计算机与信息技术学院研究生必读经典文献

tealackingAI and Robotics

Nov 8, 2013 (3 years and 9 months ago)

104 views

计算机百篇
经典文献目录

1
.

Yihong Dong, Yueting Zhuang, Ken Chen, Xiaoying Tai
.
A hierarchical clustering
algorithm based on fuzzy
.
Fuzzy Sets and Systems
,

2006,
157
:
1760
-
1774
.

3
.
Xiaodi Huang, Wei Lai
.
Clustering graphs for visualization via node similarities
.
Journa
l of Visual Languages and Computing,

2006,

17
:
225

253
.

4
.
A.R.de Leon

K.C. Carriere
.
A generalized Mahalanobis distance for mixed data
.
Journal of Multivariate Analysis
,

2005
,

92
:
174
-
185

5
.

Cen Li, Gautam Biswas. Unsupervised learning with mixed numeric an
d nominal data.
IEEE Transactions on Knowledge and Data Engineering,2002,14(4): 673
-
690
.

6
.

Cen Li, Gautam Biswas. Conceptual clustering with numeric and nominal mixed data
--

a new similarity based system. IEEE Transactions on Knowledge and Data

Engin
eering
,
1996.

7
.

Chuang
-
Chian Hsu. Extending attribute
-
oriented induction algorithm for major
values and numeric values. Expert Systems with Application, 2004, 27:187
-
202
.

8
.

Chuang
-
Chian Hsu. Generalizing self
-
organizing map for categorical data. IEEE
Tran
saction on Neural Network
,

2006, 17(2): 294
-
304
.

9
.

Ganti, V., Gehrke, J., Ramakrishnan, R. CACTUS
.

clustering categorical data using
summaries. Proceedings of the 5th International Conference on Knowledge
Discovery and Data Mining
,

San Diego: ACM Press
.
19
99
:
73
-
83.

10
.
Chuang
-
Chian Hsu, Yu
-
Cheng Chen. Mining of mixed data with application to catalog

marketing. Expert Systems with Application
,

2007, 32:12
-
23
.

1
1
.
Huang, Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values.
(PAKDD'97)
.

Worl
d Scientific,
1997:
21
-
35

12
.

Huang, Z. Extensions to the k
-
means Algorithm for Clustering Large Data Sets
with Categorical Values. International Journal of Data Mining and Knowledge
Discovery
,

1998
,2(3):
283
-
304.

13
.

Huang, Z. and Ng, M. A Fuzzy k
-
modes Alg
orithm for Clustering Categorical Data.
IEEE Transactions on Fuzzy Systems
,

1999
,7(4):
446
-
452
.

14
.

Ch
en Ning, Chen An and Long xiang.

Fuzzy K
-
Prototypes Algorithm for Clustering
Mixed Numeric and Categorical Valued Data. Journal of Software
,

2001,12(8):
11
07
-
1119
.

15
.

Cen Li, Gautam Biswas. Unsupervised learning with mixed numeric and nominal data.
IEEE Transactions on Knowledge and Data Engineering,2002,14(4): 673
-
690
.

16
.

Cen Li, Gautam Biswas. Conceptual clustering with numeric and nominal mixed data


a

new similarity based system.

I
EEE Transactions on Knowledge and

Data
Engineering
,

1996.

17
.

Amir Ahmad,Lipika Dey. A feature selection technique for classificatory analsis.
Pattern Recognition Letters
,
2005,26:43
-
56
.

18
.

Chuang
-
Chian Hsu, Yu
-
Cheng Chen. M
ining of mixed data with application to catalog

marketing. Expert Systems with Application, 2007, 32:12
-
23
.

19
.

Chuang
-
Chian Hsu. Extending attribute
-
oriented induction algorithm for major
values and numeric values. Expert Systems with Application
.

2004, 2
7:187
-
202
.

20
.

Chuang
-
Chian Hsu. Generalizing self
-
organizing map for categorical data. IEEE
Transaction on Neural Network, 2006, 17(2): 294
-
304
.

21
.

