soit par la sonde elle
-
même, soit par
un neurone à la suite d’une excitation


Projet proposé

Le thème exact du projet proposé n’est pas encore défini. Il pourrait s’agir de
développer un système de mesure et de caractériser les sondes du
point de vue
électrique (mesures d’impédance) et/ou fluidique (quantité de liquide injecté,
caractérisation de l’injection) ou de fabriquer des sondes contenant des canaux
microfluidiques en salle blanche. Pour de plus amples informations, contactez
-
moi di
rectement svp.


Responsable


pierre.joris@epfl.ch


BM 3 117

Tel

: 021 69
-
3 68 39



Microfluidic chip for monitoring the glucose level in blood by electrical impedance

Semester

project


We are collaborating with

a company that is developing a non
-
invasive glucose sensor which is based on
impedance measurement through the skin. Our objective is to make an in
-
vitro device which can be used as
an assay to better understand how glucose may be affecting the electrical

impedance of red blood cells. Our
approach is to immobilize the cells in a microchannel (in a gel or a kind of filter) and have microelectrodes
nearby.


Proposed student project:

(For details, please contact directly):


-

Design of new chips and developin
g the measurement concept.




Respons
i
bles:



Ludovica.Colella@epfl.ch



BM 3.119

tél. 3 6728

Thomas.Braschler@epfl.ch



BM 3.125

tél. 3 6727




Microfluidic c
ell fusion device

Semester
project
(master possible)


We study a microfluidic chip to perform the fusion of two cells through manipulation by dielectrophoretic or
mechanical forces and application of electrical pulses to fuse the cells. The chips are made

of SU
-
8 in
glass
with actuation electrodes and
micro
channels, with a PDMS rubber

on
top.


Proposed student project:


-

Cell fusion experiments







A new chip has been designed and fabricated. The objective of this project would be to test the new chip

and
to try cell fusion experiments. One of the issues will be on the selection of a good cell model and on the
biological quantification of the results of the experiments.
Both, electrical and chemical
-
mediated fusion will
be combined in order to achieve
high cell fusion rate.


Responsable:


Ana.Valero@epfl.ch





B
M 3.124

tél: 3 6582








Microfluidic device for three
-
dimensional neuronal cell culture

Master
/Semester

project




Overview of 3D neuronal cell

culture in microfluidic environments


Building 3D cell culture for biotechnology is a new challenge for microfluidics in order to influence the
position of cells in a cell network and to create micro
environments

close to the biological reality. We use a
microfluidic set
-
up to create temperature controlled 3D hydrogel layers with immobilized cells. To
characterize neuronal cell growth in different environments we can detect neuronal activity with a multi
-
electrode array or patch clamp systems. Different ch
emical gradients can be applied within the microfluidic
system.


From this approach the student can work on one of the following topics:


-

Immobilizing molecules / amino
-
groups in agarose hydrogel


Master Project

(Life Science)

-

Microscope set
-
up for th
ermosetting of hydrogels



Semester Project

-

COMSOL simulation of particle diffusion in parallel hydrogel layers with different viscosities

Semester Project


Responsible:



anja.kunze@epfl.ch




BM 3.117

tél.

:

36839



Studies of microelectrodes for retinal implants

Projet de Semestre


We fabricate flexible electrodes that will be placed in the sub
-
retinal area (into the photoreceptor region) of
the human eye that will function as stimulating sites. The presen
t work is directed towards making better
electrodes to maximise the proximity between the retinal neural layer and the stimulating electrodes.


Proposed student projects (max. 1 student):



(For more explanation, please contact directly):

-

Numerical model
ling of electrical fields in the retina




Responsible:

harsha.kasi@epfl.ch





BM 3.219

tel: 36745




A microfluidic device for the extraction of low molecular weight RNA.

Master project


This project

will be
done in collaboration with Ayanda Biosystems SA (EPFL
-
PSE) and aims to further
develop and manufacture microfluidic RNA extraction microsystem prototypes.


A recent increase in
the role of small RNAs in controlling key cellular processes and disease has le
d to a
major need in rapid and more efficient tools for RNA analysis, specifically a need for

dedicated approaches
for automated RNA extraction from minimal amounts of cells. A novel, highly efficient and simple method
for RNA extraction using thermo
-
elect
ric lysis and electrophoretic purification in a microfluidic chip
has
been developed. RNA

extraction has been dem
onstrated for

tmRNA from various well
-
known bacteria down
to a few bacterial cells
. The current approach enables an automated screening of mini
mal amounts of cells
and may find broad application in drug discovery and clinical diagnostics.


