DDEP_WG/DDEP_2012/DDEP2012_Atomic Parameters_Lépyx

unkindnesskindUrban and Civil

Nov 15, 2013 (3 years and 8 months ago)

75 views

MEASUREMENT

OF
ATOMIC PARAMETERS

AT LNHB


M
arie
-
C
hristine

LÉPY


and

Y
ves

MÉNESGUEN

LABORATOIRE NATIONAL HENRI
BECQUEREL
FRANCE



DDEP MEETING


08/10/2012

| PAGE
1

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



2

ATOMIC PARAMETERS

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

INTRODUCTION


INTERNATIONAL INITIATIVE


ATTENUATION COEFFICIENTS


FLUORESCENCE YIELDS (
Ge
)


PHOTON EMISSION INTENSITIES (
241
Am)



DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



3

INTRODUCTION

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

Use of atomic parameters in decay data


-
> X
-
ray emission intensities



Fluorescence yields



Relative intensities


K
b
/
K
a
,
K
a
2
/K
a
1
,
etc.



DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



4

X
-
RAY DATA

55
Fe
decays

by
electron

capture

Example

:
55
Fe

𝑈
𝑅
(
𝐼
𝑋𝐾
)
=

𝑈
𝑅
2
𝑃
𝐾
+
𝑈
𝑅
2
(
𝜔
𝐾
)


𝐼
𝑋𝐾
=

𝑃
𝐾

𝜔
𝐾


DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



5

X
-
RAY DATA

Photon
emission

intensities

-
>



-
> Calibration
of
semi
-
conductor

detectors (X
-
ray
spectrometry
)



-
>
Determination

of photon
emission

intensities




-
> New
results

depend

on the fluorescence
yields

and relative
photon
emission

intensities








Application

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



6

INTERNATIONAL INITIATIVE

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

International initiative on x
-
ray fundamental
parameters



Launched in 2008 (EXRS conference)



DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



7

INTERNATIONAL INITIATIVE

Motivation



Parameters

useful

for quantitative x
-
ray
analysis


Strong

demand

of
users

from

many

application
fields

:
innovative

materials
,
archaeometry
,
environment
,
chemistry
,
etc.


Tables


reliability



uncertainties

?


Lack

of
recent

experimental

values (few
measurements

performed

>30
years

ago
)



Improvement

of
experimental

facilities


Synchrotron, high
resolution

detectors,
improved

electronics



Improvement

of
calculation

speed













DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



8

INTERNATIONAL INITIATIVE

Goals



Initiate

new
measurements

taking

advantage

of
technical

improvements



Perform

similar

measurements

in
different

institutes to
establish

reliabilty

and
associated

uncertainties

of the
experimental

values



Perform

calculation

for
selected

cases (use
calculations

for
interpolations)



Compare
calculation

to
experiment



Provide

reliable

practical

tables to
users





DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



9

INTERNATIONAL INITIATIVE

Participants and
events



Active participation
from

:




3 National
metrology

institutes (LNHB
-
NIST
-
PTB)


14
Research

institutes


10
Industrial

companies



4 international
workshops:

1st workshop Paris Oct. 2008




definition of expert groups


2nd workshop Berlin May 2009



road map generation


3rd workshop Paris Nov. 2010




project options


4th workshop NIST July 2011




definition of new expert groups



New workshop:
Berlin (Feb
./Mar.
2013)



Sessions
at

EXRS and DXC
conferences



DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



10

INTERNATIONAL INITIATIVE

Expert groups

1.
Prioritization
of FP requirements (energies, elements,
uncertainties)


2.
Experimental
facilities

(
needs

for

improved

instrumentation
)


3.
Theory

&
codes



challenges
:
competent use and update of
software


4.
Compilations

(
need

for

new

strategies
),
data

processing


5.
Definition
of

technical

terms

( NMIs: LNE, NIST
and

PTB
)


6.
Establishment of a common data base accessible to the
public

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



11

INTERNATIONAL INITIATIVE

New
possibilities



Advantages

of
today’s

facilities



Use of
monochromatic

radiation (synchrotron)


Tunable

(
primary

enery

close to the
binding

energy
)


Fine
beam

(collimation)




Energy
-
dispersive
detectors


Energy

resolution

(K
a
, K
b
)


Counting

rates (up to 10
5
s
-
1
)














DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



12

ATOMIC PARAMETERS

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

INTRODUCTION


INTERNATIONAL INITIATIVE


ATTENUATION COEFFICIENTS


FLUORESCENCE YIELDS (
Ge
)


