2 Workshop on Benchmark Problems

usefultenchMechanics

Feb 22, 2014 (3 years and 1 month ago)

127 views

2
nd

Workshop on Benchmark Problems

for Airframe Noise Computations (BANC
-
II)


7
-
8 June 2012 Colorado Springs, Colorado, USA


Category 1: Trailing
-
Edge Noise



M. Herr
, German Aerospace Center, DLR

C. Bahr, NASA Langley Research Center

M. Kamruzzaman, University of Stuttgart (IAG)

www.DLR.de • Chart
1

> M. Herr > BANC
-
II > 07.06.2012, Colorado Springs, Colorado, USA

BANC
-
II
-
1: (TBL
-
)Trailing
-
Edge Noise


Introduction

-
Problem statement

-
Overview on contributions & participants

-
Overview of used codes



Participant’s presentations on computational approach & on selected results

-
Cristobal A. Albarracin et al., University of Adelaide, Australia (UoA)

-
Mohammad Kamruzzaman, University of Stuttgart, Germany (IAG)

-
Roland Ewert et al., German Aerospace Center (DLR)

-
Lawrence Cheung & Giridhar Jothiprasad, GE Global Research, NY (GE
-
GRC)

-
Damiano Casalino et al., EXA GmbH, Stuttgart, Germany (EXA)




Overall comparisons, summary, conclusions & outlook



Discussion




Agenda

7 June 2012


BANC
-
II
-
1: Trailing
-
Edge Noise

Conclusions from BANC
-
I
-
1



During BANC
-
I we faced (low number of participants)

-
the need for improvements of the problem statement (definition of tripping,
wing span for far field noise data, definition of a single core case for those
who can not afford working on the full matrix, …)

-
the need to offer benchmark data together with the updated problem
statement. This should allow the participants to elaborate deeper on their
data and to give their view on linking flow features with noise.



For generating a benchmark data base it was agreed that we do not focus

-
on a single facility/measurement technique but take all available data from
different facilities/measurement techniques.

-
Obviously, there will be a few dB deviation among different datasets which
needs to be handled as a tolerance range.

-
Thus, gathering trailing edge noise data will be a big multidimensional puzzle.

-
Very probably, the first set of data will consider a NACA0012 configuration.

-
The updated problem statement should define input data which will be

-
particularly linked to this configuration, i.e. inflow turbulence, tripping details




BANC
-
II
-
1 Problem Statement

Introduction

Preparation of BANC
-
II
-
1



Unfortunately: Definition of the final problem statement for BANC
-
II was late due
to the necessary collection and review of usable test data, clearance of GE
proprietary DU
-
96 data (many thanks to GE!), data scaling, were necessary…





BANC
-
II
-
1 is understood as ‘warm
-
up’ (majority of participants apply faster
prediction methods based on SNT) and will hopefully activate multiplied follow
-
on activity by anyone
interested to join the community.



The finally provided comparison data is not “perfect” due to the non
-
existence of
a fully consistent data set covering the full measurement chain from near field
source quantities to farfield noise.




BANC
-
II
-
1 Problem Statement

Introduction

BANC
-
II
-
1 Problem Statement

Simulation Matrix

BANC
-
II
-
1

Test Cases


Provide c
p
(x
1
), c
f
(x
1
), near
-
wake mean flow/ turbulence profiles, G
pp
(f), L
p
(f
c
) and
FF noise directivities for CASES#1
-
5

Case#1

56 m/s

0
°

Case#2

55 m/s

4
°

Case#3

53 m/s

6
°

Case#4

38 m/s

0
°

Case#5

60 m/s

4
°

Full problem statement with more
specified definitions of


Profile coordinates (
sharp TE!
)


Tripping devices (
TBL
-
TE noise!
)


TBL transition locations


Ambient conditions, etc.


Data formatting instructions
including templates


is available at the BANC
-
II homepage:

https://info.aiaa.org/tac/ASG/FDTC/
DGBECAN_files_/BANCII_category1


CASE#1: single core test case for those
who can not afford the full matrix

BANC
-
II
-
1 Problem Statement

Simulation Matrix

BANC
-
II
-
1

Test Cases


Coordinate System and Parameter Definition

u


x
1
/
l
c
x
2
/
l
c
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
-
0
.
3
-
0
.
2
-
0
.
1
0
0
.
1
0
.
2
0
.
3
m
i
d
s
p
a
n
p
l
a
n
e

=
9
0
°
o
r
t
h
o
g
o
n
a
l
v
i
e
w
d
i
r
e
c
t
i
o
n
f
o
r
n
o
i
s
e
p
r
e
d
i
c
t
i
o
n
x
3
x
1
x
2
o
r
i
e
n
t
a
t
i
o
n
o
f
f
l
o
w
p
r
o
f
i
l
e
s


=
0
°
Orientation of flow profiles

Position @ 100.38 % l
c

WPF sensor position @ 99 % l
c

PSDs (measurement data
normalized to
D
f = 1 Hz)

