Beyond Zero Resistance Phenomenology of Superconductivity

winkwellmadeUrban and Civil

Nov 15, 2013 (3 years and 11 months ago)

66 views

Beyond Zero Resistance


Phenomenology of Superconductivity

Nicholas P. Breznay

SASS Seminar


Happy 50
th
!

SLAC

April 29, 2009

Preview


Motivation / Paradigm Shift


Normal State behavior


Hallmarks of Superconductivity


Zero resistance


Perfect diamagnetism


Magnetic flux quantization


Phenomenology of SC


London Theory, Ginzburg
-
Landau Theory


Length scales:
l

and
x


Type I and II SC’s

Physics of Metals
-

Introduction


Atoms form a periodic lattice



Know (!) electronic states key for
the behavior we are interested in



Solve the Schro …






… in a periodic potential





E
H

)
(
2
)
(
2
2
r
V
m
r
H







)
(
)
(
K
r
V
r
V





K is a Bravais lattice vector

K

Wikipedia

Physics of Metals


Bloch’s Theorem




Bloch’s theorem tells us that
eigenstates have the form …



… where u(r) is a function with the
periodicity of the lattice …






E
r
V
m




)
(
2
2
2





E
m
H




2
2
2

)
(
)
(
r
u
e
r
r
k
i







)
(
)
(
K
r
u
r
u





r
k
i
Ae
r





)
(

Free particle Schro

Wikipedia

Physics of Metals


Drude Model


Model for electrons in a metal


Noninteracting, inertial gas


Scattering time
t





Apply Fermi
-
Dirac statistics






t
)
(
)
(
t
p
E
q
t
p
dt
d





damping term

H

E
k


E
k

E
f
E
f
m
k
E
2
2
2


http://www.doitpoms.ac.uk/tlplib/semiconductors/images/fermiDirac.jpg

Physics of Metals


Magnetic Response


Magnetism in media


Larmor/Landau diamagnetism


Weak anti
-
// response


Pauli paramagnetism


Moderate // response


Typical
c

values




c
Cu
~
-
1 x 10
-
5



c
Al
~ +2 x 10
-
5




minimal response to
B

fields



m
r

~ 1


B =
m
0
H

)
(
0
M
H
B


m
in SI

linear response

familiarly

H

E
k


E
k

E
f
E
f
H
M
c

H
H
H
r
m
m
m
c
m




0
0
)
1
(
B
Physics of Metals


Drude Model Comments


Wrong!


Lattice, e
-
e, e
-
p, defects,



t

~ 10
-
14

seconds


MFP ~ 1 nm



Useful!


DC, AC electrical conductivity



Thermal transport


Lorenz number
k/s
T



Heat capacity of solids


Wikipedia

E
m
ne
J









t
2
m
ne
p
p
0
2
2
2
2
,
1
)
(
m








t
)
(
)
(
t
p
E
q
t
p
dt
d





3
AT
T
C
v



Electronic
contribution

Lattice

1
~
'
s
fe
meas


2
8
2
2
2
10
44
.
2
3
K
W
e
k
T
L
B







s
k
8
10
6
.
2
1
.
2




meas
L
Preview


Motivation / Paradigm Shift


Normal State behavior


Hallmarks of Superconductivity


Zero resistance


Perfect diamagnetism


Magnetic flux quantization


Phenomenology of SC


London Theory, Ginzburg
-
Landau Theory


Length scales:
l

and
x


Type I and II SC’s

Hallmark 1


Zero Resistance


Metallic R vs T


e
-
p scattering (lattice interactions) at high temperature


Impurities at low temperatures




R

Temperature

Residual

Resistance

(impurities)

Electrical resistance

R
0

Lattice (phonon)

interactions

T
D
/3

Hallmark 1


Zero Resistance


Superconducting R vs T




R

Temperature

R
0

T
c

“Transition temperature”

Hallmark 1


Zero Resistance


Hard to measure “zero” directly


Can try to look at an effect of the
zero resistance


Current flowing in a SC ring


Not thought experiment


standard configuration for high
-
field laboratory magnets (10
-
20T)


Nonzero resistance


changing
current


changing magnetic
field


One such measurement


Superconductor

Circulating

supercurrent

Magnetic (dipole) field

From Ustinov “Superconductivity” Lectures (WS 2008
-
2009)

