MOBILE COMPUTER BASED CLASSROOM IN EARTHQUAKE REGIONS OF TURKEY: A UNIQUE DISTANCE EDUCATION EXPERIENCE

wirelessguideMobile - Wireless

Nov 24, 2013 (3 years and 8 months ago)

57 views

MOBILE COMPUTER BASED CLASSROOM IN EARTHQUAKE REGIONS OF
TURKEY: A UNIQUE DISTANCE EDUCATION EXPERIENCE


Yavuz AKPINAR, Erol INELMEN, Avadis HACINLIYAN, Ayþe CANER

Boðaziçi University

Faculty of Education

Istanbul, Turkey

akpinar@boun.edu.tr



A1167

Abs
tract:

This study reports a unique type of cooperation between a
state university, a non
-
governmental organization (NGO) and a
private company to provide "supportive instruction" to students
experienced an earthquake disaster. The project, UMUT2000, aimed
to provide support education to students in poor environmental and
school conditions with the help of technologically rich instructional
settings so that the students without hope for the future can be
introduced to the facilities of modern classrooms, ind
ividualized new
experiences and can change their vision of the world. The paper
describes implementation and application of the mobile computer
based classroom project, and reports some classroom observations.

Keywords:

mobile classroom, supportive instru
ction, computer based instruction

INTRODUCTION


The text, graphics, sound and digital data processing capabilities of computers have
been rapidly developing. Similarly data access and data reading speeds of CDROM
devices have increased every month. Transf
erring varying types of data such as sound
and text and merging them into a coherent application is no longer problematic, but an
ordinary activity for any information technology user. Beside, such revisions and
enrichments in communication technologies, c
omputer networks and the Internet are
getting wider realization. Computers at the same or different sites are linked to each other
to communicate data graphics and text; hence creating distributed electronic work
environments. These network of computers ar
e classified under two particular names
local area network (LAN) and wide area network (WAN) on the basis of locality. Within
the LAN and WAN type networks, a multi
-
cast information source is obtained. Different
multimedia resources, databases, statistical
, mathematical and other packages can be
accessed and utilized for desired needs. For example, engineering students can logon to
simulations and video packages at different locations, economy students can access to
large and continuously updated databases
and graphics packages in order to test, interpret
and extrapolate all sorts of data.

Sharing and exchanging data and software packages are so common that as if
Bush’s (1945) utopia of “paperless office” is achieved. The network tools for speedy
access to
information patterns are continuously improved. Since late 1980s, e
-
mail,
Telnet and ftp type of environments have been supported by systems as Gopher, WAIS
and WWW. Whilst these systems are becoming more appropriate and more cost
-
effective
in terms of sec
urity, ease
-
of
-
use and rapid access (Debrecency et al, 1995), their usage by
institutions and individuals are among daily activities. For instance, in schools and
colleges, computer networks as LAN and WAN are now commonly used, some schools
share software

packages and data. Also, discussions about different learning and teaching
strategies are done in electronic discussion lists, data banks are shared and electronic help
facilities are explored (Akpýnar, 1995a and Chee, 1995). Further, storage and analysis

of
such packages within the same environment make these systems more advantageous.
Therefore, individuals at different sites can easily cooperate to be more productive and
can increase product quality to a large extent.

Along with developments in informa
tion technology, improvements in the quality
of human resources are still getting considerable attention from societies. When
developments of human qualities are considered, learning environments are to be
inevitably examined. Computer technologies have an

outstanding potential to be
employed for improving human qualities. Although hardware is getting cheaper and more
versatile, software problems do still exist worldwide. It has been accepted that when
computer technology is “appropriately” used for learnin
g a particular subject, most
students can learn the subject provided that all conditions of learning is also met (Kozma,
1991). Hence individuals receiving distance education (DE) service should not only study
courses with TV, radio and printed materials b
ut also study with animations, multimedia
environments and other interactive learning software. In brief, every educational
institution should seriously and systematically consider “appropriate software” matters.



