“bio-based economy”? - Presse - Achema

workkinkajouBiotechnology

Dec 5, 2012 (5 years and 1 month ago)

174 views

1

/
5

DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Theodor
-
Heuss
-
Allee 25


60486 Frankfurt am Main


Germany


T + 49(0)69 75 64
-
0


F +49(0)69 75 64
-
201


presse@dechema.de
www.dechema.de



Press

release

Press
e
-
Information



Information de presse


Contact/Kontak
t:

Dr. Kathrin Rübberdt

Tel. ++49 (0) 69 / 75 64
-

2 77

Fax ++49 (0) 69 / 75 64
-

2 72

e
-
Mail: presse@dechema.de

Trend Report No
.
3

:
Bio
e
conomy

December 2011

What do we stand to

gain from the “bio
-
based economy”?



Bio
-
based high
-
performance chemicals for a whole range of applications



New separation & synthesis equipment and measurement
& control technology facilitate

hybrid production



Distributed value
-
add generates impetus in
the chemical analysis market


What is the real truth about the “bio
-
based economy”? How close are developments
for the renewable energy, food, animal feed, fine & bulk chemical, textile, printing,
machinery manufacturing and IT industries to market introd
uction? On June 18
th

to

22
nd
, BioBasedWorld at ACHEMA 2012 will attract technology, process and product
developers along with Business Development and Senior Executives from around
the world. Biotechnology and renewables

can already deliver solutions to meet the
challenges of tomorrow.


Secretions from the split gill fungus looking for partners

Most people will have seen the
Schizophyllum commune

(commonly known as the split gill
fungus) at some point. Colonies form on de
ad trees and wounded bark. It has been known
since the early 1990’s that the fungus protects itself against decay by coating its surface
with hydrophobins. These proteins, which are about 100 to 150 amino acids long, are h
y-
drophobic and readily soluble in
fat. Closer scientific scrutiny has shown that hydrophobins
have the opposite property as well: As is the case with soap, hydrophobins are amphiphilic.
This multi
-
functionality can be exploited to create customer value
-
add for many products.
How
ever, that
has not been easy. 1

mg of the hydrophobins is distributed over an area
covering one square meter on the surface of the fungus. “Far too little ever to be of any use
to humans,” explained Claus Bollschweiler, a developer at BASF Performance Chemicals
and B
iologicals. “Biotechnology and genetic engineering provide the only path for producing
such a naturally rare but highly efficient protein on a large scale so that it can be used to
develop innovative products.”

2

/
5

DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Theodor
-
Heuss
-
Allee 25


60486 Frankfurt am Main


Germany


T + 49(0)69 75 64
-
0


F +49(0)69 75 64
-
201


presse@dechema.de
www.dechema.de


Genetic engineering techniques and fermentati
on have only recently made it feasible to
produce hydrophobins by the ton. Functional coatings on construction materials are the
initial applications including water
-
repellent insulating foam and silicon sealant which can be
painted over. The silicon will
only absorb paint once the surface has been treated with the
fungus protein. The application spectrum for new product development is as broad as it is
open. The fungus proteins could potentially be used in cosmetics for skin rehydration or in
fur coloring
products for pedigree dogs and cats. This would be done by linking them to
keratin
-
binding natural or synthetic polypeptides. These hydrophobins might also help
achieve functional improvements in pharmaceuticals, textiles and aquaculture feed. Hydr
o-
phobins

are expected to play a significant role in the chemical production of thermoplastic
particles where static charge on polystyrene foam continues to cause problems. The cu
r-
rent approach is to prevent the problem by coating the particles, but the particles t
end to
stick together when conventional techniques are used, which impairs pourability.

There is virtually no limit to the possible applications for these and other natural substances
(e.g. succinic acid and microbial fuel cells) produced with the aid of
biotechnology. The
same applies to many other precursors and intermediates which the biotech industry is
currently introducing. However, in the final analysis, the applications are customer driven.
Developers that produce biotech products on an industrial
scale must establish contact with
the companies (in many cases SMEs) which are able to use them for their special applic
a-
tions. Even the secretions of the split gill have to find partners that have an in
-
depth unde
r-
standing of their products, niche markets

and end users but are not sufficiently aware of the
business opportunities which new developments in biotechnology can offer away from the
media paths.