I

18
10


Cu
SC


Hallmark 1


Zero Resistance Notes


R = 0 only for DC


AC response arises from kinetic
inductance of superconducting
electrons


Changing current


electric field


Model: perfect resistor (normal
electrons), inductor (SC electrons) in
parallel



Magnitude of “kinetic inductance”:





At 1 kHz,


Normal
R
L
12
10
~


V
ac
L
R
http://www.apph.tohoku.ac.jp/low
-
temp
-
lab/photo/FUJYO1.png

Hallmark 2


Conductors in a Magnetic Field

Normal metal

Field off

Apply

field

t
E
J
B
t
B
E
B
E




























0
0
m


j
E




)
1
(
~
)
(
/
0
t
t
e
B
t
B


R
L
/

t
Hallmark 2


Conductors in a Magnetic Field

Apply

field

Perfect (metallic) conductor

Superconductor

Normal metal

Cool

Cool

Field off

Apply

field

Apply

field

Hallmark 2


Meissner
-
Oschenfeld Effect

Superconductor

Cool

Apply

field


B = 0


p
erfect diamagnetism:
c
M

=
-
1





Field expulsion unexpected; not discovered for
20 years.






H
H
M
M
H
B






c
m
0
)
(
0
B/
m
0

H

-
M

H

H
c

H
c

Hallmark 3


Flux Quantization

2
7
15
0
10
2
~
2
10
2
~
2
cm
G
e
hc
s
V
e
h









Earth’s magnetic field ~ 500 mG, so in
1 cm
2

of
B
Earth

there are ~ 2 million

0
’s.

first appearance of h in
our description; quantum
phenomenon

0

n
A
d
B







Total flux (field*area) is integer
multiple of

0


Hallmark 3


Flux Quantization

Apply uniform field

Measure flux

Aside


Cooper Pairing


In the presence of a weak
attractive interaction, the filled
Fermi sphere is unstable to the
formation of bound pairs electrons



Can excite two electrons
d

above
E
f
, obtain bound
-
state energy <
2E
f

due to attraction



New minimum
-
energy state
allows attractive interaction (e
-
p
scattering) by smearing the FS

The physics of superconductors Shmidt, Müller, Ustinov

Preview


Motivation / Paradigm Shift


Normal State behavior


Hallmarks of Superconductivity


Zero resistance


Perfect diamagnetism


Magnetic flux quantization


Phenomenology of SC


London Theory, Ginzburg
-
Landau Theory


Length scales:
l

and
x


Type I and II SC’s

SC Parameter Review

g(H)

H

H
c

g
normal state

g
sc state

2
2
0
c
H
g
m



Magnetic field


energy density



Extract free energy difference
between normal and SC states
with H
c






Know magnetic response
important; use R = 0 + Maxwell’s
equations … ?

London Theory


1


Newton’s law (inertial response) for applied electric field



S
J
dt
d
E


2
e
n
m
s











e
n
J
dt
d
m
eE
s
S


s
v
dt
d
m
F

s
s
s
ev
n
J

dt
dJ
m
E
e
n
S
s

2
dt
J
d
m
E
e
n
S
s









2
dt
J
d
dt
B
d
m
e
n
S
s







2
0
2










B
m
e
n
J
dt
d
s
S



Supercurrent density is

B
m
e
n
J
s
S



2




We know B = 0 inside superconductors

Faraday’s law

Fritz & Heinz London, (1935)

London Theory


2



S
J
dt
d
E


2
e
n
m
s


B
m
e
n
J
s
S



2






London Equations





t
E
J
B









0
0
0

m
m
J
B











0
m


B
m
e
n
B
B
s






2
0
2
m







B
m
e
n
B
s



2
0
2
m


Ampere’s
law

=0; Gauss’s law
for electrostatics

Magnetic Penetration Depth
-

l

B(z)

l

z

2
0
2
e
n
m
s
m
l

B
B



2
2
1
l



Screening not immediate;
characteristic decay length



Typical
l

~ 50 nm



m,e fixed


l
uniquely specifies
the superconducting electron
density n
s


Sometimes called
the “superfluid
density”

l
/
0
)
(
z
e
B
z
B


B
0

SC

Ginzburg
-
Landau Theory
-

1

4
2
2







n
s
f
f

First consider zero magnetic field



Order parameter




Associate with cooper pair
density:



Expand
f

in powers of |

|
2





To make sense,


> 0,
  
(T)