DE institutions also face software proble
ms for classrooms. The problems
originated from the nature of distant learning are to be tackled by both the software
designer and all other concerned authorities (McGiven, 1994; Tiffin & Rajasingham,
1995; and Parker, 1997). Main source of the software pr
oblems is in two fold; firstly, the
software is not able to meet distant students’ needs, and secondly the distant learner may
not fulfill the requirements of studying with the software. Much distant education
software does not possess a proper help unit,
which will aid the learner whenever he
needs any sort of assistance. Due to lack of software facilities to guide the learner or due
to late access to such guidance, effectiveness of the software is likely to be minimized.
As in intelligent tutoring systems

(Wenger, 1987), DE software needs components able to
understand the student’s actions and accordingly organize the software activities for him.
Because building a student model and programming intelligent educational courseware
are problematic procedures
(Akpýnar, 1995b), DE software should have student support
features additional to the features of software used under teachers’ monitoring in
classrooms. In preparing DE software, computer managed communication and network
technologies could be considered i
n a way that some support mechanisms can be
integrated into the software to be used by distant students. Such mechanisms will enable
the software and the student to communicate with DE authorities. This, in turn, will
empower the learning process to be mor
e productive.



Computer assisted instruction was first introduced to Turkey in the mid 1980’s. At
that time, the main activity was teaching programming using primarily the BASIC
programming language on Commodore or Atari type home computers (Hacýnlýyan &
Tepehan, 1991). Inadequate integration into the other parts of the curriculum, inadequate
efforts spent in teacher training and in creating instructional material have always been
the weak points of these attempts of introducing technology. In spite of the

fact that PC
compatible modern hardware and software has been introduced, the fundamental point
that an educational system, like all other computer systems, is a man
-
machine integration
has been overlooked. The same is also true for the recent attempts in

introducing the
Internet to the educational system. Consequently, the educational needs of students are
not always being properly addressed. Adequate educational material in the Turkish
language through online facilities, books or other material is lackin
g because of such
unexpected and undesired phenomena. Under certain conditions such as an earthquake
the students in those regions require an entirely different service and approach. For
example they need attention, respect, love and consideration after sh
ocking experiences.
Quickness in action emphasis on mass education in large volumes with high quality may
become necessary.



A UNIQUE DISTANCE EDUCATION EXPERIENCE


On 17th August 1999, a destructive earthquake occurred in the Marmara region of
Turkey. Pe
ople lost many relatives, children lost families. Thousands of property
including school buildings became ruins. When the school term began, in many of the
affected provinces school children could not find buildings that were safe enough to
permit schoolin
g. Tents inevitably became schools. However such temporary and
improper shelters couldn't meet educational requirements. A state university, a non
-
governmental organization (NGO) and a private company collaborated to give
"supportive instruction" to those
students, in compulsory schooling age 7
-
15, in the
earthquake areas. The project, UMUT2000, aimed to provide support education to
students in poor environmental and school conditions with the help of technologically
rich instructional settings so that the
students without hope for the future can be
introduced to the facilities of modern classrooms, individualized new experiences and can
change their vision of the world.



Three large transportation buses were converted into high
-
tech mobile classrooms;
two
of the buses were redesigned to be mobile classrooms involving computer and
multimedia technologies and one of them was redesigned as a mobile school library and a
game room. Care was taken in order to make the busses self
-
contained and functional
under th
e adverse conditions that would prevail in a deprived area.

The facilities of one of
the mobile classroom are:




19 Intel Pentium III 450
-
550 KHz multimedia computers (one to be used as a
server and 18 PCs as client stations),






15" monitors,






A laser and a DeskJet color printer,






A scanner,






A photocopying device,







A projection device,






A large screen TV,






A video player,






A video camera,






A hub,






A surround sound system,






A white board,






A projection screen,






A satellite dish to c
onnect to the Internet,






A power generator and a UPS.



The second mobile classroom has the same facilities with 12 computers. Both
mobile classrooms had computer based learning software that support the school
curricula. The faculty of education

of the university specified the hardware configuration
and layout of the internal design of the buses. Preparation of the mobile classrooms lasted
about five weeks. The commercial company sponsored the project as part of its New
Year advertisement campaig
n. It covered cost of all expenses of these three buses,
including hardware, software, allowances and equipment maintenances. The NGO took
responsibility of one of the mobile classrooms with 12 computers and the mobile library,
and the university took the
responsibility of running the other mobile classroom. Both the
university and the NGO run their services in the areas ruined by a recent earthquake, but
their services did not go to the same schools. This paper will give details of how the
university manag
ed its responsibilities of carrying out education support in those ruined
area schools.


UMUT2000 Mobile Education Center

Four departments of the Faculty of Education were actively involved in the
project. While the mobile classroom was being pr
epared, the departments specified and
searched for adequate types of software suiting their needs and the school curriculum.
After the procurement of the software and laying out a plan of how many and which
schools (sites) to be served, the service began.
Both the planning and the actual execution
of the project was done with the close collaboration of the Ministry of Education
authorities in the three affected provinces, Kocaeli, Sakarya and Yalova. The project was
placed under the responsibility of a Facu
lty appointed coordinator. As the faculty and its
staff is located in Istanbul, a 100
-
180 km distance to the sites, and as the faculty members
have other duties to do, it was decided that the mobile classroom stays in a different site
every week and the fa
culty members travel to those sites with a different vehicle. One
school of education lecturer with one research assistant, three assisting students both
graduate and/or undergraduate and a technician comprised the education team. Every day
a different tea
m was formed. Their schedule was clarified a month forward.