Mina Ryoka, Yoshiteru Nakamori. Agent
-
based approach to complex systems modeling.
European Journal of Oper
ational Research, 2005, 166:717
-
725
.

22
.

Cheeseman, P.

Stutz, J. Bayesian classification (AutoClass): theory and results.
In: Fay
yad, U.M.

Piatetsky
-
Shapiro, G.Smyth, P.

et al.

eds. Advances in
Knowledge Discovery and Da
ta Mining. AAAI/MIT Press, 1996
,

153
-
180.

23
.

Ganti, V., Gehrke, J., Ramakrishnan, R. CACTUS
.

clustering categorical data
using summaries. In: Proceedings of the 5th International Conference on
Knowledge Discovery and Data Mining. San Diego: ACM

Press, 1999
.

73
-
83.

24
.

Lauritzen, S.L. The
EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis, 1995,
(
19
)
:191
-
201.

25
.

Guha, S., Rastogi, R., Shim, K. ROCK
.

a robust clustering algorithm for
categorical attributes. Proceedings of the 15th Int
ernational Conference on
Data Engineering
,

Sydney: IEEE Computer Society Press, 1999. 512
-
521.

26
.

Gibson, D., Kleinberg, J.M., Raghavan, P. Clustering categorical data: an
approach based on dynamical systems. In: Gupta, A., Shmueli, O., Widom, J.,
eds. P
roceedings of the 24th International Conference on Very Large Data Bases
,

New York: Morgan Kaufmann, 1998. 311
-
322.

27
.

Michael K. Ng, ElaineY. Chan, Meko M.C. So,Wai
-
Ki Ching
.

Asemi
-
supervised
regression model for mixed numerical

and categorical variable
s
.
Pattern
Recognition
,

2007
,
(
40
)
:
1745
-
1752
.

28
.

Victor Cheng, Chun
-
Hung Li, James T. Kwok, Chi
-
Kwong Li
.

Dissimilarity learning
for nominal data
.
Pattern Recognition
,

2004
,
(
37
)
:
1471
-
1477
.

29
.

Ying Sun, Qiuming Zhu ,Zhengxin Chen
.

An iterative initial
-
poin
ts refinement
algorithm for

categorical data clustering
.

Pattern Recognition Letters
.

2002
,

(
23
)
:
875

884
.

30
.

V.Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

31
.

Wenjian Wang,Zongben Xu. A heuristic training for support vector regression.
Neu
rocomputing
,

2004
,
(
61
)
:
259
-
275.

32
.

Yee Leung, JiangShe Zhang, ZongBen Xu. Clustering by Scale
-
Space Filtering. IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

2000
,
22
(
12
)
.

33
.

Yuchun Tang , Bo Jin, YanQing Zhang. Granular support vector ma
chines with
association rules mining for protein homology prediction. Artificial
Intelligence in Medicine
,
2005
,
(
35
)
:
121
-
134.

34
.

Hwanjo Yu, Jiong Yang, Jiawei Han, Xiaolei Li. Making SVMs Scalable to Large
Data Sets using Hierarchical Cluster Indexing. SU
BMISSION TO DATA MINING AND
KNOWLEDGE DISCOVERY: AN INTERNATIONAL JOURNAL,
2005.

35
.

Yao, Y.Y. Granular computing: basic issues and possible solutions, Proceedings
of the 5th Joint Co
n
ference on Information Sciences,

2000
,
186
-
189.

36
.

邓乃扬,田英杰
.
数据挖掘的新方法
——
支持向量机
.
科学出版社
,2004.

37
.

Grishman R
.
Adaptive information extraction and sublanguage analysis
.
Proceedings of IJCAI
-
2001 Workshop on Adaptive Text Extraction and Mining,
2001
.

38
.

Chinchor N
.
Overview of MUC
-
7/MET
-
2
[C].

Proceedings of the Sev
enth Message
Understanding Conference, 1998
.


39
.
Daniel M. Bikel, et al.

A High
-
Performance Learning Name
-
finder
.

Proc

Fifth Conf
on Applied Natural Language Processing
,

Washinton DC,

1997
,
194
-
201
.

