REVIEWS IN - FEM

sisterpurpleMechanics

Oct 24, 2013 (3 years and 8 months ago)

57 views


REVIEWS IN

TURBULENT FLUID FLOW




1. Reynolds, W. C., “
Computation of Turbulent Flows
”, Annual
Reviews of Fluid Mechanics, vol 8, pp. 183
-

208, (1976)


2. Speziale, C. G.; “
Analytical Methods for the Development of
Reynolds
-
Stress Closures in Turbul
ence
”, Annual Reviews in
Fluid Mechanics, vol 23, pp. 107
-
157, (1991).


3. Gatski, T. B.; “
Turbulent Flows: Model Equations and Solution
Methodology
”, Handbook of Computational Fluid Mechanics,
ed. by Peyret, R., Academic Press, (1996).


4. Townsend, A.A.;


Turbulence
”, Handbook of Fluid Dynamics,
ed. by Streeter, V., (1975).

MODELO K
-
E E SUAS VARIANTES

1.

Launder, B. E. and Spalding, D.B.; “
The Numerical Computation of
Turbulent Flows
”, Comp. Methods in Applied Mech. And Engng., vol.
3, pp. 269
-
289, (1
974).

2.

Mohammadi, B. and Pironneau, O.; “
Applied Mathematics and
Turbulence Modelling
”, Int. J. for Numerical Meth. In Fluids, vol. 20,
pp. 819
-
829, (1995).

3.

Zijlema, M., Segal, A. and Wesseling, P.; “
Invariant Discretization of
the K
-
E Model in General Co
-
o
rdinates for Prediction of Turbulent
Flow in Complicated Geometries
”, Computers and Fluids, vol. 24,
pp. 209
-
225, (1995).

4.

Shih, T., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J
.; “
A New K
-
E
Eddy Viscosity Model for High Reynolds Number Turbulent
Flows
”, Co
mputers Fluids, vol. 24, n. 3, pp. 227
-
238, (1995).

5.

Chen, Y.S. and Kim, S.W.; “
Computation of Turbulent Flow Using
an Extended K
-
E Turbulence Closure Model
”, NASA REPORT, CR
179204, October (1987).

6.

Yakhot, V. and Orszag, A.S.; “
Renormalization Group Analy
sis of
Turbulence


Basic Theory
”, J. of Scientific Computing, vol. 1, n.1,
pp. 3
-
51, (1986).

7.

Yakhot, V. and Orszag, A.S., Thangam, S., Gatski, T.B. and Speziale,
C.G.; “
Development of Turbulence Models for Shear Flows by a
Double Expansion Technique
”, Phy
s. Of Fluids A, vol.4, n.7, pp.
1510
-
1520, (1992).

8.

MEDIDAS EXPERIMENTAIS


1.

Hanjalic, K. and Launder, B.E., “
Fully Developed Asymetric Flow in a
Plane Channel
”, J. Fluid Mech., vol. (51), part 2, pp. 301
-
335, (1972)

2.

Launder B.E. and Ying W.M
.; “Secondary F
lows in Ducts of Square
Cross
-
Section
”, J. Fluid Mech., vol (54), part 2, pp. 289
-
295, (1972)

3.

Durst, F., Melling, A. and Whitelaw, J.H.; “
Low Reynolds Number
Flow Over a Plane Symmetric Sudden Expansion
”, J. Fluid Mech. ,
vol. 64, part 1, pp. 111
-
128, (197
4).

4.

Hussain, A.K.M.F. and Reynolds, W.C.; “
Measurements in Fully
Developed Turbulent Channel Flow
”, Trans. ASME


J. Fluids Engng.
pp. 568
-
580, December (1975).

5.

Durst, F., scherholz, W.F. and Wunderlich, A.M.; “
Experimental and
Numerical Investigations of
Plane Duct Flows with Sudden
Contraction
”, J. Fluids Engn


Trans. ASME, vol 109, pp. 376
-
383,
December (1987).

6.