However, it is now necessary to optimize this initial prototype so that it can better suit the needs and
applications in high
-
throughput drug discovery industr
y.
The goal of this project is to miniaturise the current
single unit RNA extraction chip in order

to develop and build

multiwell version prototypes of the device.
The following tasks are required in order to achieve this goal:




Investigate and test new mi
crofluidic chips with reduced dimensions. This task includ
es simulations,
design, test
-
chip fabrication and characterisation.



Explore the possibility to use l
ow
-
cost fabrication methods in order to reduce overall fabrication
costs.

It includes working in t
he EPFL
-
CMI cleanroom.



Design and fabrication of multiwell chip

prototypes for demonstration purposes.






Responsible:


marc.heuschkel@epfl.ch




BM 3.219

tel.: 36576








M
icr
ofluidic scintillation part
icle detector

Semester or Master

project


A novel particle and radiation detector is being developed with standard microfabrication techniques. It
consists of a dense array of micro
-
optical waveguides filled with an organic liquid scintillator. The detecto
r
is coupled to a photodetector to detect the light produced by the interaction of a particle with the scintillator.
Prototype detectors with high spatial resolution have been fabricated by photostructuration of a resin (SU
-
8)
deposited on a silicon substr
ate. Preliminary results with these prototypes show promising results and
confirm the working principle of this novel microfluidic detector.


In this context the student can choose between the following projects


(
semester / master
)
:


-

Optical coupling a
nd integration of photodetectors

-

The student will study and implement solutions
for efficient light transmission between the chip and the photodetector. The ultimate goal would be to
integrate the photodetection devices to the chip.

-

Packaging of microc
hannels

-

The student will optimize a bonding process to close the microchannels
for optimal fluidic and optical operation.

-

Interconnections between chips

-

The student will study the feasibility of stacking interconnected
microfluidic chips to create a
single microfluidic entity.

-

Modelling of optical waveguiding properties of the microchannels

-

The student will calculate the
efficiency of light transport in the microchannels. According to the results the student will study and
develop

alternative sche
mes.

Responsables:

alessandro.mapelli@cern.ch



CERN


tél: 022 767

6368

Nicolas.Durand@epfl.ch



BM 3.118

tél. 3 6752




Packaging sous vide de micro
-
miroir ME
MS au niveau du wafer

Projet de
Semestre


Les composants MEMS sont de plus en plus
présents

dans les appareil
s

utilisés au quotidie
n (
Capteur
d’accélération dans les airbags…
)
. Un nouveau type de MEMS pour des applications de scanner optique a
été développ
é au sein du LMIS4

et peuvent être utilisées pour les applications de projection vidéo
miniaturisée.
Un premier développement à été
réalisé

pour
packager ces miroirs de manière à les protéger
hermétiquement contre l’eau et la poussière. Cette technique pe
rmet de protéger en une seule étape plus de
600 miroirs.






a) Vue d’un miroir packagé et découpé, b) vue d’un wafer entier packagé,

c) application des micro
-
miroirs MEMS


Durant ce projet, il est demandé de tester et analyser les différents param
ètres physiques d’une nouvelle
génération de micro
-
miroirs (Fréquence et angle de balayage, résistance, impact des différents designs de
miroirs sur ces paramètres…). Les miroirs sont packagés dans une enceinte complètement hermétique, dont
l’une est sous
vide, ce qui permet d’augmenter considérablement les performances des micro
-
miroirs en
termes d’angle de balayage et de consommation.


Les étapes du projet sont

:

-

Mesure électrique et optique des micro
-
miroirs encapsulés sous air et sous vide

-

Evaluation de
s performances des miroirs en fonction des designs mécaniques

-

Comparaison entre mesures et hypothèses initiale et analyse des résultats


Responsable:

nicolas.abele@epfl.ch




BM 3.124

tél: 3 6606





Microfluidic

chip for in vitro culture of drosoph
i
lia embryonic wing


S
emester project




We are in collaboration with biologists at ETHZ and UNIL who are studying the development of fly tissue
from cell differentiation and genetics points of view. The purpose is to

develop new tools for the culture of
these tissues in development. The model tissue they have is the wing of a drosophila which starts from some
20 cells and they follow development up to 6000 cells. The goals of the project are to:


(1)
design an impro
ved microfluidic culture dish for wing disc culture;

(2)
study a novel concept with microchannels below the culture for local perfusion with morphogenic
factors.

