# A Proposed Framework for Analyzing Crime Data Set Using Decision Tree and Simple K-Means Mining Algorithms

AI and Robotics

Nov 8, 2013 (5 years and 4 months ago)

598 views

Completely Semi Prime Ideal With Respect To An Element Of A Near Ring

msc
-
hussien@yahoo.com

Showq Mhammed .E

AL
-
Kufa university College Of Education For Girls
/
Department of Mathematics

Abstra
ct

In this paper ,we introduce the notions of completely semi prime ideal with respect
to an element x (x
-
C.S.P.I) of a near ring and the completely semi prime ideal near
ring with respect to an element x (x
-
C.S.P.I ) . 1. The image and inv
erse image of x
-
C.S.P.I under epimomorphism and the 2. direct product of x
-
C.S.P.I near ring are
studied .

A Proposed Framework for Analyzing Crime Data Set Using Decision
Tree and Simple K
-
Means Mining Algorithms

-
Janabi

Depart
ment of Computer Science

Faculty of Mathematics and Computer Science

University of Kufa /Iraq
-

Abstract

This paper presents a proposed framework for the crime and criminal data analysis and
det
ection using Decision tree Algorithms for data classification and Simple K Means
algorithm for data clustering. The paper tends to help specialists in
discovering patterns
and trends, making forecasts, finding relationships and possible explanations, mappi
ng
criminal networks and identifying possible suspects.
The classification is based mainly on
grouping the crimes according to the type, location, time and other attributes; Clustering
is based on finding relationships between different Crime and Criminal
attributes having
some previously unknown common characteristics. The results of both classifications and
Clustering are used for prediction of trends and behavior of the given objects (Crimes and
Criminals).

Data for both crimes and criminals were collect
ed from free police departments’ dataset
available on the Internet to create and test the proposed framework, and then these data
were preprocessed to get clean and accurate data using different preprocessing

techniques
(cleaning, missing values and removi
ng inconsistency). The preprocessed data were used
to find out different crime and criminal trends and behaviors, and crimes and criminals
were grouped into clusters according to their important attributes. WEKA mining
software and Microsoft Excel were use
d to analyze the given data.

Keywords

Data Mining, Classification, Decision Tree, Clustering
.

LEBESGUE MEASURABLE FUNCTION IN FRACTIONAL
DIFFERENTIAL EQUATIONS

Sabah Mahmood Shaker

Mathematics Dept./College of Science / Al_Mustansiriya University

Abstract

Bassam, M.A. [1], proved some existence and uniqueness theorems for the
following fractional linear differential equation.

n
n i
i
i o
Ln y p x y x F x

  
 

 

..1

With the initial conditions

k
k
a
y

1

Where a<x<b, 0<

1,

k

are real numbers, k=1,2,…
,n, p
i
(x) , F(x) are
continuous functions defined on (a,b) such that p
0
(x)≠0, i=0,1…,n and y
[(n
-
i) α]

denotes the
fractional derivative of order (n
-
i)α for the function y.

In this work we prove some theorems for equation (1), however for α=1. Equation
(1) is an ordinary differential equation of order n, therefore all the th
eorems proved here
will be reduced to well known result in the theory of ordinary differential equations.
Moreover,

We give some examples and an application for equation (1).

Keywords
: Ordinary Differential Equations, Lebesgue Measurable Function , Fracti
onal
Differential Equations.

Survival Analysis of Breast Tumor in Al
-
Najaf

Nazera Khalil Dakhil Yahya Mahdi Al
-
mayali Muna Abbas Mseer

College of Mathematics and Computer Sciences

University of Kufa

Abstract

Breast

cancer is the most common type of tumor in Iraq. This research is mainly
concerned with study analysis of breast tumor data. A representative random sample of
patient suffering from tumor was

collected from Al
-
-
Najaf city. The
data
was then analyze using survival analysis technique.

Keywords
:

Breast tumor, Survival analysis, Kaplan
-
Meier, Iraq.

Zeros Removal with DCT Image Compression Technique

Dr. Nushwan Yousif Baithoon

College of Science for
Women

/
Departm
ent of Computer Science

E
-
Mail:
nybalnakash@yahoo.com

Abstract

The discrete cosine transform (DCT) is a method for converting a signal into plain
frequency components. It is extensively used in image compression. In th
is paper a new
technique is proposed, namely ZRDCT (
Zeros Removal with DCT
) which is based on a
lossy compression, and used to enhance image data compression.

Image quality is measured impartially, using peak signal
-
to
-
noise ratio (PSNR) or picture
qualit
y scale, and individually using perceived image quality with compression factor
(CF) being the main theme of this paper, taking into consideration the preservation of well
PSNR outputs.