PHOTON EMISSION INTENSITIES (
241
Am)






DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



13

Comparison

of tables of mass
attenuation

coefficients
























FP
Initiative


compilation
from

group 4
(P.
Caussin
)



ATTENUATION COEFFICIENTS

Present

status

Cullen vs. Elam

50% ≤ D < 100%

D


100%

No Data

D < 1%

1%
≤ D < 2%

2%
≤ D < 5%

5%
≤ D < 10%


10%
≤ D < 20
%

20% ≤ D < 50%

Energy
/
keV

Z

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



14

ATTENUATION COEFFICIENTS

Monochromatic

X
-
Ray sources
















SOLEX: Monochromatic X
-
ray source in the 1
-
20
keV

energy range



Vacuum chamber

X
-
ray tube (several anticathodes)

Dispersive crystal (different
crystals)

Monochromatic beam in a
constant direction

C. Bonnelle et al.

Nuclear Instrum. Methods in Phys. Res. A 516, 594
-
601 (2004)

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



15

ATTENUATION COEFFICIENTS

Monochromatic

X
-
Ray sources

















SOLEIL: Synchrotron

E=2.75
GeV

Circumference

: 354 m



Metrology
beamline



2
beamlines

“hard X
-
rays” 100
eV



35
keV

“XUV” 30
eV



2
keV



With dedicated
monochromating

optics

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



16

ATTENUATION COEFFICIENTS

Experimental

method
















I=I

0

e

-
µx





I

0

I

x

Monochromatic

radiation (E),
normally

incident
on
material

with

thickness

x


µ :
linear

attenuation

coefficient (cm
-
1
)

Reference flux
I
0

Transmitted

flux
I

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



17

ATTENUATION COEFFICIENTS

Results
















I=I
0
exp(
-
µx))=I
0
exp(
-
µ/
r.r
x
)

Major difficulties: Beam quality and stability



Sample thickness: some tens of µm
-
> Uncertainties ?


Measurement of
r
x

: mass (microbalance) / area (surface)





3.8
4.0
4.2
4.4
4.6
400
600
800
1000
1200
Energie/keV

/
r
(cm
2
.g
-1
)
présente étude
Données XCOM
Chantler (1995)
Nordfors (1961)
Tin mass
attenuation

coefficients

Cu (K
edge

at

8.98 keV)

Relative
uncertainty

< 1 %

Sn (L
edges

at

3.93, 4.16 and 4.46 keV)

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



18

ATOMIC PARAMETERS

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

INTRODUCTION


INTERNATIONAL INITIATIVE


ATTENUATION COEFFICIENTS


FLUORESCENCE YIELDS (
Ge
)


PHOTON EMISSION INTENSITIES (
241
Am)

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



19

FLUORESCENCE YIELD OF GERMANIUM

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

Lack

of
reliable

atomic

data

(FP initiative)



Germanium (Z=32)


Semiconductor

industry


Nanotechnologies,
solar

energy


HPGe

Detectors (Monte Carlo simulation)














DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



20

Tables of fluorescence
yields

for
users




Krause

(1979)



Bambynek

(1984)



Hubbell

(1994)



Elam (2002,
see

Hubbell
)










Ratio between
ω
K values proposed by Hubbell





et al.
(1994) and those of
Bambynek

(1984)


See

FP Initiative


compilation
from

group 4 (J.L. Campbell)



Ge

FLUORESCENCE YIELD

P
resent

status

-

Tables

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



21

Ge

FLUORESCENCE YIELD


Experimental

values

Escape
from
gas
with
Ge

Radioactivity

(As
-
74)

Escape peak

Escape peak

Fluorescence

using Am
-
241

Fluorescence

using Am
-
241

Fluorescence

using Am
-
241

0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.6
Germanium K Fluorescence Yield

Author

(date)

Methods

Fluorescence
yield


Uncertainty

Pahor (1969)

Escape from
gas
with
Ge

0.570

0.003

Hartl (1976)

Radioactivity

(As
-
74)

0.561

0.015

Casnati (1984)

Escape peak

0.549

0.011

Brunner (1987)

Escape peak

0.532

0.016

Pious (1992)

Fluorescence
using

Am
-
241

0.538

0.029

Durak (2001)

Fluorescence
using

Am
-
241

0.537

0.030

Han (2007)

Fluorescence
using

Am
-
241

0.552

0.040

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



22

p

: parent (incident energy)

i

: fluorescence energy (a=alpha, b=beta)