Liou, T.M, Kao, C.F., “
Symmetric and Asymmetric Turbulent Flows
in a Rectangular Duct with a Pair of Ribs
”, J. Fluids Engn.


Trans.
ASME, vol.
110, pp. 373
-
379, December, (1988).

7.

Lim, K.S., Park, S.O. and Shim, H.S., “
A Low Aspect Ratio Backward
-
Facing Step Flow
”, Exp. Thermal and Fluid Sci.vol. 3, pp. 508
-
514,
(1990).

8.

Clark, J.A.; “
A Study of Incompressible Turbulent Boundary Layers
in Channel F
low
”, J. of Basic Engn.


Trans. ASME, pp. 455
-
468,
December, (1968).

9.

Meyer, L.; “
Calibration of a Three
-
Wire Probe for Measurements in
Nonisothermal Flow
”, Exp. Thermal and Fluid Sci, vol. 5, pp. 260
-
267,
(1992).

10.

George, W.K., and Taulbee, D.B.; “
Designin
g Experiments to Test
Closure Hypothses
”, Exp. Thermal and Fluid Sci, vol. 5, pp. 249
-
259,
(1992).

11.

Kim, W.J. and Patel, V.C.; “
Origin and Decay of Longitudinal
Vortices in Developing Flow in a Curved Rectangular Duct
”, J.
Fluids Engng. Trans. ASME, vol 116
, pp. 45
-
52, March, (1994).




COMPARAÇÃO ENTRE MODELOS



1.

Chen, Q.; “
Comparison of Different K
-
E Models for Indoor Air Flow
Computations
”, Numerical Heat Transfer, Part B, vol 28, pp. 353
-
369,
(1995).

2.

Sarkar, S. and Bose T.K.; “
Comparison of Different Tu
rbulence
Models for Prediction of Slot
-
Film Cooling: Flow and Temperature
Field
”, Numerical Heat Transfer, Part B, vol. 28, pp. 217
-
238, (1995).

3.

Dutta, S. and Acharya, S.; “
Heat Transfer and Flow Past a Backstep
with the Nonlinear K
-
E Turbulence Model and
the Modified K
-
E
Turbulence Model
”, Numerical Heat Transfer, Part A, vol. 23, pp. 281
-
301, (1993).

4.

Martinuzzi, R. and Pollard, A.; “
Comparative Study of Turbulence
Models in Predicting Turbulent Pipe Flow Part I: Algebraic Stress
and K
-
E Models
”, AIAA J.,
vol, 27, n.1, January, (1989).

5.

Gerodimos, G. and So, R.M.C.; “
Near
-
Wall Modelling of Plane
Turbulent Wall Jets
”, J. Fluids Engng. Trans ASME, vol. 119, June,
(1997).

6.

Sotiropoulos, F. and Ventikos, Y.; “
Flow Through a Curved Duct
Using Nonlinear Two
-
Equatio
n Turbulence Models
”, AIAA J., vol.
(36), n.7, July, (1998).



STRESS MODELS


1.

Hanjalic, K. and Launder, B.E.; “
A Reynolds Stress Model of
Turbulence and its Application to Thin Shear Flows
”, J. Fluid Mech.
Vol. 52, part 4, pp. 609
-
638, (1972).

2.

Demuren, A
. O. and Rodi, W.; “
Calculation of Turbulence
-
Driven
Secondary Motion in Non
-
Circular Ducts
”, J. Fluid Mechanics, vol.
140, pp. 189
-
222, (1984).

3.

Warfield, M.J. and Lakshminarayana, B.; “
Computation of Rotating
Turbulent Flow with an Algebraic Reynolds Stre
ss Model
”, AIAA J.,
vol. 25, n. 7, July, (1987).

4.

Gatski, T.B. and Speziale, C.G.; “
On Explicit Algebraic Stress Models
for Complex Turbulent Flows
”, J. Fluid Mech., vol. (254), pp. 59
-
78,
(1993).

5.