SS

PS

b = 1 m

r = 1 m

in 1/3
-
octave bands


= 90
°

chord
-
normal

view direction for
noise prediction

BANC
-
II
-
1 Problem Statement

Simulation Matrix

BANC
-
II
-
1

Test Cases


Available comparison data sets for CASES#1
-
5:

Case#1

56 m/s

0
°

c
p
(x
1
), flow/turb. profiles, G
pp
(f), L
p(1/3)
(f
c
)

Case#2

55 m/s

4
°

c
p
(x
1
), flow/turb. profiles, G
pp
(f), L
p(1/3)
(f
c
)

Case#3

53 m/s

6
°

c
p
(x
1
), flow/turb. profiles, G
pp
(f), L
p(1/3)
(f
c
)

Case#4

38 m/s

0
°

Flow/turb. profiles, G
pp
(f), L
p(1/3)
(f
c
)

Case#5

60 m/s

4
°

L
p(1/3)
(f
c
)

Near
-
Wake Data
CASES#1
-
4 IAG
-
LWT (Herrig et al.)

BANC
-
II
-
1 Problem Statement

Overview of Comparison Data

<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
1
.
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S

(
m
o
d
e
l
)
,
m
2
/
s
3
x
2
,
m
m
1
0
1
1
0
2
1
0
3
1
0
4
0
5
1
0
1
5
2
0
2
5
3
0
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S

f
(
m
o
d
e
l
)
,
m
m
x
2
,
m
m
0
2
4
6
8
1
0
0
5
1
0
1
5
2
0
2
5
3
0
C
A
S
E
#
1
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
2
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
3
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
C
A
S
E
#
4
,
x
/
l
c
=
1
.
0
0
3
8
,
S
S
IAG
-
LWT 2
-
point correlation
measurements

Acoustical Data Sets

CASES#1 and #2 (IAG, DLR, UFL, BPM)


Scaling to problem statement conditions required for both G
pp
(f) and L
p(1/3)
(f
c
)!

BANC
-
II
-
1 Problem Statement

Overview of Comparison Data

f
c
(
o
r
i
g
i
n
a
l
)
,
k
H
z
L
p
(
1
/
3
)
(
o
r
i
g
i
n
a
l
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
1
,
I
A
G
L
W
T
+
S
L
(
5
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
I
A
G
L
W
T
+
S
L
(
6
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
I
A
G
L
W
T
(
6
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
5
0
.
2
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
6
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
U
F
L
U
F
A
F
F
(
5
2
.
4
m
/
s
,
0
d
e
g
,
0
.
3
m
)
C
A
S
E
#
1
,
U
F
L
U
F
A
F
F
(
5
9
.
4
m
/
s
,
0
d
e
g
,
0
.
3
m
)
f
c
(
s
c
a
l
e
d
)
,
k
H
z
L
p
(
1
/
3
)
(
s
c
a
l
e
d
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
1
,
I
A
G
L
W
T
+
S
L
(
5
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
I
A
G
L
W
T
+
S
L
(
6
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
I
A
G
L
W
T
(
6
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
5
0
.
2
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
6
0
m
/
s
,
0
d
e
g
)
C
A
S
E
#
1
,
U
F
L
U
F
A
F
F
(
5
2
.
4
m
/
s
,
0
d
e
g
,
0
.
3
m
)
C
A
S
E
#
1
,
U
F
L
U
F
A
F
F
(
5
9
.
4
m
/
s
,
0
d
e
g
,
0
.
3
m
)
C
A
S
E
#
1
,
B
P
M
(
N
A
F
N
O
I
S
E
)
p
r
e
d
i
c
t
i
o
n
f
c
(
o
r
i
g
i
n
a
l
)
,
k
H
z
L
p
(
1
/
3
)
(
o
r
i
g
i
n
a
l
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
2
,
I
A
G
L
W
T
(
6
0
m
/
s
,
4
d
e
g
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
5
0
.
2
m
/
s
,
5
d
e
g
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
6
0
m
/
s
,
5
d
e
g
)
C
A
S
E
#
2
,
U
F
L
U
F
A
F
F
(
5
2
.
6
m
/
s
,
2
.
1
d
e
g
,
0
.
3
m
)
C
A
S
E
#
2
,
U
F
L
U
F
A
F
F
(
5
9
.
6
m
/
s
,
2
.
1
d
e
g
,
0
.
3
m
)
f
c
(
s
c
a
l
e
d
)
,
k
H
z
L
p
(
1
/
3
)
(
s
c
a
l
e
d
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
2
,
I
A
G
L
W
T
(
6
0
m
/
s
,
4
d
e
g
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
5
0
.
2
m
/
s
,
5
d
e
g
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
6
0
m
/
s
,
5
d
e
g
)
C
A
S
E
#
2
,
U
F
L
U
F
A
F
F
(
5
2
.
6
m
/
s
,
2
.
1
d
e
g
,
0
.
3
m
)
C
A
S
E
#
2
,
U
F
L
U
F
A
F
F
(
5
9
.
6
m
/
s
,
2
.
1
d
e
g
,
0
.
3
m
)
C
A
S
E
#
2
,
B
P
M
(
N
A
F
N
O
I
S
E
)
p
r
e
d
i
c
t
i
o
n
+/3 dB scatter among all
available

data sets

Acoustical Data Sets

CASES#3 and #5 (
CASE#4 not shown)


Scaling to problem statement conditions required!