The performance of DCT compression generally degrades low bit
-
rates
mainly because of
the underlying block
-
based DCT scheme.

Experimental results demonstrated the
effectiveness of the ZRDCT approach,
which enhanced the performance of the
conventional DCT image compression methods, by investigating and interrogating the
who
le image and hence enforcing mechanisms for finding possible redundant information
and therefore the removal of unnecessary

data which lead to an improvement in CF
without upsetting PSNR
. The new technique also proved to have
low distortions with
good qual
ity PSNR, commendable CF and good execution time
, when compared to other
various DCT schemes

and with some wavelet based image compression.

Keywords
:

Discrete Cosine Transform, Image Compression, Peak Signal
-
to

Noise Ratio,
Compression Factor.

M
M
i
i
n
n
i
i
m
m
a
a
l
l

s
s
e
e
t
t
s
s

a
a
n
n
d
d

s
s
t
t
a
a
b
b
i
i
l
l
i
i
t
t
y
y

F
F
o
o
r
r

C
C
o
o
m
m
p
p
a
a
c
c
t
t

s
s
e
e
t
t
s
s

of I(X)
-
spaces

Habeeb Kareem Abdullah

Amal Ibrahim Al
-
Attar

Department of mathematics Department of mathematics

College of Education for women/ Kufa University

Colle
ge of Science/ AL
-
Mustansiriyah University

A
A
b
b
s
s
t
t
r
r
a
a
c
c
t
t

The set of all isometries on a metric space X with the usual composition of functions
form a group and it is called the group of isometries and is denoted by
I(X)
. In this paper
we study the gener
alization of the concepts of minimal sets, stability and attraction, from
dynamic system into the topological transformation group
(I(X),X)
.We find that the
collection of all minimal sets of
I(X)
-
space is the collection of all the closures of orbits of
X a
nd we found some useful results about stability and attraction and we fixed the
relationship among it's kinds.

H
-
Compact Space

Assistant Teacher

University of Kufa
/
College of Mathematics and Computer Science

Mathematics Department

Ab
stract:

Using the concept of H
-
open set
,

we introduce the concept of H
-
compact space.
Several properties of H
-
c
ompact spaces are proved

, among these are:

1.

H
-
closed subset of H
-
compact is H
-
compact.

2.

The continuoues image of H
-
compact is H
-
compact.

H
-
compac
t subset of H
-
Hausdorff is H
-
closed.

Almost Stability of Modified Iteration Method with Errors for a Fixed
Point of Uniformaly L
-

Lipschitzian

Eman Mohmmed Nemah

Department of Mathematics,College of Eduction (Ibn Al
-
Haitham),

ABSTRA
CT:

In this

paper, we prove strong convergence theorem of modified Mann iteration
sequence with errors for uniformaly L
-

Lipschitzian mapping in arbitrary Banach space.
Our results improve and gernalize the recent results Osilike , Xu and Xie and m
any others

PAIRWISE COMPACT IN

INTUITIONISTIC DOUBLE
TOPOLOGICAL SPACES

,

Rewayda Razaq Mohsin

Enas Yehya Abdullah

Math
-
Dep College of M
ath.

Science Math
-
Dep. College of Education

University of Kufa
-
Najaf ,

Iraq

Abstract

The concept of intuitionistic topological space was introduced by Çoker .The aim of this
paper is to discuss the relation between bitopological spaces and double
-

topological
spaces and give a notion of pairwise co
mpact for double topological spaces .

ON b
-
IDENTIFICATION

Aqeel Ketab Mez

l

Department of Chemistry, College of Sciences, Babylon University

Abstract:

In 1996, Al
-
kutaibi introduce the notion of semi
-
identification and some other

types of
identi
fication .In this paper we introduce the notion of b
-
identification using the notion
of b
-
open sets introduced by
Andrijevic in 1996

(

Ɒ,
-
Co湴i湵o畳⁍畬瑩晵湣fio湳a湤n
(

,瀩
-
o
-
Clos敤⁍ul瑩fu湣瑩o湳

Amer Kh. Abed
Al
-
shypany

, samer Th. Abaas and Bass
im Ka. Mihsin

Department of mathematic
/
College mathematics and computer science

Kufa university

Abstract

In this paper , the concept of upper and lower (

,p)
-
continuous multifunctions and
(

,p)
-
o
-
closed multifunctions are introduced and studie
d, and obtain some
characterizations and several properties concerning upper and lower (

,p)
-
continuous
multifunctions . The relationship between these multifunctions and (

