University in Campo Grande Lectures In Advances and Trends in Power Electronics and Drives (M.S. Course)

rewardreminiscentElectronics - Devices

Nov 24, 2013 (3 years and 10 months ago)

98 views


1

University in Campo Grande Lectures

In

Advances and Trends in Power Electronics and Drives

(M.S. Course)


July 24


28, 2006

8:00


10:30 AM


5 days = 12.5 Hrs.

= 750 min.


1.

Power

Semiconductor Devices
.

2.

Voltage
-
Fed

Converters and PWM Techniques
.

3.

AC Machi
n
es for Drives
.

4.

Induction Motor Drives


Control and

Estimation.

5.

Fuzzy Logic Prin
ciples and Applications
.

6.

Neural Network Prin
ciples and Applications.


(The students are assumed to have undergraduate background in power electronics,
electrical dc and ac mac
hines and basic knowledge on FL and ANN)





1.
POWER SEMICONDUCTOR DEVICES


1.

Course content

2.

Selected references

3.

What is power electronics?

4.

Features of power electronics

5.

Device title page and scope

6.

Evolution of power semiconductor devices

7.

Power frequency t
rends of devices

8.

GTO converter with switching waves

9.

GTO features

10.

Power MOSFET

11.

Power MOSFET features

12.

IGBT characteristics

13.

IGBT half
-
bridge inverter with waves

14.

IGBT features

15.

IGCT features

16.

Comparison of powerMOSFET
-
IGBT
-
GTO
-
IGCT

17.

Features of PICs









2

2.
VOL
TAGE
-
FED CO
NVERTERS AND PWM TECHNIQUES


1.

Title page and scope

2.

Classification of converters

3.

H
-
bridge inverter

4.

Phase shift voltage control

5.

3
-
phase bridge inverter

6.

Voltage waves (Ph. Vol. eqns)

7.

Derivation of phase
-
neutral

vol. eqns.

8.

M
otori
ng and regeneration

9.

Input ripple

10.

Dynamic and reg. braking

11.

PWM techniques

12.

3
-
phase SPWM

13.

SPWM overmodulation

14.

SHE

wave with

eqns

15.


Same
.

16.

SHE PWM

look
-
up table

17.

VFI
Switching states table

18.

Hexagon switching states


SVM

19.

Overmodulation modes

20.

Overmodulation
modes


alpha and theta angles

21.

HB
-

PWM

22.

Comparison SPWM
-
SVM
-
SHE
-
HB

23.

Single
-
phase diode rectifier with boost chopper

24.

3
-
phase diode rectifier with boost chopper

25.

SVC/AHF

26.

3
-
level VFI

27.

Hexagon switching states

28.


SVM waves

29.

Motor waves

30.

5
-
level diode clamped VFI

31.

Simpli
fied figure

32.

Hexagon

with switching states

33.

5
-
level flying capacitor VFI

34.

Cascaded H
-
bridge VFI

35.

7
-
level CHB IM drive

36.

Progression of VFI

37.

Locomotive drive

38.

Two
-
sided PWM VFI features

39.

Shinkansen drive

40.

Two
-
sided 3
-
level VFI

features






3

3.
AC MACHINES FOR DRIVES


1.

Title page and scope

2.

Classification of machines

3.

Idealized IM

(cage and WRIM)

4.

Per phase eq. circuit

5.

Torque
-
speed ch.

6.

VVCF speed control

7.

Speed control circuit

8.

IM VVVF operation

9.

4
-
Q speed control

10.

2
-
phase IM

11.

a
-
b
-
c to ds
-
qs conve
rsion

12.

ds
-
qs to de
-
qe conversion

13.

Derivation of de
-
qe eqns.

14.

de
-
qe eq. circuits

15.

de
-
qe model eqns.

16.

Complex eq. circuit

17.

Dynamic flux linkage model

18.

ds
-
qs eq. circuit

19.

ds
-
qs frame eqns.

20.

Summary of torque eqns.


























4

4.
INDUCTION MOTOR DRIVE
S


CO
NTROL AND ESTIMATION


1.

Title page and scope

2.

Why VFVS drive?

3.

Application examples

4.

Principal classes

5.

General design considerations

6.

Features cage IM

7.

Steps in drive design

8.

Control IM drives

9.

Signals estimation

10.

Open loop V/Hz control

11.

T
-
S cur
ves with freq. varia
tion

12.

Acc./Dec. charac.

13.

Features

14.

Mult
-
motor subway drive

15.

Machine

and wheel
mismatching

16.

Slip
-
controlled drive

17.

Efficiency increase by flux control

18.

DTC torque
eqn. with phasor diagram

19.

DTC control

20.

Flux trajectory

21.