In order not to interrupt the school teachers' work, the schools were informed
about the visit at the beginning of the projects, along with other authorities such as
Ministry of Education and Loc
al Education Secretaries. The teaching hours were kept in
parallel to lesson period of the schools. The service for first two days of the week was
undertaken by the department of computers and instructional technology, teaching
students about introductory
computer skills; components of a PC, basic of working with a
commonly used operating system, Windows 98, (file, folder, mouse actions and other
interface basics), computers as calculators, applications including paint, MS Word basics,
multimedia and the In
ternet. Since number of students in the schools visited was much
larger than expected (the number of students rapidly increased in those schools as the
families returned their home or shelters gradually), in some of the schools the Internet
instruction cou
ldn't be completed.

In third and fourth days of the week, teams from the mathematics and science
education departments, respectively, visited the school and provided computer based
support to students at mathematical and science domains at which most stud
ents
experience learning problems and develop misconceptions. Finally on the fifth day, the
foreign language teaching department provided computer based support to students at
English language domains at which most students experience learning problems. Al
l the
teams gave support to 108
-
144 students in a day.



LESSONS LEARNED


As mentioned above, the first two days of the educational support activities of the
project was aimed at acquainting students with computers as a tool for learning. A
teaching progra
m that would include introduction to various Windows tools was
envisaged. Students ranging from 9 to 16 years were expected to attend the classes in
groups of 18. At the time of planning the program for the project, it was decided to use
the Windows Tour a
s an introduction to the use of computers. It was soon found that this
tour did not motivate the students. Many of the students were too slow in adapting
themselves to reading the material and doing the necessary manipulation on the keyboard
and mouse. Fur
thermore, they were not achieving a product that would interest them. A
decision was thus made to drop this part of the program, as the activities involved were
more appropriate for a higher age group.



Students found themselves more comfortable when usin
g MS Word

the popular
text processing program
-

as a tool for writing their basic personal information. They were
asked to write their names, teacher’s name, school and courses taken. Two different
versions of exercises were used, depending on age group of

the target audience. Using
large font sizes and capital letters only was found to be more convenient for the youngest
students. The use of various colors in the text made the text more appealing. In the
alternative approach, different font sizes, capital
and small letters were used and an
attempt was made to instruct the students in the use of the keyboard. Older students
enjoyed this and, in some cases, were able to perform drag
-
drop operations. Including
clips from the programs own files proved not to be

very easy and the practice had to be
used sparingly. This part of the program lasted about 20 minutes.

In the second part of the program that also lasted for 20 minutes the Paint program
was used. In the first weeks the students were requested first to d
raw something and then
paint it. It was soon discovered that drawing using the mouse was not an easy task so that
a pre
-
drawn figure was selected for painting only. Many students were able to complete
the task before the time allocated so the introduction
of the spraying tool was added to
create the idea of snow in the given landscape. Some students even had time to paint
some extra figures that were drawn by the teachers. After finishing this exercise, students
were asked to open the Windows calculator, us
e the numeric keypad to enter two
numbers and divide them.



The implementation of the program soon showed where the bottlenecks were.
Students had difficulties in differentiating the “blank”, “enter” “shift”, “caps lock”, “num
lock” and “backspace” keys,
so some preliminary explanations had to be given using a
keyboard. Even more complex was the learning of the correct handling and use of the
mouse. With the three keys, the mouse proved to be difficult to use considering that the
hands of the students were

far smaller than then device. The relatively small space
available for moving the mouse in the relatively cramped space of the bus was another
difficulty. Preliminary explanation of mouse use and restricting mouse operations to
those involving the left ha
nd key enhanced the learning process. It was necessary to show
the way that the ball inside the mouse worked, since some students took the mouse on
their hands to operate it. Many students also lacked the dexterity involved in double
clicking the mouse.

I
nstruction on the multimedia and multitasking capabilities of the computer was restricted
to asking students to put on earphones, minimize the Paint software, double click an
approximately three
-
minute long MIDI file involving popular Turkish music, reacti
vate
Paint and continue with the painting exercise. The staff sometimes allowed students that
showed exceptional progress to play games and thus rewarded them.