,p)
-
o
-
closed
multifunctions

The Effect method for Speech Compression by Wavelet
Transform

Assent Professor Hind Restom Mohammed

E
-
mail: hind_restem@yahoo. com

Computer science Department

College of Mathematics & Computer Science
/

University of Kufa / Iraq

Abstract

This paper presents new algorithm for speech signals compression using

wavelet
transform technique with scalar quantization methods and Huffman coding. The
performance of the implemented algorithm is evaluated based on Signal to Noise Ratio
(SNR), Peak Signal to Noise Ratio (PSNR), Normalized Root Mean Square Error
(NRMSE) a
nd compression ratio and tested on 8 kHz 8
-
bit speech signals. In this paper a
Wavelet, based speech coder is implemented in software using Matlab. The major issues
concerning the design of this wavelet based speech coder are choosing optimal wavelets
for

speech signals, decomposition level in the Discrete Wavelet Transform(DWT) and
threshold criteria for coefficient truncation and efficient encoding. The performances of
the wavelet compression scheme on both male and female spoken sentences were
compared.

On Artin Cokernel of the Group
D
2
n
h

Intissar Abd AL
-

College of Education for Girls/ Department of Mathematics

Email:

msc

_ Hussein@yahoo.com

AL
-
Kufa university

Abstract

The group of all Z
-
valued characters of afinite group G over the group of induced
unit characters from all cyclic subgroups of G forms a finite a belian group, called
Artin
Cokernel of G

,denoted by AC(G).The problem of finding the cyclic decompos
ition of
Artin cokernel AC(D
2
n
h
)has been considered in this paper, , the cyclic decomposition of
AC
(
D
2
n
h
) is :

AC(D
2
n
h
) =

1
2 1
2
2
1
C C
n
n
i

 
.

And we give the general form of Artin's characters table Ar(D
2
n
h
).

ريوطت
ليوحت ةيمزراوخ مادختسا

فوه
(Hough Transform)

يف ماسجلأا ملاعم ديدحتل
ةطقتلملا روصلا

يقابلادبع تكوش يمزع

دعاسم سردم
-
تابساح مولع ريتسجام

بوساحلا ةيلك
-

رابنلاا ةعماج

azmi_msc@yahoo.com

:ةصلاخلا

يشلأا نع فشكلل ةروطمو ةرغصم ةيمزراوخ انمدختسا ثحبلا اذه يف
ةلاد ىلع
ً
ادامتعا كلذو ةمهملا فادهلأاو ءا
( فوه ليوحت
Hough Transform Function
ءايدشلأا ييخدشتو دديدحت ةديلمع ىدلع ددمتعت ةيمزراوخلا هذه . )
ءيدددددددددددددددددددشلا كدددددددددددددددددددلذ دوددددددددددددددددددددح وا لادددددددددددددددددددعم دددددددددددددددددددديدحت للادددددددددددددددددددخ ندددددددددددددددددددم فاددددددددددددددددددددهلأاو

(
Edge Detection or Boundary
دهلاب ناطيحي نييزاوتم نيطخ دوجو للاخ نم كلذو )
هتيوه ديدحت دارملا ف

ً
احوضو لقلأا قطانملا زييمتلو هزييمت ضرغل

ءيشلا كلذب طيحت يتلا ةئيضملا قطانملا زييمتل وا )ةملظملا(
.

( لديوحت ةدديمزراوخ ريودطت دت
Hough
)

ةيعانددصلا رادمقلأا نددم ةدطلأتلملا رودصلا نددم
ً
ادضعب للادخ نددم اهمادختدسلا
ر
ِ
هظت
ُ
و ، يلاع هيوشت ىلع ةيواحلا روصلاو

.ءيشلا كلذ ةيوه ديدحتل
َ
ةلأيرطلا هذه
ُ
ةيحلاص ةيلولأا
ُ
ةيبيرجتلا
ُ
ج
ِ
ئات
َ
نلا

فوه ليوحت ةلاد : ةيلادلا تاملكلا
Hough Transform Function (HTF)

فاوحلا ديدحت ،
Edge
Detection

.