Switching table

22.

DTC salient features

23.

DC moto
r vector control analogy

24.

VC principle

25.

Flux estimation

methods

26.

Voltage model estimation block diagram

27.

Current model flux estimation

28.

Direct VC

29.

Indirect VC phasor diagram

30.

Derivation of eqns.

31.

Same

32.

Same

33.

IVC block diagram

34.

IVC tuning methods

35.

Slip gain MRAC tunin
g

36.

Sync. Current control

37.

VC salient features

38.

Stator flux VC eqns. (P. 381)

39.

Stator flux vector diagram

40.

SVC block diagram

41.

VC of PWM rectifier

42.


“ phasor diagra

43.

Slip power recovery drive features

44.

Static Kramer drive


5

45.

Control
Block diagram

46.

CCV Scherbi
us drive

47.

Modes of operation

48.

VC of CCV Scherbius drive

---------

49.

2
-
sided PWM VFI Scherbius drive

50.

Wind generation systems

51.

WT characteristics

52.

T
-
S curves

53.

IG with SVG and diode rectifier

54.

2
-
sided IG system

55.

2
-
sided 3
-
level IM drives

56.

Speed estimation methods

57.

MRAC
principle

58.

Adaptive flux observer

59.

PCLPF eqns.

60.

Same

61.

PCLPF

62.

Tau and G with freq

63.

Start
-
up
Eqns.
.

64.

Start
-
up at zero speed

65.

Speed sensorless DC with start
-
up

66.

DVC with

IVC
zero speed start
-
up

67.

Adv. Control methods

68.

Adaptive control

69.

Self
-
tuning control

70.

Load Tor. Dis
turbance observer

71.

MRAC

72.


Sliding mode control
-

ellipses

73.

Eqns.

74.


Hyperbolas

75.

Eqns.

76.

Sliding line control

77.

B.D. of traj. Control

78.

Trajectory

79.

Adv. And trends of IM drives












6


5.
FUZZY LOGIC
PRINCIPLES AND APPLICATIONS


1.

Title page and scope

2.

What is AI?

3.

AI

classification

4.

What is intelligent control?

5.

Features of FL

6.

Fuzzy and crispy sets

7.

MFs

8.

Flowchart for FIS

9.

Input
-
output mapping

10.

FIS by Mamdani method

11.

FIS by Lusing Larson method

12.

FIS by Sugeno zero
-
order method

13.


“ first
-
order method

14.

Defuzzification

15.

FL

appl. In PE

16.

FL control VC


IM

17.

Two
-
rule

18.

Control block diagram

19.

MFS for Vector

control

20.

Rule table

21.

Response

22.

Difficulties

23.

Effec. Optimazion Char.

24.

VC IM with eff. Opt.

25.

Eff. Optimizer

26.

Transition

27.

Response

28.

WT T
-
S curves

29.

Wind gen. syst.

30.

Why FL?

31.

Performance

------
-----

32.

Rs estimation

33.

Steps

34.

Temp. curves

35.

Perf. Curves

36.

Sim. Simul. Of VC

37.

P
-
I control resp.

38.

FL control response (Mamdani)

39.


“ (Lusing Larson)

40.


“ (
Sugeno zero order
)

41.

Adv. And trends on FL

appl.



7

6.
NEUR
AL NETWORK PRINCIPLES AND APPLICATIONS



1.

Title page and scope

2.

Features of ANN

3.

Biological neuron

+Neuron

4.

TFs

5.

Y = sin X

6.

ANN models

7.

Perceptron

8.

Backprop ANN

9.

Features

10.

OCR A

11.

Inverse
+autoassociative
A

12.

Real time RNN
+trg.

13.

TDNN

14.

TDNN with feedback

15.

Inverse model

16.

Cont
rol with F(.)
-
1

17.

ANN controller

18.

MRAC controller

19.

ANFIS

20.

Applications

21.

SHE PWM

22.


Delayless filtering and
1
-
ph. To multi
-
stepping

23.

PWM waves filtering

24.

Filtering and processing

25.

FB estimation eqns.

26.

ANN

27.

2
-
level SVM B.D.

28.

Waves and eqns.

29.

Turn
-
on time curves

30.

f(V*) vs. V

relation

31.

ANN topology

32.

3
-
level VFI

33.

Ton curves

34.

ANN topology

35.

Logic interface

36.

Segmentation

--------

37.

Timer and logic

38.

ANN for speed est

39.

.

speed eqns.

40.

PCLPF

41.

Hybrid ANN

42.

Perf.

43.

VC IM drive

44.

Eqns.

45.

ANN
-
Fuzzy control

46.

Robotic manipulator

47.

3
-
phase sine wave gen.

48.

Adv
. And trends