40
.
D.Appelt,

J.Hobbs, D.Israel, et al.
A finite processo
r for information
extraction from real
-
world text. FASTUS, Proceedings of IJCAI
-
93
,
1993.

41
.
Daniel M. Bikel, et al.

A

High
-
Performance Learning Name
-
finder
.

Proc

Fifth Conf
on Applied Natural Language Processing
,1997
,
194
-
201
.

42
.
Borthwich.

A Maximum Entr
opy Approach to

Named Entity Recognition
. Computer
Science Department, New York University
,
1999.

43
.

Collins
.

Unsupervised Models for Named

Entity Classification
.

Proceedings of
1999 Joint

SIGDAT Conference on Empirical Methods in NLPand Very Large Corpora
,
1999
.
100
-
110.

44
.

Strzalkowski T, Wang J.

A self
-
learning universal concept spoteer. Pro.16th
Int

l Conf. On Computational Linguistics (COLING 96), 1999
,
931
-
936.

4
5
.

Cucerzan S, Yarowsky D.

Language independent named entity recognition combining
morpholo
gical and contextual evidenence. Pro.1999 Joint SIGDAT Conf.

On
Empirical Methods in Natural Language Processing and Very Large Corpora,
College Park,
Maryland
, 1999

90
-
99
.

4
6
.
Hobbs J, Appelt D, Bear J, and et al

,
in Roche and Schabes, eds.
.

A Cascaded
Fi
nite
-
State Transducer for Extracting Information from Natural
-
Language Text
.

Finite State Devices for Natural Language Processing, MIT Press, Cambridge MA,
1996.

47
.
Besancon, R.
,

Rajman, M.
,

Chappelier, J.

C.

Textual similarities based on a
distributiona
l approach
.

Tenth International Workshop on Database and Expert
Systems Applications,

1999

180
-
184
.

48
.
Zheng
De
-
Quan,
Hu

Yi
,
Yu Hao, et al.

Research of specific information recognition
in multi
-
carrier data streams
.

Journal of Software, 2003, 14(9)
:
1538
-
1543
.

49
.
ABDUR CHOWDHURY, OPHIR FRIEDER, DAVID GROSSMAN, and MARY CATHERINE McCABE
.

Collec
tion Statistics for Fast Duplicate
.

171
-
190.

50
.
Vicky Liu, William Catelli, Ernest Foo, Selwyn Russell
.

Visually Sealed and
Digitally Signed Documents
.

Information

Security Research Centre Queensland
University of Technology Australia
,
287
-
294.


51
.
Carlso
n, J.R., George, J.F., Burgoon, J.K., Adkins, M., White, C.
.

Deception
in Computer
-
Mediated Communication.
Group Decision and Negotiation
.

2004
,
13
(1)
:

5
-
28.

52
.
Maksimova Y
,
Deception and its Detection in Computer
-
mediated Communication.
technical reports

in The Human Computer Interaction Program, 2005
.


53
.

Gruber T R.

A Translation Approach to Po
rtable Ontology Specifications.
Knowledge
Acquisition,1993

(5):199
-
220
.

5
4
.

Studer R,Ben
jamins V R ,Fensel D. Knowledge

Engingeering,

Principles and Methods.

Data

and Knowledge Engingeering,1998,25(1
-
2):161
-
197
.

55
.

Dogac, A., Laleci, G.


B., Kabak, Y., Cingil, I.
.
Exploiting Web

Service
Semantics: Taxonomies vs.Ontologies
.

IEEE Data Engineering Bulletin,
2002
,25(4)
.

56
.
Zhang C, Naughton J, DeWitt D, Luo Q, Lohma
n G. On supporting containment queries
in relational database management systems. Proc. of the 2001 ACM SIGMOD Int’l
Conf. on Management of Data. ACM Press
,

2001
,
425
-
436.

57
.
Li QZ, Moon B. Indexing and querying XML data for regular path expressions. Proc.

of the 27th Int’l Conf. on Very Large Data Bases
,
Morgan KaufmannPublishers,
2001
,
361
-
370.


58
.

