Proposed contents in chapter format
1.
Content i
ntroduction:
Anyone who knows circuits and electronics will look over this table
of contents and be distressed over how much has been omitted. If they look further they will
find that their pet interests are more likely to be sampled than examined in depth. But tha
t is
how it should be. Electronics and circuits do not have need to include the entire spectrum of
details and technology history. Emphasis is placed on approximations, defaults, analysis by
inspection and rough circuit assessment, with simulation invoke
d for closer inspections and
spreadsheet usage for formulae detailing.
2.
Circuit basics:
Linear Ohm'
s law, binary ladders, nodal and mesh analysis,
Thevenin
and
Norton t
heorem
s, Superposition. Maximum power transfer. (20 pp)
3.
Energy storage compone
nts
: capacitance and inductance as linear reactive components and
use of complex variables for description of branch components as impedance and admittance
elements. (18 pp)
4.
Frequency domain
content of circuits, RC and RL time constants, RLC circuits,
Bode plots,
dB notation, pulse response and Laplace context and nomenclature. (15 pp)
5.
Ideal opamp:
basic circuits, feedback context and virtual connections. (20 pp)
6.
Magnetic circuit analysis
, magnetic field units, permeable materials, reluctance
and
inductance. Flux linkage and linear transformers, simulation models for transformers (20 pp)
7.
The power grid.
Use of phasors to define impedance and admittance. The effect of load
impedances on power, apparent power, power factor and phase relat
ionships (20 pp)
8.
Diodes and diode circuits.
Semiconductors context and nomenclature, layer and masking
techniques. Non

linear components and approximate assessment techniques, diode

capacitance
circuits, converters and charge pump techniques. (30 pp)
9.
Introduction to transistors:
bipolar

junction devices.
Single

transistor transfer circuit
topologies and shortcut analyses, current mirrors, stiff nodes and soft nodes, use of more
transistors to make analysis simpler with improved performance. (30
pp)
10.
MOS and buried channel Field

Effect
transistors.
MOS devices and model levels, use of
MOSIS and the circuit simulation MOS templates, CMOS logic realizations and CMOS dynamic
power consumption, MOS charge

pump topologies, junction FETs and JFET s
ingle transistor
transfer circuit topologies. (40pp)
11.
Transistor parasitics:
time constants and
frequency response (20 pp)
12.
Power
amplifiers,
power transistors, thermal paths and de

rating of power transistors,
class

B, class AB, class C, class
D and power bridges. (30 pp)
13.
Power converters,
AC

DC and DC

DC (20 pp)
14.
Emitter/Source

coupled pairs
and differential circuits, CMRR (20 pp)
15.
Non

ideal opamps
with finte transfer characteristics. Compensated for single

time constant
(STC
) profile. Slew rate and CMRR (25 pp)
16.
Feedback and stability
biquadratic feedback loops and phase margins (20 pp)
17.
Active filter design
, biquadratic portfolio topologies, frequency rescaling, table

defined
profiles, RLC:CRD techniques, leapfrog t
echniques (35 pp)
18.
UHF circuit design
and interconnects as transmission lines. Smith chart analysis (25 pp)
19.
Noise and distortion analysis
, thermal noise nomenclature, kTC noise, shot noise, circuit
optimization, dynamic range (30 pp)
Comments 0
Log in to post a comment