BANC
-
II
-
1 Problem Statement

Overview of Comparison Data

f
c
(
o
r
i
g
i
n
a
l
)
,
k
H
z
L
p
(
1
/
3
)
(
o
r
i
g
i
n
a
l
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
3
,
I
A
G
L
W
T
(
6
0
m
/
s
,
6
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
5
0
.
2
m
/
s
,
5
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
6
0
m
/
s
,
5
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
5
0
m
/
s
,
7
.
6
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
5
9
.
9
m
/
s
,
7
.
6
d
e
g
)
f
c
(
o
r
i
g
i
n
a
l
)
,
k
H
z
L
p
(
1
/
3
)
(
o
r
i
g
i
n
a
l
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
5
,
D
L
R
A
W
B
(
6
0
m
/
s
,
4
d
e
g
,
0
.
3
m
)
f
c
(
s
c
a
l
e
d
)
,
k
H
z
L
p
(
1
/
3
)
(
s
c
a
l
e
d
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
C
A
S
E
#
3
,
I
A
G
L
W
T
(
6
0
m
/
s
,
6
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
5
0
.
2
m
/
s
,
5
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
6
0
m
/
s
,
5
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
5
0
m
/
s
,
7
.
6
d
e
g
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
5
9
.
9
m
/
s
,
7
.
6
d
e
g
)
C
A
S
E
#
3
,
B
P
M
(
N
A
F
N
O
I
S
E
)
p
r
e
d
i
c
t
i
o
n
BANC
-
II
-
1 Contributions & Participants

Overview

Configuration/ Participant

UoA

IAG

DLR

GE
-
GRC

EXA

Case#1

56 m/s

0
°







-

-

䍡獥⌲

㔵⽳

4
°









-


-

Case#3

53 m/s

6
°









-


-

Case#4

38 m/s

0
°







-


-

Case#5

60 m/s

4
°







Different case!

AIAA
-
2012
-
2055

-

Overview on Contributions


Fast TE noise prediction method, based on a statistical
model of the turbulent velocity cross
-
spectrum.


Overview of Methods

Contribution Albarracin et al.: UoA’s RSNM code

RSNM:
R
ANS
-
based
S
tatistical
N
oise
M
odel

RANS

CFD

Turbulent velocity
cross
-
spectrum
model


+

Half
-
Plane

Green
´
s


function






OpenFOAM package


k
-
omegaSST model

U
k
,

,

k
U
CFD Mesh



RSNM

Acoustic spectrum in the
far field

Example

results
:

30
.
48

cm

chord


NACA

0012

airfoil

at

AoA=
0

and

flow

velocities

of

31
.
7

m/s,

39
.
6

m/s,


55
.
5

m/s

and

71
.
3

m/s

cf. AIAA
-
2012
-
2181


Simplified theoretical airfoil trailing
-
edge far
-
field noise prediction model based
on steady RANS: highly accurate and very fast

Overview of Methods

Contribution Kamruzzaman et al.:
IAG‘s simplified theoretical prediction code
Rnoise


Rnoise:
R
ANS Based Trailing
-
edge
Noise

Prediction Model

Governing Eqns.

Source Modeling

RANS Simulation

Noise Spectra

WPF

BL &
Correlations

Wind Tunnel Exp. & Validation

0
0
0
,
,
p
u


CAA

APE

mean flow; here:

DLR code

TAU
with RSM



,
k
turbulence

Sound Field

p

p

source

L

Overview of Methods

Contribution Ewert et al.: DLR‘s CAA
-
Code
PIANO with stochastic source model FRPM

PIANO:
P
erturbation
I
nvestigation of
A
eroacoustic
No
ise


“Low
-
cost“ steady RANS
-
based CAA with stochastic
source models: 2
-
4 orders faster than LES


k

Spectral analysis

CFD


RANS

4D
-
Stochastic Sound

Sources FRPM

0
0
u
u
L
t
t












vortex sound sources


High
-
fidelity incompressible LES calculation combined with Amiet’s
theory for far
-
field noise


Overview of Methods

Contribution GE GRC: LES with Amiet’s Theory (CharLES code, Cascade Technologies)

CharLES: LES
-
based trailing edge noise prediction

Unstructured
mesh

LES

simulation

Amiet’s


Theory

Far
-
field

Sound

High
-
fidelity grid near TE
and airfoil surface

Capture boundary layer, wall
-
pressure
spectra, and correlation data near TE

Project TE information to far
-
field
observer locations

cf. AIAA
-
2012
-
2055

1.
Unsteady
-
flow simulations performed with Lattice Boltzmann based solver
PowerFLOW 4.3


D3Q19 LBM


Cubical Lattices (Voxels)