(3)
design and test culture chambers for the study of wing discs inside drosophilia larvae.


R
esponsables:


Sophie.Baranek@epfl.ch



BM 3.219

tel. 3 6786




Harald.vanLintel@epfl.ch




BM 3.125

tel: 3 6627






Miniature fluorescence imaging set
-
up



S
emester

project


In our lab we frequently use fluorescence detection with our microfluidic experiments. We would like to
have a stand
-
alone but economical fluorescence imaging set
-
up dedicated for a microfluidic electrophoresis
demonstration experiment.


P
roposed student project
:


Combine a low cost camera, simple microscope lenses with UV and visible LED’s to realize a compact and
low
-
cost microscope platform. Two axis motorized stage based on DVD mechanics and a computer control

(USB) program can also be
added.


Responsibles:

Harald.vanLintel@epfl.ch




BM 3.125

tel: 3 6627



Philippe.Renaud@epfl.ch





BM 3.126

te
l: 3
2596



Arsenic biosensor

Semester/Mast
er

Project


The goal of this project (in collaboration with the Department of Fundamental Microbiology of the
University of Lausanne and the Institute Système Industriel, HES) is to design and construct a modular
miniaturized microfluidics cartridge (the S
AMS), in which bacterial reporter cells (E. Coli) can be actively
maintained and exposed to target chemicals (arsenic) in aqueous solution, and to construct a “proof of
principle” handheld device (ReaderLab), in which the cartridge can be sled and which a
llows direct
detection of the reporter signal (green fluorescent protein) produced in the SAMS.





From this approach the student can work on one of the following topics:


-

Test of the microfluidic chips that we designed and improvement of the de
sign:


Semester

Project

(
Microengineering/Life Science)


-

Design

of
an
opti
cal system

which allows direct detection of the reporter signal produced in


the SAMS :

Semester/Master

Project

(
Microengineering)



Contacts:

nina.buffi@epfl.ch




BM 3.219

tel. 36786

harald.vanlintel@epfl.ch




BM 3.125

tel. 36627




E. Coli are accumulated
and exposed to arsenic.
In presence of arsenic
they produce
green
fluorescent proteins
(GFP) and thus arsenic
can be detected

Filter to
retain E. Coli

Microfluidic
channels

Chips explosifs en silicium poreux

Projet de
Semestre



déjà pris

!


Nous étudions la possibilité de dévelo
pper des chips explosives à base de silicium poreux activé par une
solution oxydante, avec pour objectif d’augmenter leur stabilité et d’y ajouter un système d’ignition intégré.



I
mages capturées par une caméra ultrarapide (50 Kfps) montrant la propagat
ion du front de l’explosion.


Projet proposé :

Déjà pris

!

Caractérisation et quantification de micro
-
explosions






(semestre)

Ce projet consistera à utiliser et à développer des techniques permettant de quantifier l’énergie libérée par les
micro
-
explos
ions, par exemple en observant le déplacement d’un piston mû par l’explosion, ou alors à l’aide
d’une caméra ultrarapide nous permettant d’observer la propagation de la déflagration et d’en déduire la
vitesse. L’effet de différents types de revêtement pour
ront aussi être testés.




À gauche

: photographie d’une explosion, à droite

: montage provisoire de piston,


Responsable

:

fabien.wildhaber@epfl.ch



BM 3.219

tél. 36745




Gas analysis system


Master proj
ect



Already taken!


Gas analysis is a new and interesting field for Lab
-
on
-
a
-
chip systems. One common method is gas
chromatography, where a sample plug is split into its components while traveling through a column. At the
column’s exit the split componen
ts can now be detected one after the other.



Schematics of the gas analysis setup

The proposed project of Microsens SA aims at studying a microsystem based on a microfabricated gas
column and a multi
-
purpose gas sensor. Among others we try to answer the

following questions:



How does the system behave for different type of volatile components?




What are the parameters for the successful splitting of a gaseous plug of

mixed composition
?

The main task of this project will be the testing of the microfabrica
ted system with respect to the different
parameters, such as column length, flow velocity, temperature and gas composition.

For further information feel free to contact us directly.

This project has already been taken
!


Responsibles
:


ulrike.lehmann@microsens.ch


BM 3.221

tel:
3 9135

arnaud.bertsch@epfl.ch



BM 3.124


t
el: 3 6606