Shih, T.H., Zhu, J. and Lumley, J.L.; “
A New Reynolds Stress

Algebraic Equation Model
”, Comput. Methods Appl. Mech. Engng.,
vol. 125, pp. 287
-
302, (1995).




LAW OF THE WALL & FUNDAMENTALS


1.

Panton, R.L.; “
Scaling Turbulent Wall Layers
””, (1990)

2.

Spalding, D.B.; “
A Single Formula for the Law of the Wall
”, (19
61)

3.

Van Driest, E.R., “On Turbulent Flow Near a Wall”, (1956)

4.

Kutateladze, S.S.; “
The Mixing Length Hypothesis in Turbulence
Theory
”, (1984)

5.

Hinze, J.O.; “
Secondary Currents in Wall Turbulence
”, (1961)

6.

Bradshaw, P. and Huang, G.P., “
The Law of the Wall in
Turbulent
Flow


7.

Cruz, D.O.A., et al, “
Uma Formulação de Lei de Parede para
Escoamentos Turbulentos com Separação e trocoa de Calor


8.

Yoshizawa, A. and Nisizima, S.; “
A nonequilibrium representation of
the turbulent viscosity based on a two
-
scale turbulence
theory


9.

Bradshaw, P. and Perot, J.B
.; “A note on turbulent energy
dissipation in the viscous wall region







K
-
E MODELS FOR LOW REYNOLDS NUMBER FLOWS



1.

Patel, V.C., Rodi, W. and Scheuere, G.; “Turbulence Models for Near
-
Wall and Low Reynolds Number Flow
s: A Review”, (1984)

2.

Jones, W.P. and Launder, B.E.; “The Calculation of Low
-
Reynolds
Number Phenomena with a Two
-
Equation Model of Turbulence”, (1972).

3.

Lam, C.K.G. and Bremhorst, K.; “A Modified Form of the K
-
E Model for
Predicting Wall Turbulence”, (1981)
.

4.

Nagano, Y. and Tagawa, M.; “An Improved K
-
E Model for Boundary
Layer Flows”, (1990)

5.

Abe, K., Kondoh, T. and Nagano, Y.; “A New Turbulence Model for
Predicting Fluid Flow and Heat Transfer in Separating and Reattaching
Flows


I. Flow Field Calculations”,

(1993).

6.

Rousseau, A.N., Albright, L.D. and Torrance, K.E.; “A Short Comparison
of Damping Functions of Standard Low
-
Reynolds
-
Number K
-
E Models”,
(1997).



STREAMLINE CURVATURE EFFECTS

ON WALL BOUNDED TURBULENT FLOWS



1.

Bradshaw, P.; “
Turbulent Secondary F
lows
”, (1987).

2.

Patel, B.C. and Sotiropoulus, F.; “
Longitudinal Curvature Effects in
Turbulent Boundary Layers
”, (1997)

3.

Luo, J. and Lakshiminarayana, B.; “
Analysis of Stream Line Curvature
Effects on Wall
-
Bounded Turbulent Flows
”, (1997).

4.

Launder, B.E., Pri
ddin, C.H. and Sharma, B.I.; “
The Calculation of
Turbulent Boundary Layers on Spinning and Curved Surfaces
”,
(1977).

5.

Lakshiminarayana, B.; “
Turbulence Modeling for Complex Shear
Flows
”, (1986).



TWO LAYER MODEL


1.

Chen, Q., "
Comparision of Different k
-
e mo
dels for indoor air flow
computations
" (1995)

2.

Mohammadi, B, "
Complex Turbulent Compressible Flow
Computation Using a Two
-
Layer Approach
", (1992)

3.

Murakami, S; Mochida, A et alli, "
Numerical Prediction of Flow
Around a Building with Various Turbulence Models
: Comparision
of k
-
e EVM, ASM, DSM and LES with Wind Tunnel Tests
"

4.

Zhou, Y and Stathopoulos, T.; "
Application of Two Layer Methods for
the Evaluation of Wind Effects on a Cubic Building
"

5.

Selvam, R.P
. "Numerical Simulation of Flow and Pressure Around a
Bui
lding
",