Surface elements (Surfels)


Explicit solver


Fully transient


Turbulence model


Modified RNG k
-
ε

model


Swirl model


Anisotropic “large” eddies resolved


Statistically universal eddies modeled


Extended wall model


Taking pressure gradient effect into account


Acoustic fluctuations directly simulated with low
-
dispersion and low dissipation

2.
Far
-
field noise computed using a FW
-
H acoustic analogy (
PowerACOUSTICS 2.0
)


Solid/permeable formulation


Forward
-
time formulation based on the retarded
-
time formulation 1A by Farassat


Mean flow convective effects (wind
-
tunnel modality) taken into account

3.
Spectral analyses carried out using
PowerACOUSTICS 2.0


Overview of Methods

Contribution Damiano Casalino et al.: EXA’s PowerFlow / PowerAcoustics code

PowerFLOW / PowerACOUSTICS

1

2

3

cf. AIAA
-
2012
-
2235

Thank you for your attention!

Agenda

7 June 2012


BANC
-
II
-
1: Trailing
-
Edge Noise


Introduction

-
Problem statement

-
Overview on contributions & participants

-
Overview of used codes



Participant’s presentations on computational approach & on selected results

-
Cristobal A. Albarracin et al., University of Adelaide, Australia (UoA)

-
Mohammad Kamruzzaman, University of Stuttgart, Germany (IAG)

-
Roland Ewert et al., German Aerospace Center (DLR)

-
Lawrence Cheung & Giridhar Jothiprasad, GE Global Research, NY (GE
-
GRC)

-
Damiano Casalino et al., EXA GmbH, Stuttgart, Germany (EXA)




Overall comparisons, summary, conclusions & outlook



Discussion





Code
-
to
-
code comparisons for the following
parameters:


4 slides:
c
p,
c
f
for
CASES#1, #
2, #3, #5


5 slides (1 per case): Near
-
wake profiles
of mean velocity and turb.
characteristics


1 survey slide on integral TBL properties


2 slides: Surf. pressure (WPF) PSD for
CASES#1, #
2, #3, #5


2 slides: FF TBL
-
TE noise spectra for
CASES#1, #
2, #3, #5


1 slide: Selected FF noise directivities


Changed representation format to extract


principle relative effects on noise and on
WPF spectra (are those well
-
predicted?)

-
Effect of test velocity


CASES#1, #4

-
Effect of a
-
o
-
a


CASES#1, #2, #3

-
Effect of profile shape


CASES #2, #5

Overall Comparisons

Introduction

Case#1

56 m/s



Case#2

55 m/s

Case#3

53 m/s

Case#4

38 m/s

Case#5

60 m/s

Scope

Aerodynamical data

C
p
-
Distributions CASES#1 & #2

Overall Comparisons

x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
X
F
O
I
L
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
X
F
O
I
L
Format: comparison data in black!

x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
X
F
O
I
L
C
A
S
E
#
1
,
U
o
A
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
X
F
O
I
L
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
X
F
O
I
L
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
X
F
O
I
L
C
A
S
E
#
2
,
U
o
A
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
X
F
O
I
L
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
X
F
O
I
L
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
UoA: OpenFOAM
-

SST

IAG: FLOWER (DLR)
-

SST

DLR: TAU (DLR)
-

RSM

Aerodynamical data

C
p
-
Distributions CASES#3 & #5

Overall Comparisons

x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
5
,
X
F
O
I
L
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
X
F
O
I
L
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
X
F
O
I
L
C
A
S
E
#
3
,
U
o
A
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
X
F
O
I
L
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
X
F
O
I
L
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
5
,
X
F
O
I
L
C
A
S
E
#
5
,
U
o
A
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
5
,
X
F
O
I
L
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
x
1
/
l
c
c
p
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
-
3
-
2
.
5
-
2
-
1
.
5
-
1
-
0
.
5
0
0
.
5
1
C
A
S
E
#
5
,
X
F
O
I
L
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
D
L
R
Format: comparison data in black!

UoA: OpenFOAM
-

SST

IAG: FLOWER (DLR)
-

SST

DLR: TAU (DLR)
-

RSM

Overall Comparisons

Aerodynamical data

C
f
-
Distributions CASES#1 & #2

x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
1
,
X
F
O
I
L
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
1
,
X
F
O
I
L
C
A
S
E
#
1
,
U
o
A
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
1
,
X
F
O
I
L
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
1
,
X
F
O
I
L
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
2
,
X
F
O
I
L
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
2
,
X
F
O
I
L
C
A
S
E
#
2
,
U
o
A
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
2
,
X
F
O
I
L
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
2
,
X
F
O
I
L
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
UoA: OpenFOAM
-

SST

IAG: FLOWER (DLR)
-

SST

DLR: TAU (DLR)
-

RSM

UoA: fully turbulent, no transition!

