Symmetric Powers of Spheres
Neil Strickland
(with Johann Sigurdsson)
August 9,2007
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n).
It is dened using combinatorics of partitions of n points,and is related to SP
n
(S
0
)=SP
n1
(S
0
)
There is a similar tower for
S
k+1
,with bres
1
(S
nk
^ Q(n))
h
n
(Goodwillie,Johnson,Arone,Mahowald)
EHPSS
Goodwillie tower
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
KU
(S
0
)
Ell
(S
0
)
K(n)
(S
0
)
(L
K(n)
S
0
)
v
1
n
(S
)
BouseldKuhn
n
:Spaces!Spectra
n
(
1
X) = L
K(n)
(X)
Overview of homotopy theory
(S
)
H
(S
0
)
S
(S
0
)
MU
(S
0
)
Formal groups
k+1
S
1
E
k+2
S
2
E
k+3
S
3
E
k+4
S
4
k
(QS
0
)=
S
k
(S
0
)
k+2
S
3
H
k+3
S
5
H
k+4
S
7
H
EHPSS
S
0
=X(1)
X(2)
X(3)
X(4)
X(1)=MU
X(n)=Thom(
SU(n)!
SU=BU)
X(n)=X(n;0)
X(n;1)
X(n;2)
X(n;2)
X(n;1)=X(n+1)
X(n;k) from the James ltration on
(SU(n+1)=SU(n))=
S
2n+1
=JS
2n
Nilpotence ltration
Koszul ltration
S
0
=SP
1
(S
0
)
SP
2
(S
0
)
SP
3
(S
0
)
SP
4
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
SP
p
(S
0
)
SP
p
2
(S
0
)
SP
p
3
(S
0
)
SP
1
(S
0
)=H
SP
n
(S
0
)= prespectrum with k'th space (S
k
)
n
=
n
S
0
=SP
1
(S
0
)
L(0)
SP
p
(S
0
)
L(1)
SP
p
2
(S
0
)
2
L(2)
SP
p
3
(S
0
)
3
L(3)
SP
1
(S
0
)=H
1
L() is a DGA up to homotopy,chain equivalent to Z (Whitehead,Kuhn,Priddy)
Symmetric power ltration
S
MU
MU
MU^
MU
MU
(2)
MU^
MU
(2)
MU
(3)
MU^
MU
(3)
MU
(4)
AdamsNovikov SS
Algebraic NSS
Adams SS
Unstable Adams SS,Lambda algebra,central series for simplicial groups
X
1
=
S
1
=Z
QS
0
X
2
X
3
1
Q(2)
h
2
X
4
1
Q(3)
h
3
X
5
1
Q(4)
h
4
Q(n) is a certain nite
n
spectrum,with H
Q(n) = H
0
Q(n) = Lie(n)
Enter the password to open this PDF file:
File name:

File size:

Title:

Author:

Subject:

Keywords:

Creation Date:

Modification Date:

Creator:

PDF Producer:

PDF Version:

Page Count:

Preparing document for printing…
0%
Comments 0
Log in to post a comment