µ
:
Linear

attenuation

coefficient (cm
-
1
)

t
K

:
Linear

photoelectric

absorption coefficient (cm
-
1
)

e
i

: Detector
efficiency

for
energy

i





FLUORESCENCE YIELD MEASUREMENT

Conventional

method



Reflection

1

x

dx

I(
Ep
)

a

Target

i
i
Kp
p
i
d
dx
x
I
dN
e



t
4
)
*
exp(




1:
Transmission to
depth

x


2: Interaction by
photoelectric

effect

in K
shell



3 :
Atomic

rearrangement

by X
-
ray
emission

(

K
)


4: Exit of the X
-
rays
from

the active volume


5: Interaction in detector (full
-
energy

peak
)


i
i
Ki
Kp
p
p
i
d
x
dx
x
I
dN
e

b


a
t
a

4
)
sin
exp(
sin
)
sin
exp(




b

a

sin
sin
*
i
p
µ


b

dN
(Xi)

Detector

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



23









Requires

accurate

geometrical

arrangement

Requires

accurate

measurement

of the
primary

radiation
characteristics

(
reference

detector
)

Knowlegde

of the detector
efficiency

(
including

collimation
geometry
)

Knowledge

of the interaction cross sections


p

: parent (incident energy)

i

: fluorescence energy (a=alpha, b=beta)

FLUORESCENCE YIELD MEASUREMENT

Conventional

method



Reflection

2

Target

I(E)

a

N(X)

a

0
X X
N dN


i
Ki
Kp
p
i
µ
l
I
N
e


a

t
4
*
)
*
exp(
1
sin
1




)
*
exp(
1
*
1
sin
4
l
µ
I
N
Kp
p
i
i
Ki

t
a
e






i
Ki
Kp
p
i
d
dx
x
I
dN
e

a


t
4
sin
)
*
exp(



Detector

Target

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



24









Requires
:

Knowlegde

of the detector
efficiency

(
including

collimation
geometry
)

Knowledge

of the interaction cross sections

p

: parent (incident energy)

i

: fluorescence energy (a=alpha, b=beta)

FLUORESCENCE YIELD MEASUREMENT

Conventional

method

-

Transmission





i
i
i
p
i
p
Kp
Ki
p
i
l
l
µ
µ
I
N
e




t

4
)
exp(
)
(
exp
1







I(E)

a

N(X)

a

Target

Detector

Mass attenuation coefficients in the range 3.8
<

E
<
11 keV, K fluorescence yield and K
b
/
K
a

relative X
-
ray emission rate for
Ti, V, Fe, Co, Ni, Cu and Zn measured with a
tunable

monochromatic X
-
ray
source,
Y
.
Ménesguen
,, M.
-
C.
Lépy
,
Nuclear
Instruments and Methods in Physics Research B 268 (2010) 2477

2486





l
l
µ
µ
N
N
i
p
i
p
Kp
i
p
P
P
i
i
Ki
)
(
exp
1
)
(
exp




t
e
e








P
p
p
P
l
I
N
e


r

4
)
exp(


DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



25

HPGe

detector =
target










FLUORESCENCE YIELD MEASUREMENT

Escape
peaks

method

The detector records the incident radiation


Full
-
energy

peak

(
Ep
)
-
>
N
p


Escape
peaks

(
Ep
-
E
XKi
)
-
> N
i


For Ge:

E
K
a

: 9.88 keV

E
K
b

:
10.98 keV

Does

not
depend

on the
primary

radiation
nor

detector
efficiency


Requires

interaction
cross sections


I(E)

a

N(X)

Detector =
target

1: Transmission to
depth

x


2: Interaction by
photoelectric

effect

in K
shell



3 :
Atomic

rearrangement

by X
-
ray
emission

(

K
)


4: Exit of the X
-
rays
from

the active volume













)
1
ln(
1
2
i
P
P
i
P
Ki
Ki
b
a
P
i
N
N
N
N





t

(Axel, BNL report 271(1952
))

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



26

8
10
12
14
16
18
20
22
24
26
-4
-2
0
2
4
6
Relative difference (%)
Energy (keV)
Photoelectric absorption coefficients
Attenuation coefficients

Databases


Hubbell

(NIST/XCOM)


Chantler

(NIST/FFAST)


XCOM (direct)


K
a
㌶⸹㐠捭
2
.g
-
1


K
b

㈷⸴㐠捭
2
.g
-
1


FFAST (interpolation)


K
a

㌵⸳〠捭
2
.g
-
1


K
b

㈵⸹㐠捭
2
.g
-
1


Comparison of FFAST & XCOM : The values in the FFAST dataset are calculated by
different methods than the XCOM dataset and may produce different results
.
Disagreements in the total attenuation cross sections are generally less than 5 %, but can
be larger in some cases, especially near absorption edges.
Comparison with experimental
data does not allow us to choose between the theoretical methods due to the scatter in the
values of different experimental datasets.