Overall Comparisons

x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
5
,
X
F
O
I
L
Aerodynamical data

C
f
-
Distributions CASES#3 & #5

x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
3
,
X
F
O
I
L
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
3
,
X
F
O
I
L
C
A
S
E
#
3
,
U
o
A
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
3
,
X
F
O
I
L
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
3
,
X
F
O
I
L
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
5
,
X
F
O
I
L
C
A
S
E
#
5
,
U
o
A
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
5
,
X
F
O
I
L
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
x
1
/
l
c
c
f
-
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
1
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
.
0
2
0
.
0
2
5
0
.
0
3
C
A
S
E
#
5
,
X
F
O
I
L
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
D
L
R
UoA: OpenFOAM
-

SST

IAG: FLOWER (DLR)
-

SST

DLR: TAU (DLR)
-

RSM

UoA: fully turbulent, no transition!

Aerodynamical data

Near
-
Wake Flow Characteristics

Overall Comparisons

u


x
1
/
l
c
x
2
/
l
c
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
-
0
.
3
-
0
.
2
-
0
.
1
0
0
.
1
0
.
2
0
.
3
m
i
d
s
p
a
n
p
l
a
n
e
x
3
x
1
x
2
o
r
i
e
n
t
a
t
i
o
n
o
f
f
l
o
w
p
r
o
f
i
l
e
s
p
o
s
i
t
i
o
n
@
1
0
0
.
3
8
%
l
c


=
0
°
Near
-
Wake Flow Characteristics CASE#1 SS

Aerodynamical data

Overall Comparisons

U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
I
A
G
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
I
A
G
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
I
A
G
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R

f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T

f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A

f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G

f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
1
,
I
A
G
L
W
T
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
UoA

IAG

DLR

Near
-
Wake Flow Characteristics CASE#2 SS

Aerodynamical data

Overall Comparisons

U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
UoA

IAG

DLR


f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
2
,
I
A
G
L
W
T
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
Near
-
Wake Flow Characteristics CASE#3 SS

Aerodynamical data

Overall Comparisons

U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
UoA

IAG

DLR


f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
3
,
I
A
G
L
W
T
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
Near
-
Wake Flow Characteristics CASE#4 SS

Aerodynamical data

Overall Comparisons

U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
U
o
A
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R
k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
U
o
A
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R
UoA

IAG

DLR


f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
U
o
A
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
4
,
I
A
G
L
W
T
C
A
S
E
#
4
,
U
o
A
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
4
,
D
L
R
Near
-
Wake Flow Characteristics CASE#5 SS

Aerodynamical data

Overall Comparisons

U
1
/
U

,
-
x
2
,
m
m
0
0
.
5
1
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A
UoA

IAG

DLR

k
T
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A
<
u
1
u
1
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A
<
u
2
u
2
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A
<
u
3
u
3
>
/
U

2
,
-
x
2
,
m
m
0
0
.
0
0
5
0
.
0
1
0
.
0
1
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A

f
,
m
m
x
2
,
m
m
0
2
4
6
8
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A

,
m
2
/
s
3
x
2
,
m
m
1
0
0
1
0
1
1
0
2
1
0
3
1
0
4
1
0
5
0
5
1
0
1
5
2
0
2
5
3
0
3
5
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
U
o
A
Integral “TBL” Properties CASES#1
-
5

Aerodynamical data

Overall Comparisons

TRANSITION

SS / PS

U
e
, m/s

SS / PS

d
Ⱐ浭

SS PS

d
1
Ⱐ浭

SS PS

d
2
Ⱐ浭

卓 偓

䍁卅⌱Ⱐ

= 56 m/s, 0
°


Fully turb.

6.5% / 6.5 %

6.5% /

6.5%


52.2 / 52.2

51.5 / 51.5

52.1 / 52.1

15.0 / 15.0

10.6 / 10.6

14.3 / 14.3

2.7 / 2.7

2.5 / 2.5

2.6 / 2.6

1.7 / 1.7

1.4 / 1.4

1.5 / 1.5

CASE#2, U

= 55 m/s, 4
°

Fully turb.

6.5% / 6.5 %

6.5%

/
6.5%

51.6 / 50.9

50.7 / 50.4

51.4 / 50.6

19.9 / 11.9

13.5 / 8.40

18.9 / 13.1


4.0 / 2.1

3.6 / 1.7


3.7 / 1.8

2.3 / 1.3

1.8 / 1.0

2.0 / 1.2

CASE#3, U

= 53 m/s, 6
°

Fully turb.

6.0% / 7.0 %

6.0% / 7.0%

50.3 / 49.2

49.1 / 48.7

49.9 / 48.8

23.5 / 10.7

15.5 / 7.50

18.2 / 14.3

5.1 / 1.9

4.4 / 1.4

4.3 / 1.5

2.8 / 1.1

2.1 / 0.9

2.2 / 1.0

CASE#4, U

= 38 m/s, 0
°

Fully turb.