Intelligent devices and process technologies for parallel and alternating mode sy
s-
tems

Forced to deal
with commodity market volatility, non
-
payment risks, financial crises, new
trade barriers in agricultural and food markets and regulatory conflicts relating to genetically
modified plants, companies are noticeably reluctant to abandon so far reliable sourc
es of
raw materials, replace equipment that works reliably, modify production processes to ha
n-
dle new materials or build new systems from scratch based on new technologies. Inves
t-
ment


yes, technology revolution


no; me
-
too products


no, something new


yes, say
the decision
-
makers. As a result, the preference is for components, modules, process
solutions and systems which are able to accommodate different raw materials to produce
the same end product and which are suitable for small test series. The exp
ectations of what
biotechnology should deliver are high:



3

/
5

DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Theodor
-
Heuss
-
Allee 25


60486 Frankfurt am Main


Germany


T + 49(0)69 75 64
-
0


F +49(0)69 75 64
-
201


presse@dechema.de
www.dechema.de




Zero waste, utilization of byproducts



Ability to process heterogeneous raw materials and input chemicals to produce the
same end products



Changeover during production of multiple products without i
nterruption



Utilization of existing infrastructure

Up to this point, there have been few biotech solutions outside of the pharmaceutical indu
s-
try, which have been affordable and have met expectations on a large scale. That is due to
the nature of the techn
ology: The products are generally precursors and intermediates
made of biological material which is subject to variation. They are seldom of the “off
-
the
-
shelf” variety, and it takes additional expertise to produce a saleable (end) product. In add
i-
tion, bi
otech process systems are also not plug & play at this stage. Customer
-
specific
modifications are always necessary, and customers must have the confidence that after
-
sales service will provide dependable support and will not increase prices after the fact.

Combination of multiple technology platforms has gained momentum in recent years. A
u-
tonomous machine control, intelligent measurement and control technology, modular e
x-
traction, separation and cooling systems and miniaturized fractionation and synthesis m
a-
chines bring biotech applications to the point where they are suitable for industrial use.
Non
-
proprietary interfaces which provide connectivity to customer systems are becoming
more common on automated lab equipment. Among other things, this gives users
greater
freedom of choice in the selection of reagents. Sensors with autoclavable electrodes which
support mobile data acquisition for specific process parameters are now available for fe
r-
menters. New differential pH sensors in combination with specialized

buffer gels (e.g. ma
-
leic acid and diallylamine) eliminate the disadvantages of standard reference systems (KCI
half
-
cell), opening the door to real time pH detection under variable temperature conditions.

Rapid advances are also being made in the develop
ment of separators which facilitate the
lucrative (and climate friendly) utilization of by
-
products. In the autumn, a large algae pr
o-
duction plant w
ent

into operation in China. Scrubbed flue gas from a coal
-
fired power st
a-
tion is fed to the algae. The alga
e plant is capable of capturing up to 2,500 kg of CO
2

per
day in the form of biomass. The algae absorb the carbon dioxide and metabolize it into
substances such as fat and carbohydrates. Special separators harvest the algae and co
n-
centrate the biomass. The

process generates additional value
-
add from gas emissions
through the sale of valuable protein to the animal feed industry. In this instance and in many
others, the combination of mechanical engineering, electronics, IT and biotechnology
makes it possible

to optimize existing production processes and generate profitable by
-
products.

4

/
5

DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Theodor
-
Heuss
-
Allee 25


60486 Frankfurt am Main


Germany


T + 49(0)69 75 64
-
0


F +49(0)69 75 64
-
201


presse@dechema.de
www.dechema.de


The plant engineering industry is also exploiting new opportunities. So far, output cost
optimization and modernization of old production assets play a bigger role than the co
n-
struction of new biorefineries. Bioethanol and vegetable oil added to fossil fuel are only the
beginning in the petrochemical industry. They are mostly still made from agricultural crops.
There is a public consensus however that competition with food prod
uction must be avoi
d-
ed. Next
-
generation biofuels will be made from wood, straw, food residue and plant or
animal industrial waste rather than food products. A number of pilot plants are already in
operation.