ةغيصب ةيقارعلا ةيعماجلا لئاسرلل ةيمقر ةبتكم ءاشنأ
PDF

ةيقيبطت ةسارد

ديعس تحدم ريمس سردملا

فيطللا دبع دلاخ ىولس دعاسملا سردملا

ددديركت ةدددعماج
-

ددديركت ةدددعماج ةدددسدنهلا ةددديلك

ودددساحلا ودددلع ةددديلك
ايضايرلاو

صلختسملا

تكم ءاشنلا ةيلأيبطت ةبرجت ةساردلا
ةغيصب ةيقارعلا ةيعماجلا لئاسرلل ةيمقر ةب
PDF

لئادسرلا ةدجلاعم للادخ نم
ةغيصب يركت ةعماجب ةيزكرملا ةبتكملا يف ةدوجوملا
Word

( ـل ةيمقر ةبتكم ءاشناو
793

عم ، ةيعماج ةلاسر )
تلا اذه يتأيو . ايوتحم ىلع علاطلااو ةبتكملا ادختسا لهست يتلا طباورلاو لاصولا دادعا
ءادشنلا ةلواحمك قيبط
. ةيقارعلا اعماجلا حيراطاو لئاسرل ةلماكتم ةيمقر ةبتكم ةكبش

:ةمدقملا
-

يددف
1

اددع نددم يناددنلا نوناددك
1993
ةخددسنلا داددمتعا ةدديكيرملأا ةدددحتملا ادديلاولا يددف اددينيجرف ةددعماج ررددق ,
فدهب ةيقرولا ةخسنلا ناج ىلا اهزيجت يتلا حيراطلااو لئاسرلل ةيمقرلا
ىدلع رادس ددقو , ايازملا نم ديدعلا قيلأحت
ىدلا اهداددعا ةدينيلا ادسلأاو رييادعملا اهل عضو دقو ,ةيبرغلاو ةيكيرملأا اعماجلا نم ديدعلا ةعماجلا هذه ىطخ
ادع يدف يدملعلا ثدحبلاو يلاعلا يلعتلا ةرازو ردصأ دلأف كلذ عم "ايشامتو . ةيقرولا ةخسنلا ريياعم ناج
2002

لا اهتاميلعت
رييادعملاو ادسلأا حدضوت نا ردي ندم ةدحورطلاا وا ةلادسرلل ةديمقرلا ةخدسنلا دادمتعاب اعماجلا ةفاك ى
.ايلعلا اساردلا لاطل ةيصخشلا اداهتجلاا قفو ريست ةيلمعلا لعج امم كلذل ةينيلا

يارقا ىلع ةنزخملاو ةيعماجلا حيراطلااو لئاسرلا ييلأتل ثحبلا اذه يتايو
Cd
-
Rom

جوملاو
ابتكملا يف ةدو
دعادسي ادممو ةدنيدحلا ةديمقرلا ابتكملا ايصاومب زاتمت ةليدب ةيمقر ةبتكم ءاشناو اهتيلاعف رابتخلا ةيقارعلا ةيعماجلا
.ةيقارعلا ةيعماجلا حيراطلااو لئاسرلل ةلماكتم ةيمقر ةكبش ىلا "لاوصو , اهتامدخ نم ةلاعيلا ةدايتسلاا ىلع

ريدقتل ببضملا ماظنلاو ةيعانطصلاا ةيبصعلا تاكبشلا تاقيبطت ةنراقم

لصوملا ةقطنمل يمويلا يئانلاا رخبتلا

يولاشلا نسح ليلخ اونس

دعاسم اردم

دادغب / ةيراداا ةينلأتلا ةيلكلا

ةصلاخلا

ىلعو ،ةعيبطلا يف هايملل ةيجولورديهلا ةرودلل ةمهملا ابكرملا ىدحإ رخبتلا ةيلمع لكشت

بذدتجا ددلأف اادسلأا اذده
انم رملأا لطتي امب ةيئاملا دراوملا اهيف حشت يتلا قطانملا يف اميسلاو نينحابلا نم رينكلا امتها ةيلمعلا هذه ةسارد
.ةيويحلا ةورنلا هذه ىلع ظايحلا

ادظنلاو ةيعانطدصلاا ةيبدصعلا اكبدشلا ادلأيبطت ةدنرالأم وه ةساردلا هذه فده نإ
تلا ريدلأتل بضملا
( فنص يمويلا يئانلاا رخب
A
. لصوملا ةلأطنمل )

( فنص رخبتلا ضوحل يمويلا يئانلاارخبتلا ريدلأتب ولأي بضم يبوساح اظن يمصت ت
A
لااد ادختدسا دت ددقو )
ىددلع ادديرلا ةعرددس ،يددسمشلا عاعددشاا ،ةرارددحلا ةددجرد( ةنمددضتم ةدديموي ةدديخانم اددنايب داددمتعابو ةدديلتخم ةيوددضع
رلا ،نيرددتم عادديترا
( فنددص يئاددنلاا رخبتلا،ةيبددسنلا ةددبوط
A
ةكبددش ذومنأددب بددضملا يبوددساحلا اددظنلا ةددنرالأم ددت. )
( فنددص يئاددنلاا رددخبتلا ريدددلأتل نيددلأيبطتلا داددمتعا ةدديناكمإ ىددلا جئاددتنلا رددهظأ دددقو ةيعانطددصا ةيبددصع
A
نددم
ً
لادددب )
نإ نددكمملا ندم ةرددينك ةدديخانم ردصانعل اددمولعم ىددلإ ادتحت ةدددلأعم لاداددعم ادختدسا