FLUORESCENCE YIELD MEASUREMENT

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



27

Experimental setup


HPGe

detector (
thickness

4 mm


area 10 mm
2
)



Monochromatic

X
-
Ray source
-
> normal incidence


SOLEX (
LiF

or Quartz
monochromating

crystal
) (OS13
-
2)


3.5, 3.8 and 4.0 keV (L fluorescence), 12 to 16 keV



SOLEIL (
Metrology

beam

line, hard X
-
ray
branch



double Si
monochromator
)


12.2, 12.5, 12.7,13.0, 13.5, 14.0 keV











ESCAPE PEAKS EXPERIMENT

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



28

X
-
Ray spectra

K fluorescence
yield
: incident
energy

> 12.2 keV




Ep=14 keV
Energy (keV)
Counts per channel
1
6
11
16
1000
6000
10000
Full
-
energy

peak
:


E=14 keV


Escape
peaks

:

E=3.02 and 4.12 keV

ESCAPE PEAKS EXPERIMENT

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



29


Escape
peaks

processing


Fit of escape peak Ep=14 keV
Energy (keV)
Counts per channel
2.1
2.6
3.1
3.6
4.1
4.6
100
600
1000
6000
Peaks

processing

(
peak

area): COLEGRAM


Gaussian

with

left

tail




















)
1
ln(
1
2
i
P
P
i
P
Ki
b
a
P
i
Ki
N
N
N
N





t

ESCAPE PEAKS EXPERIMENT

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



30

Ge

FLUORESCENCE
YIELD

Present

results













FFAST:




XCOM:


K
a

= 0.479
(15)



0.483 (15)


K
b

=

0.069 (2)



0.070
(2)











0.460
0.470
0.480
0.490
0.500
11
13
15
17
Fluorescence yied

Energy of primary radiation/keV

Ge

K
a

fluorescence yield

SOLEIL1
SOLEX - Quartz
SOLEX - LiF
SOLEIL2
Mean value
DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



31

Ge

FLUORESCENCE YIELD

Synthesis



FFAST : Ge


K

= 0.548 (
16)


XCOM: Ge


K

= 0.553 (
17)









Bambynek

Krause

Hubbell

Schönfeld

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
Germanium K Fluorescence Yield

Experimental values
Compilations
Present result
DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



32

Ge

K FLUORESCENCE YIELD


Results

with

escape
peaks

:
w
K
(Ge) 0.550 (15)



Consistent
with

Bambynek

database

+
calculations

(Chen)



L fluorescence
yield

: 0.016 (1)



Next

steps



Measurement

of
attenuation

coefficients



Fluorescence of a
target

(transmission and
reflection
)



Comparison

with

new
calculations

(
Univ
.
Libon
)









Conclusion

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



33

ATOMIC PARAMETERS

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

INTRODUCTION


INTERNATIONAL INITIATIVE


ATTENUATION COEFFICIENTS


FLUORESCENCE YIELDS (
Ge
)


PHOTON EMISSION INTENSITIES (
241
Am)





DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



34

Gedeon_241Am_1Ms.spm
Energy (keV)
Counts per channel
13
18
23
100
600
1000
PHOTON EMISSION INTENSITIES

241
Am
-

Np

L X
-
rays

Semiconductor

detectors
HPGe

and Si(Li) (FWHM: 115 and
130 eV
at

5.9
keV
)

Sources
241
Am (
electrodeposited

and
wheighted

drops)

Spectra

processing

using

COLEGRAM

Gedeon_241Am_1Ms.spm (15.4373 - 19.1429)
Energy (keV)
Counts per channel
15.5
16
16.5
17
17.5
18
18.5
19
100
600
1000
Residuals of : Gedeon_241Am_1Ms.spm (15.4373 - 19.1429)
Energy (keV)
Counts per channel
15.5
16
16.5
17
17.5
18
18.5
19
-50
0
241Am XL s
pectrum