The chemical industry is also getting ready to p
roduce platform chemicals such as glycerin
or starch from agricultural feedstock. To do that, it will need components, equipment and
process systems that offer production flexibility and are designed to adapt to varying types
of feedstock without putting o
verall operations at risk. Reducing the logistics costs (which
can be considerable) is another deliverable for plant engineering. Oil and biomass will be
used to fire power stations in either parallel or alternating mode. Supplemental combustion
or gasific
ation of vegetable oil or ethanol at the site of an existing oil refinery or power
station is an approach which is still in its infancy. The Brazilian petrochemical producer
Braskem is showing the way. Parallel production of up to 200,000

MT of ethylene an
d
polyethylene resin from cane sugar ethanol started up in the autumn of 2010. The produ
c-
tion line was built right next to an existing petrochemical plant, and it uses the plant’s
polymerization infrastructure.

Organic hydrocarbons are still cheaper on th
e world market than bio
-
based materials.
However, the price differential compared to renewables is narrowing. What we are looking
at for the foreseeable future is not the replacement of oil but instead the alternating use of
heterogeneous resources. Alfred

Oberholz, former head of R&D at Evonik Degussa: “Bi
o-
mass
-
based raw materials will continue to compete with petrochemical feedstock. At the
end of the day, C atoms will have the same market value regardless of whether they are
derived from biomass or petro
chemical feedstock.”

Distributed value
-
add generates impetus in the chemical analysis market

Whatever role biotechnology may play, decentralization of the value
-
add chain is a fact of
life in the power generation, food, animal feed, fine chemicals and
clean technologies se
c-
tor. Processing plants are moving closer to their raw material suppliers and customers.
Global players now operate similar to regional suppliers by creating specific product lines.
Regional suppliers on the other hand buy the same ing
redients, additives and production
assets as the large corporations. As a result, value
-
add is becoming increasingly complex,
and companies have to manage greater procurement and delivery risks. How toxic is a
particular substance? Did the cooling chain re
main intact during shipping? Was the silo
really cleaned beforehand as required? Is product contamination below the legal limit? Do
5

/
5

DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Theodor
-
Heuss
-
Allee 25


60486 Frankfurt am Main


Germany


T + 49(0)69 75 64
-
0


F +49(0)69 75 64
-
201


presse@dechema.de
www.dechema.de


the goods really contain the high
-
grade fat and if so in what proportion? In the decentralized
world of global procurement,
nucleic acid testing, mass spectrometers, portable Elisa and
fluorescence detectors create assurance for the purchasing process and the customers.
They are used whenever real time verification of the original product and quality are esse
n-
tial to ensure ear
ly elimination of toxicity risks and to enable people to make quick decisions
at affordable cost. The tests often rely on biotech components in the items under investig
a-
tion, for example readout of DNA barcodes or photochromic pigments made of genetically
optimized bacteriorhodopsin applied with an inkjet printer to protect against product piracy
and counterfeiters.

For their part, advanced analytical systems encourage the decentralization of value
-
add.
Highly sensitive DNA testing, for example, is now able

to detect minute amounts of GMOs,
resulting in a change in procurement policies by large buyers of food and animal feed. In
some cases, the limits they set are more stringent that the regulatory requirements. Port
a-
ble detection equipment and kits (point o
f use tests) are becoming increasingly prevalent,
supplementing the standard microbiology techniques and expertise of large labs. Suppliers
react by developing products which reflect analytical capabilities, and they introduce greater
differentiation in th
e way in which they service different markets. Batches destined for Ce
n-
tral Europe contain no GMOs or only amounts that do not need to be declared, whereas
this aspect is only of secondary importance for the rest of the world.

The deck is being reshuffled,

cutting across existing supply chains and national and indu
s-
try boundaries. In a world of globalized economic relationships, we will be seeing the ine
x-
orable advance of biotech methodologies and process techniques which are cost
-
efficient
and create prod
ucts that offer greater value
-
add. Of course the market does not simply
soak up innovation. Technology suppliers should not assume that what they have to offer is
self
-
explanatory. They have to work to acquire and retain customers. Potential customers
on t
he other hand who expect the sales force to show up at the door with innovation in hand
have already lost the battle. Both sides, technology suppliers and customers, need a ded
i-
cated platform where they can get together and hold face
-
to
-
face discussions. B
ioBase
d-
World at ACHEMA 2012 is one of the few forums worldwide which provides access to such
a large cross
-
section of the industry.

www.achema
.de

(The trend reports are compiled by specialized international journalists. DECHEMA is not
liable for incomplete

or inaccurate information.)