AI
-
Khalifa S, Jagadish H.V, Koudas N, Patel J.M, Srivastava D, Wu Y. Structural
joins: A primitive for efficient XML querypattern matching. Proc. of the 18th
I
nt’l Conf. on Data Engineering
,

Los Alamitos: IEEE

Press,
2002
,
141
-
152.

59
.

Wang J, Meng XF, Wang S. Structural join of XML based on range partitioning.
Journal of Software,
2004
,
15(5):720
-
729.

60
.

Bruno N, Koudas N, Srivastava D. Holistic Twig Joins: Opti
mal XML Pattern
Matching. Proceedings of SIGMOD,

2002
,
310
-
321.

61
.

Jiang H, Lu H, Wang W. XR
-
Tree: Indexing XML Data for Efficient Structural Joins.
Proceedings of ICDE,
2003
,
253
-
263.

62
.

Chen T, Lu J, Ling T.W. On Boosting Holism in XML Twig Pattern Matc
hing.
Proceedings of SIGMOD,

2005
,
455

466.

63
.

Lu J, Chen T, Ling T.W. Effcient processing of XML twig patterns with parent
child edges: a look
-
ahead approach.

2004
,
533
-
542.

64
.

Lu J, Ling T.W, Chan C.Y, Chen T. From Region Encoding To Extended Dewey: On
E
fficient Processing of XML Twig Pattern Matching. Proceedings of VLDB,

2005
,
193

204.

6
5
.

Aghili, S , Li, H.G, Agrawal, D , Abbadi, A.E. Twix: Twig structure and content
matching of selective queries using binary labeling
,
2006
.

66
.

Chen, S., Li, H.G., Tate
mura, J., Hsiung, W.P., Agrawal, D., Candan, K.S.
Twig2stack:Bottom
-
up processing of generalized
-

tree pattern queries over XML
documents
,
2006
,
283
-
294.

67
.

Lu Qin, Jeffrey XY, and Bolin Ding. TwigList: Make Twig Pattern Matching Fast.
200
6
,
850
-
862.

68
.

Wir
th N. Type Extensions .ACM Transactions on Programming Languages and Systems,
1988
,
10(2):204
-
214.

69
.

Wang W, Jiang HF, Lu HJ, Jeffrey XY. PBiTree coding and efficient processing
of containment joins. In: Dayal U, Ramamritham K, Vijayaraman TM , eds. Proc.

of the 19th Int’l Conf. on Data Engineering. Los Alamitos: IEEE Press,

200
3
,
391
-
402.

70
.

Fred Cohen. Simulating Cyber Attacks, Defenses,and Consequences. Proceedings
of the DARPA Information Survivability Conference and Exposition, South
Carolina, 2003
,
31
7
-
342.

71
.

Wenke

Lee, Wei Fan, et al.
Toward cost
-
sensitive modeling for intrusion detection
and response.Journal of Computer Security,2002,10(1):318
-
336.


72
.

H
.
Bunke, P
.
Foggia, C
.
Guidobaldi, M
.
Vento, Graph clustering using the weighted
minimum common sup
ergraph, in: Proceedings of the GbR'03, Lecture Notes in
Computer Science, 2003
,
2726
:
235
-
246.

73
.

Petros Drineas, Ravi Kannan, Alan Frieze and V. Vinay
.

Clustering large graphs
via the Singular Value Decomposition.

Machine Learning
,

2004
,
56
:
9
-
33.

74
.

Dhill
on, I., Guan, Y., & Kulis, B. Kernel k
-
means:spectral clustering and
normalized cuts.

Proceedings of the 2004 ACM SIGKDD

international conference
on Knowledge discovery and data mining,

2004
,
551

556.

75
.

Günter, S., & Bunke, H. Adaptive self
-
organizing ma
p in the graph domain. Hybrid
methods in pattern recognition, World Scientific
,

2002,
61

74
.

76
.

Günter, S., & Bunke, H. Self
-
organizing map for clustering in the graph domain.
Pattern Recognition Letters,

2002
,
23
:
401

417.

77
.