6.5% / 6.5 %

6.5% / 6.5%

35.3 / 35.3

36.9 / 36.9

35.2 / 35.2

16.0 / 16.0

11.1 / 11.1


14.3 / 14.3

3.0 / 3.0

2.6 / 2.6

2.8 / 2.8

1.8 / 1.8

1.4 / 1.4

1.6 / 1.6

CASE#5, U

= 60 m/s, 4
°

Fully turb.

12.0% / 15.0%

12.0% / 15.0%

55.6 / 54.2

54.9 / 54.1

55.9 / 54.0

13.1 / 6.7

14.2 / 6.1

17.1 / 9.7

5.2 / 1.5

5.1 / 1.0

5.0 / 1.1

2.2 / 0.9

1.9 / 0.7

2.1 / 0.8

UoA











IAG

DLR

d
1
, mm

SS / PS

d
2
Ⱐ浭

卓 偓

㌮〠⼠
-


ㄮ1⼠
-

㐮㠠⼠
-

㈮2⼠
-


㔮㜠⼠
-


㈮2⼠
-

3.1 /
-


1.8 /
-

-

/
-

-

/
-

as measured (IAG):

x
1
/
l
c
x
2
/
l
c
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
-
0
.
3
-
0
.
2
-
0
.
1
0
0
.
1
0
.
2
0
.
3
m
i
d
s
p
a
n
p
l
a
n
e
x
3
x
1
x
2
Surface Pressure Data

Overall Comparisons

Position @ 99 % l
c

PSDs (measurement data normalized to
D
f = 1 Hz)

SS

PS

Surface Pressure Data

Unsteady Surface Pressure PSD G
pp
(f) CASES#1 & #2

f
m
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
1
-
S
S
,
I
A
G
L
W
T
f
m
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
1
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
1
-
P
S
,
I
A
G
C
A
S
E
#
1
-
S
S
,
I
A
G
f
m
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
f
m
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
P
S
,
I
A
G
C
A
S
E
#
2
-
S
S
,
I
A
G
f
m
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
P
S
,
I
A
G
C
A
S
E
#
2
-
S
S
,
I
A
G
C
A
S
E
#
2
-
P
S
,
D
L
R
C
A
S
E
#
2
-
S
S
,
D
L
R
f
m
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
1
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
1
-
P
S
,
I
A
G
C
A
S
E
#
1
-
S
S
,
I
A
G
C
A
S
E
#
1
-
P
S
,
D
L
R
C
A
S
E
#
1
-
S
S
,
D
L
R
f, kHz


f, kHz


UoA: no surface pressure data provided

IAG: Rnoise

DLR: PIANO
-
FRPM

Overall Comparisons

G
pp
, dB (
D
映㴠ㄠ䡺=

G
pp
, dB (
D
映㴠ㄠ䡺=

Unsteady Surface Pressure PSD G
pp
(f) CASES#3 & #5

f
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
3
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
S
S
,
I
A
G
L
W
T
f
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
3
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
P
S
,
I
A
G
C
A
S
E
#
3
-
S
S
,
I
A
G
f
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
3
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
P
S
,
I
A
G
C
A
S
E
#
3
-
S
S
,
I
A
G
C
A
S
E
#
3
-
P
S
,
D
L
R
C
A
S
E
#
3
-
S
S
,
D
L
R
f
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
5
-
P
S
,
I
A
G
C
A
S
E
#
5
-
S
S
,
I
A
G
f
,
k
H
z
G
p
p
,
d
B
/
H
z
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
5
-
P
S
,
I
A
G
C
A
S
E
#
5
-
S
S
,
I
A
G
C
A
S
E
#
5
-
P
S
,
D
L
R
C
A
S
E
#
5
-
S
S
,
D
L
R
Surface Pressure Data

no measured comparison data available!

Overall Comparisons

G
pp
, dB (
D
映㴠ㄠ䡺=

G
pp
, dB (
D
映㴠ㄠ䡺=

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
5
-
P
S
,
D
L
R
C
A
S
E
#
5
-
S
S
,
D
L
R
C
A
S
E
#
5
-
P
S
,
I
A
G
C
A
S
E
#
5
-
S
S
,
I
A
G
C
A
S
E
#
5
-
P
S
,
G
E
-
G
R
C
C
A
S
E
#
5
-
S
S
,
G
E
-
G
R
C
IAG: Rnoise

DLR: PIANO
-
FRPM

Data has been scaled from different case!