Although students seemed not always interested in listening to the preliminary
explanations ab
out the use of the keyboard and the mouse, the practice was continued
because it helped the staff to communicate with the students and get their first reactions.
Many students showed interest in continuing the practice when a computer would be
available. S
ome expressed their desire to request their parents the purchase of a home
computer. The possibility of playing games with a computer was a major concern among
male students

CONCLUSION



The students were so much intrigued with the mobile classroom and th
eir teachers
were also interested to see the facilities and some asked the authorities to obtain such
facilities for their schools. The service may therefore be approached as a part of in
-
service teacher training. In many cases, the classroom teachers were

encouraged to
participate in the activities.

The students were so motivated that they did not leave the mobile classroom, their
teachers frequently indicated that the students pay more attention to classroom activities
after they have the mobile classroo
m experiences, the students started to ask more
questions in the classroom, the students' attendance frequency to schools increased, the
students started to talk about the mobile classroom facilities rather than repeatedly talking
about the earthquake expe
rience.

This mobile computer based classroom experience has been extremely interesting
and rewarding from technological, sociological and educational points of view.
Technologically, it has been demonstrated that a mobile educational unit involving high
t
echnology computing, telecommunication and multimedia equipment can be put together
and made functional in a relatively short time and it would involve high but not
exorbitant costs. Furthermore, it has also been able to operate under heavy workloads
with
very few failures and maintenance requirements in deprived and disaster affected
regions. Virtually all failures have been associated with the motor vehicle and not with
the educational equipment. Finally, the system has been maintained with relatively few

personnel. Authorities should consider using such equipment in rural and sparsely
populated provinces as an alternative to procuring technological equipment to every
school.

Sociologically, the affected area was one of the highest income tax
-
paying regio
ns
of Turkey before the disaster and it has been an interesting to observe the extent of
deterioration that had been caused directly and indirectly by the disaster and its effects on
the students and staff of the schools. A public service has also been ren
dered to the
students and teachers in the area. This has caused a significant morale boost.

Educationally, the experience has been extremely revealing from the points of view
of developing suitable material for a relatively diverse age group varying from
childhood
to early adolescence. The extent of participation by the administration and class teachers
of the host school has varied from school to school and has greatly affected the
effectiveness of the program. Student response has been in general favorab
le and
enthusiastic.



REFERENCES


Akpýnar, Y. (1995a) Internet for Collaborating Teachers: Preparing Curriculum
Tasks for Interactive Learning Environments.
Proceedings of ED
-
MEDIA 95,

[Edited by
H. Maurer] 733
-
734, Graz, Austria, AACE

Akpýnar, Y. (1995b
) Examining the Design Principles of ILEs
. Proceedings of
ICCE 95,

[Edited by D. Jonassen & G. McGalla] 298
-
307, Singapore, AACE

Akpýnar, Y. & Hartley, J. R. (1996) Designing Interactive Learning Environments.
Journal of Computer Assisted Learning, V. 12(
1), pp. 33
-
46

Bush. V. (1945) As We May Think.
The Atlantic Montly
, 1(1), 3
-
10

Chee, Y. S. (1995) Mind Bridges: A Distributed Multimedia Learning Environment
to Support Collaborative Knowledge Construction.
Proceedings of ED
-
MEDIA 95
,
[Edited by H. Maure
r] 292
-
298, Graz, Austria, AACE

Debrecency, R., Ellis, A. & Chua, K. (1995) The Integration of Networked
Learning Delivery: from Strategy to Implementation.
Proceedings of ED
-
MEDIA 95
,
[Edited by H. Maurer] 340
-
345, Graz, Austria, AACE

Hacýnlýyan, A and
Tepehan, G. (1991) Language Problem in Secondary School
Instruction Involving Computers.
Turkish Journal of Physics
, 15(2), 217
-
224

Kozma, R. B. (1991) Learning with Media.
Review of Educational Research
, 61(2),
179
-
211

McGiven, J. (1994) Designing the Learning Environment to Meet the Needs of
Distant Students
. Journal of Technology and Learning
, 27(2), 52
-
57

Parker, A. (1997) A Distance Education How
-
to Manual: Recommendations from
the Field.
AACE Educational Technology

Review
, No.8, 7
-
10

Tiffin, J. and Rajasingham, L. (1995)
In Search of the Virtual Class
. Routledge,
NewYork, USA

Wenger, E. (1987)
Artificial Intelligence and Tutoring Systems
. Morgan Kaufmann,
Los Altos, USA