Region XL
b

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



35

PHOTON EMISSION INTENSITIES

241
Am
-

Np

L X
-
rays

Identification
Energy
(keV)
Lorentzian width
(eV)
Emission intensity
L alpha 2
13,76
0,01079
0,0138
L alpha 1
13,95
0,01079
0,1188
L eta
15,86
0,02891
0,0038
Lbeta6
16,11
0,01909
0,0021
Lbeta2,15
16,80
0,01159
0,0277
Lbeta4
17,06
0,029
0,0199
Lbeta7
17,27
0,01
0,0018
Lbeta5
17,51
0,01
0,0071
Lbeta1
17,75
0,01
0,1238
Lbeta3
17,99
0,01311
0,0139
Lbeta10
18,58
0,022
0,0008
Lbeta9
18,76
0,0172
0,0011
Lgamma 5
20,10
0,02141
0,0010
Lgamma 1
20,79
0,01391
0,0324
Lgamma 2
21,10
0,023
0,0053
Lgamma 8,3
21,30
0,012
0,0057
Lgamma 6
21,49
0,021
0,0066
Lgamma 4
22,12
0,012
0,0020
Lgamma 13
22,40
0,015
0,0006
Identification and
quantification of 19
components


ICRM2007

Measurement
of 241Am L X
-
ray emission
probabilities,
M.C.
Lépy
, J.
Plagnard
, L.
Ferreux
,
Applied
Radiation and Isotopes 66 (2008) 715

721



DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



36

PHOTON EMISSION INTENSITIES

Cryogenic

detector

Thermal bath ~ 20 mK

Input coil

Pick
-
up

coil

B

SQUID

Au:Er Sensor

T
0

~ 20 mK

V

Metallic

Absorber

absorber

Photon

Energy
E

g

Temperature

increase
D
T

sensor

Magnetization

change
D
M

coils

Magnetic flux
change
DF

SQUID

Voltage or

current change

Room

temperature

electronics

Thermal

link

T

= 300 K

D
V

0
50
100
0
0.1
0.2
Time (ms)
Voltage (V)
time

Decay

time
t
d
~
ms


Imposed

by the

thermal
link

Few
counts
/s …

(FWHM
a

t
d
-
½
)



0
T
C
E
T
M
V

D

D

DF

D
Low temperature required
T
0

< 50 mK

Signal:

mT

5
with

eV

5

~
~
2



B
B
g
S
B


e
)
(
4
0
2
T
C
T
k
B



noise

Thermal
Noise:

At low temperature high energy
resolution achievable

Statistical fluctuations negligible

Metallic

Magnetic

Calorimeters

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



37

PHOTON EMISSION INTENSITIES

Cryogenic

detector vs
Semiconductor

Au
-
Ag absorber:

D
E
FWHM
= 37 eV @ 17.75 keV

D
E
FWHM
= 40 eV @ 60 keV


Peak
amplitude/background 7
times better:



Better energy resolution



Smaller Compton background
by
a factor
2

HPGe
:

D
E
FWHM
= 200 eV @ 17.75 keV

D
E
FWHM
= 340 eV @ 60 keV

Normalized

on the

L
b1

amplitude

HPGe


SMX1

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



38

PHOTON EMISSION INTENSITIES

Spectrum
processing

Energy (keV)

Counts per channel

10.3

10.8

11.3

11.8

12.3

12.8

13.3

13.8

14.3

14.8

1000

6000

10000

spectre_122A_127A_129D_HP1_LP3k_w_bkg_2.spm (10.2187 - 15.1316)
Energy (keV)
Counts per channel
13.6
14.1
100000
600000
1e+006
spectre_122A_127A_129D_HP1_LP3k_w_bkg_2.spm (10.2187 - 15.1316)
Energy (keV)
Counts per channel
11.3
11.8
10000
60000
100000
? X

? X

g

?

L
a
2

Ll

L
a
1

Ll Np

L
a
Pb

L
a


Ec. Ag

L
b
1,2 Au

L
b
1 Pb

L
g
1

Au

Ls

Np

L
g
1

Pb

L
b
1 Au

241
Am

Np

L X
-
rays

Ll

and L
a
region

Unidentified

peaks

linked

to
rearrangement

in L3
sub
-
shell

DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



39

SUMMARY

Pour insérer une image :

Menu «

Insertion


/ Image

»

ou

Cliquer sur l’icône de la zone
image

Presentation of LNHB studies

using radionuclides
and monochromatic
tunable


X
-
ray sources:


Intensive work on atomic parameters

(International initiative on FP)


Improvement of mass attenuation coefficients


Measurement of K and L fluorescence yields


Conventional work on photon emission intensities
with new detectors (Cryogenic detector)





DDEP Meeting


10/2012



LABORATOIRE NATIONAL HENRI BECQUEREL



40



Thank

you

for
your

attention!