GE
-
GRC: CHARLES

u


x
1
/
l
c
x
2
/
l
c
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
-
0
.
3
-
0
.
2
-
0
.
1
0
0
.
1
0
.
2
0
.
3
m
i
d
s
p
a
n
p
l
a
n
e
b
=
1
m
r
=
1
m
x
3
x
1
x
2


=
0
°

=
9
0
°
o
r
t
h
o
g
o
n
a
l
v
i
e
w
d
i
r
e
c
t
i
o
n
f
o
r
n
o
i
s
e
p
r
e
d
i
c
t
i
o
n
TBL
-
TE FF Noise Data

Overall Comparisons

b = 1 m

r = 1 m

1/3
-
octave band spectra


= 90
°

chord
-
normal

view direction for noise prediction

Farfield Noise Data

1/3
-
Octave Band FF Noise Spectra L
p(1/3)
(f
c
) CASES#1 & #2

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
Overall Comparisons

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
1
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
UoA: RSNM

IAG: Rnoise

DLR: PIANO
-
FRPM

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
2
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
1/3
-
Octave Band FF Noise Spectra L
p(1/3)
(f
c
) CASES#3 & #5

Farfield Noise Data

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
Overall Comparisons

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
3
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
3
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
3
,
U
o
A
C
A
S
E
#
3
,
I
A
G
C
A
S
E
#
3
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
UoA: RSNM

IAG: Rnoise

DLR: PIANO
-
FRPM

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
5
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
5
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
5
,
U
o
A
C
A
S
E
#
5
,
I
A
G
C
A
S
E
#
5
,
D
L
R
C
A
S
E
#
5
,
G
E
-
G
R
C
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
Data has been scaled from different case!

GE
-
GRC: CHARLES

Selected 1/3
-
Octave Band FF Noise Directivities: CASE#1

Farfield Noise Data

Overall Comparisons

IAG

DLR


,
d
e
g
p
2
r
m
s
(

)
,
P
a
2
0
3
0
6
0
9
0
1
2
0
1
5
0
1
8
0
2
1
0
2
4
0
2
7
0
3
0
0
3
3
0
1
0
-
1
6
1
0
-
1
5
1
0
-
1
4
1
0
-
1
3
C
A
S
E
#
1
,
D
L
R
,
f
c
=
1
k
H
z
C
A
S
E
#
1
,
D
L
R
,
f
c
=
2
k
H
z
C
A
S
E
#
1
,
D
L
R
,
f
c
=
5
k
H
z
C
A
S
E
#
1
,
D
L
R
,
f
c
=
8
k
H
z
C
A
S
E
#
1
,
D
L
R
,
f
c
=
1
0
k
H
z
L
p(1/3)
(f
c
) and G
pp
(f) data revisited to identify common trends;


are relative effects captured by the predictions?

Pressure Data

Overall Comparisons

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
S
S
,
I
A
G
C
A
S
E
#
4
-
S
S
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
Overall Comparisons

Effect of Flow Velocity on L
p(1/3)
(f
c
) and G
pp
(f): CASE#1 vs. #4

Pressure Data

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
4
,
U
o
A
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
4
,
I
A
G
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
D
L
R
C
A
S
E
#
4
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
4
,
U
o
A
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
4
,
I
A
G
C
A
S
E
#
1
,
D
L
R
C
A
S
E
#
4
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
U


=
56 m/s

U


=

38 m/s

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
D
L
R
C
A
S
E
#
1
-
S
S
,
D
L
R
C
A
S
E
#
4
-
P
S
,
D
L
R
C
A
S
E
#
4
-
S
S
,
D
L
R
b
l
a
c
k
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
Format: measured comparison data in black!

Overall Comparisons

Effect of a
-
o
-
a on L
p(1/3)
(f
c
): CASES#1 to #3

Pressure Data

a
-
o
-
a

0
°

4
°

6
°

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
Measurement data

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
DLR AWB data

IAG LWT data

Overall Comparisons

Effect of a
-
o
-
a on L
p(1/3)
(f
c
): CASES#1 to #3

Pressure Data

a
-
o
-
a

0
°

4
°

6
°

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
DLR AWB data

IAG LWT data

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
U
o
A
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
3
,
U
o
A
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
I
A
G
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
3
,
I
A
G
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
1
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
3
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
1
,
D
L
R
C
A
S
E
#
2
,
D
L
R
C
A
S
E
#
3
,
D
L
R
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
Symbols: Measurement
data

Lines: Simulation results

SS

PS

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
S
S
,
I
A
G
L
W
T
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
3
-
P
S
,
I
A
G
L
W
T
Overall Comparisons

Effect of a
-
o
-
a on G
pp
(f): CASES#1 to #3

Pressure Data

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
S
S
,
I
A
G
C
A
S
E
#
2
-
S
S
,
I
A
G
C
A
S
E
#
3
-
S
S
,
I
A
G
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
I
A
G
C
A
S
E
#
2
-
P
S
,
I
A
G
C
A
S
E
#
3
-
P
S
,
I
A
G
IAG

simulation

Measurement
data

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
S
S
,
D
L
R
C
A
S
E
#
2
-
S
S
,
D
L
R
C
A
S
E
#
3
-
S
S
,
D
L
R
DLR simulation


f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
1
-
P
S
,
D
L
R
C
A
S
E
#
2
-
P
S
,
D
L
R
C
A
S
E
#
3
-
P
S
,
D
L
R
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
5
,
D
L
R
A
W
B
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
Overall Comparisons