Luo, B., Wilson, R. C., & Hanc
ock, E. R. Spectral embedding of graphs. Pattern
Recognition,

2003
,
36
(
10
):
2213

2223.

78
.

Sanfeliu, A., Serratosa, F., & Alquezar, R. Synthesis of func
tion
-
described
graphs and clustering of attributed graphs. International Journal of Pattern
Recognition and Artificial Intelligence,

2002
,
16
(
6
):

621

655.

79
.

Yun
-
Wu Huang, Ning Jing & Elke A. Rundensteiner. Effective Graph Clustering for
Path Queries in Di
gital Map Databases. ACM
,
1996
.

80
.

World Wide Web Consortium. XML Path Language (XPath) 2.0. W3C Working Draft.
2004.

81
.

World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Third Edition).
W3C
6
.
Recommendation. 2004.

82
.

高峰
,
李忠诚
.
用最优通路矩阵实现超立方体多处理机系统的容错路由
.
计算机学

,
2000,23(3): 242
-
247.

83
.

田绍槐
.
超立方体多处理机系统中基于扩展最优通路矩阵的容错路由
.
计算机学报,


2002,25(1):
78
-
92
.

84
.

王雷,林亚平,陈治平,文学
.

超立方体系统中基于安全通路向量的容错路由
.
软件学
报,
2004,15(5):783
-
790
.

85
.
Brian Caswell, Jay Beale, James C.Foster, Jeffrey Posluns. Sno
rt 2.0
入侵检

.
国防工业出版社
.

86
.

林鸿飞
.
基于混合模式的文本过滤模型
.
计算机研究与发展
,2001,
38(
9
)
:1127
-
1131.

87
.

黄萱箐
,
夏迎炬
,
吴立德
.
基于向量空间模型的文本过滤系统
.
软件学报
,2003,14(3):
435
-
442.

88
.

夏迎炬,黄萱菁,胡恬,吴立德
.
自适应信息过滤中使用少量正例进行阈值优化
.
软件学

,2004,14(10):1697
-
1705.

89
.

Tom M.Mitchell.
机器学习
[M].
曾华军,张银奎译
.
机械工业出版社,
2003.

90
.



,
刑春晓
,
周立柱
.
个性化服务技术综述
.
软件学报
,
2002
,
13(10)
:
1952

1961
.

91
.

于满泉

骆卫华

许洪波

白硕
.
话题识别和跟踪的层次化话题识别技术研究
.
计算机研

发展
,
2006
,
43(3)
:
489
-
495
.

92
.

张华平
,
刘群.
基于角色标注的中国人名自动识别研究
.
计算机学报
,2
004,27(1):

85
-
91
.

9
3
.
周俊生,戴新宇等
.
基于层叠条件随机场模型的中文机构名自动识别
.
电子学报,
2006

34
(
5
):804
-
809.

94
.
王荣波,池哲儒
.
基于词类串的汉语句子结构相似度计算方法
.
中文信息学报,
2005

19
(
1
)
:21
-
29.

95
.

鲍军鹏
,
沈钧毅
,
刘晓东
,
宋擒豹
.
自然语言文档复制检测研究综述
.
软件学

,2000,
14(10)
:
1753
-
17
60
.

96
.
刘世岳
,
李珩
,
张俐
,
姚天顺
.
Co
-
training
机器学习方法在中文组块识别中的应用
.


文信息学报
,
2005,

19
(
3
):
73
-
79.

97
.

李素建
,
刘群
,
白硕
.
统计和规则相结合的汉语组块分析
.
计算机研究与发展
,
2002
,
39
(
4
):
385
-
391.

98
.

万常选,
刘云生,徐
升华,刘喜平,林大海
.
基于区间编码的
XML
索引结构有效实现结
构连接
.

计算机学报
,
2005, 28(l):113
-
127
.

99
.

张奇
,
黄萱菁
,
吴立德
.
一种新的句子相似度度量及其在文本自动摘要中的应用
.

中文信
息学报
,
2005,
19
(
2
):
11
-
14.

1
00
.

万常选
.

XML
数据库技术》
.
清华大学出版社
.