.ةرددسيتم رددي و ةدودلأيم نوددكت
.ةلأيقد ريغلاو ةدكؤم ريغلا لكاشملا عم لماعتلل ةلضيم ةادأ وه بضملا قطنملا

:ةلادلا تاملكلا

( فنص يئانلاا رخبتلا
A
. بضملا اظنلا ،لصوملا ةلأطنم ،)

ييمتلا
يللآا ز

ةيبرعلا ليارب تاطوطخمل

ميهاربا بنيز.د

سيق ناميا

دعاسم ذاتسا

دعاسم سردم

مولعلا ةيلك
\

ةرصبلا ةعماج
\
تابساحلا مولع مسق

مولعلا ةيلك
\

ةرصبلا ةعماج
\
تابساحلا مولع مسق

emankais@yahoo.com

ثحبلا صخلم

ب امولعملا ةجلاعم لاجم يف اريبك اروطت نيرشعلاو دحاولا نرلألا نم لولاا دلأعلا دهشي
ها دحاو ,اهعاونا ةفاك
للاخ نم يلعتلا لاجم يف روطتلا اذه رمنتسا دقو ,ةيمقرلا روصلاو طامنلاا ةجلاعمو زييمت ةينلأت وه اروطتلا
اجايتحلاا يوذب ةينعملا اسسؤملا اصوصخو ةيميلعتلا اسسؤملا لخاد طامنلااو روصلا ةجلاعم اينلأت ادختسا
لا يدقافو نيفويكملا لنم ةصاخلا
.رصب

ةريخلاا ةنولاا يف رهظ دقو رصبلا يدقاف وا فاعضل ةباتكو ةءارق اظن وه ليارب اظن نا فورعملا نم
ةجلاعم لاواحم نم ريبك ددع كانه ناو اذه , ةبساحلا ىلع ليارب يوصن نم ةريبك دادعا نزخل ةسام ةجاح
لا يف ريصبلا دعاست ةبساحلا ىلع ةيزيلكنلاا ةغللاب ليارب اعوبطم
رلأتيت نيح يف ةيفاكلا امولعملا ىلع لوصح
. ناجلا اذهل ةيبرعلا ليارب اعوبطم

ىلا اهليوحت ن نمو ةيمقر ةغيص ىلا ةيبرعلا ليارب ةعوبطم ليوحتب ولأت ةيمزراوخ يلاحلا ثحبلا رتلأي
تساب اهتءارق لهسي ةموهيم املك لكشب اهعيمجت نم نكمتيل زومرلاو ةيبرعلا فورحلا نم ةعومجم
جمارب ادخ
حسملا نم ةجتانلاو,ليارب ةعوبطمب ةصاخلا روصلا ةجلاعمب ادبت لحارم ةدعب لمعلا رمي.ةيلتخملا يوصنلا ةءارق
ةقد ىلع رنؤت دق يتلا اهوشتلا وا يئوضلا حساملا ةجيتن ةحيصلا اهيوتحت دق يتل ءاضوضلا ةلازإ ن يئوضلا
ةزرابلا طالأنلا عقاوم ديدحتب ولأن ن ,زييمتلا
زمر نع زمر زييمتل يرلأيلا دومعلا لكشت يتلاو ةلخدملا ةحيصلا يف
رطسلاا كلت يسلأت ن نمو رطسا ىلا ةحيصلا يسلأتب ةصاخ ةيمزراوخ ادختسا اهدعب تيل ليارب ةغلب وتكم رخا
كم ين ىلا كلذ دعب اهليوحت تيل اهنم فلاتت يتلا فرحلاا ىلا املكلا عيطلأتب ولأن اهدعبو املك ىلا
وت
جمانرب دختسا.اينورتكلا
matlab

.ةيلتخملا ةجلاعملا لحارم يف ةنمانلا ةخسنلا

: ةيحاتفملا تاملكلا

.ليارب ةغل ,يللآا زييمتلا,ايرصب نيقاعملا, طامنلاا زييمت ,روصلا ةجلاعم