Free energy of

superconducting state

Free energy of

normal state

2


s
n
Need


>
-
Infinity; B > 0

Free energy of
SC state ~ #
of cooper pairs

Ginzburg
-
Landau Theory
-

2

4
2
2







n
s
f
f





4
2
2







n
s
f
f


0
2
2








n
s
f
f
d
d







2



For


< 0, solve for minimum
in
f
s
-
f
n











http://commons.wikimedia.org/wiki/File:Pseudofunci%C3%B3n_de_onda_(teor%C3%ADa_Ginzburg
-
Landau).png




Know that
f
n
-
f
s

is the condensation energy:









Ginzburg
-
Landau Theory
-

3







2
4
2
2







n
s
f
f


2
2



n
s
f
f
2
0
2
1
c
s
n
B
f
f
m


s
n
f
f

2
0
2
1
c
B
m


m
2
0

c
B
Ginzburg
-
Landau Theory
-

4



qA
i
p






Momentum term in H:




Now


include magnetic field



Classically, know that to include
magnetic fields …



0
2
2
4
2
2
2
2
1
2
m





B
eA
i
m
f
f
n
s















i
p
V
m
p
H
,
2
2
0
2
2
m
B
f
magnetic


4
2
2







n
s
f
f
Ginzburg
-
Landau Theory
-

5


Free Energy Density











0
2
2
4
2
2
2
2
1
2
m





B
eA
i
m
f
f
n
s











0
2
2
2
1
2
0
2
2
4
2
















dV
B
eA
i
m
m





d

0

F
d


0
2
2
1
2
2











eA
i
m







eA
i
m
e
J
2
Re
2
*





Ginzburg
-
Landau Theory
-

6



0
2
2
1
2
2











eA
i
m

Take


real,

normalize







2
0
2
2
2
3







































m






0
2
)
(
3
2
2







m
T


Define

m
T
T
2
)
(
)
(
2

x


0
)
(
2
2
2





T
x
Linearize in


Superconducting coherence length
-

x

x


(x)

Vacuum

SC

Superconductor

x



0
2
2
1
2
2











eA
i
m

0
)
(
2
2
2





T
x




Characteristic length scale for SC
wavefunction variation


London Theory



magnetic penetration depth
l



Ginzburg
-
Landau Theory


coherence length
x







l  x



two kinds of superconductors!

Pause

Surface Energy and “Type II”

H(x)

l

x

x


(x)

H(x)

x


(x)

x

l

x
l

l
x

Surface Energy:
x  l

H(x)

l

x


(x)

g
magnetic
(x)

2
2
0
c
cond
H
g
m

2
2
0
c
cond
H
g
m

energy penalty for excluding B

energy gain for being in SC state

g
sc
(x)

SC

Surface Energy:
x  l

H(x)

l

x


(x)

g
magnetic
(x)

2
2
0
c
cond
H
g
m

2
2
0
c
cond
H
g
m

energy penalty for excluding B

energy gain for being in SC state

net energy penalty at a surface / interface

g
net
(x)

g
sc
(x)

SC

Surface Energy:
x  l

H(x)

l

x


(x)

g
magnetic
(x)

2
2
0
c
cond
H
g
m

2
2
0
c
cond
H
g
m

energy penalty for excluding B

energy gain for being in SC state

net energy gain at a surface / interface

g
net
(x)

g
sc
(x)

SC

Type I




Type II

H(x
)
l
x

(x
)
g
magnetic
(x
)
g
net
(x
)
g
sc
(x
)
H(x
)
l
x

(x
)
g
magnetic
(x
)
g
net
(x
)
g
sc
(x
)

predicted in 1950s by Abrikosov


elemental superconductors

x
l

2
1

k
x
l

2
1

k
x 
nm


l
(nm)

T
c

(K)

H
c2

(T)

Al

1600

50

1.2

.01

Pb

83

39

7.2

.08

Sn

230

51

3.7

.03

x 
nm


l
(nm)

T
c

(K)

H
c2

(T)

Nb
3
Sn

11

200

18

25

YBCO

1.5

200

92

150

MgB
2

5

185

37

14

x
l
k

Type II Superconductors
x  l

H

Normal state cores

Superconducting region

http://www.nd.edu/~vortex/research.html


London Theory



magnetic penetration depth
l



Ginzburg
-
Landau Theory


coherence length
x







l  x



two kinds of superconductors

The End