Effect of Profile on L
p(1/3)
(f
c
) and G
pp
(f): CASES#2 vs. #5

Farfield Noise Data

Measurement data

SS

PS

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
Overall Comparisons

Effect of Profile on L
p(1/3)
(f
c
) and G
pp
(f): CASES#2 vs. #5

Farfield Noise Data

f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
5
,
D
L
R
A
W
B
C
A
S
E
#
2
,
U
o
A
C
A
S
E
#
5
,
U
o
A
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
5
,
D
L
R
A
W
B
C
A
S
E
#
2
,
I
A
G
C
A
S
E
#
5
,
I
A
G
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
f
c
,
k
H
z
L
p
(
1
/
3
)
,
d
B
5
1
0
1
5
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
C
A
S
E
#
2
,
I
A
G
L
W
T
(
s
c
a
l
e
d
)
C
A
S
E
#
2
,
D
L
R
A
W
B
(
s
c
a
l
e
d
)
C
A
S
E
#
5
,
D
L
R
A
W
B
C
A
S
E
#
2
,
D
L
R
C
A
S
E
#
5
,
D
L
R
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
m
e
a
s
u
r
e
m
e
n
t
d
a
t
a
:
Symbols: Measurement
data

Lines: Simulation results

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
S
S
,
I
A
G
C
A
S
E
#
5
-
S
S
,
I
A
G
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
S
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
S
S
,
D
L
R
C
A
S
E
#
5
-
S
S
,
D
L
R
SS

f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
P
S
,
I
A
G
C
A
S
E
#
5
-
P
S
,
I
A
G
f
,
k
H
z
G
p
p
,
d
B
(
D
f
=
1
H
z
)
5
1
0
1
5
5
0
6
0
7
0
8
0
9
0
1
0
0
C
A
S
E
#
2
-
P
S
,
I
A
G
L
W
T
C
A
S
E
#
2
-
P
S
,
D
L
R
C
A
S
E
#
5
-
P
S
,
D
L
R
PS

Summary


Still comparatively low number of participants (however, increased w.r.t BANC
-
I!)



Mainly results of faster approaches using SNT have been shown (UoA, IAG,
DLR); two “last minute” LES contributors joined us; however, overall comparisons
were limited (GE
-
GRC: existent results for a different test case have been roughly
scaled to correspond to CASE#5 in the statement; EXA: data provided for single
core test CASE#1?).




We have seen very interesting results (with some room for improvement) with
many similarities but also significant differences within the delivered data:

-
In most of the cases TBL
-
TE FF noise predictions were within the provided
data scatter band (reproducing systematic error between test facilities)

-
General trends (shape effect, velocity scaling) are mostly covered

-
But: spectral shapes/ main spectral characteristics are not always perfectly
predicted (here: expected measurement data scatter is much smaller; IAG and
DLR data collapse within +/
-

1.5 dB!)



Outlook 1/2


Extension of the existing data base by additional DU
-
96 data sets by Virginia
Tech (c
p
-
distributions and acoustical data):

-
Data measured under NREL funding (described in the report
Devenport
W., Burdisso R.A., Camargo H., Crede E., Remillieux M., Rasnick M., van
Seeters P., Aeroacoustic Testing of Wind Turbine Airfoils, Subcontract
Report NREL/SR
-
500
-
43471, 2010 ).




63
-
microphone phased array data with conventional beamforming
processing (test performed in 2007).

-
New DU
-
96 data (currently being processed) at 4 speeds and 5 a
-
o
-
a; 0
°
,
4
°
, 8
°
, 12
°
, 16
°




128 microphone phased array with advanced beamformer
.



Others?

-
Data owners of additional suitable data sets are highly encouraged to
contribute to the BANC
-
II, III… data base; please contact
michaela.herr@dlr.de




Outlook 2/2


BANC
-
III (if desired) will keep the existing CASES#1
-
5, the by now established
BANC
-
II data base is open for use to anyone interested and will be maintained
according to your feed
-
back



Need for additional test cases, add
-
ons (wind tunnel environment, additional
mechanisms, etc.)?



BANC
-
II documentation (presentations, reports, workshop minutes) will be
uploaded at the BANC
-
II website after the workshop:



https://info.aiaa.org/tac/ASG/FDTC/DGBECAN_files_/BANCII_category1





Thank you for your attention!

Agenda

7 June 2012


BANC
-
II
-
1: Trailing
-
Edge Noise


Introduction

-
Problem statement

-
Overview on contributions & participants

-
Overview of used codes



Participant’s presentations on computational approach & on selected results

-
Cristobal A. Albarracin et al., University of Adelaide, Australia (UoA)

-
Mohammad Kamruzzaman, University of Stuttgart, Germany (IAG)

-
Roland Ewert et al., German Aerospace Center (DLR)

-
Lawrence Cheung & Giridhar Jothiprasad, GE Global Research, NY (GE
-
GRC)

-
Damiano Casalino et al., EXA GmbH, Stuttgart, Germany (EXA)




Overall comparisons, summary, conclusions & outlook



Discussion