PAYLOAD FLIGHT HAZARD REPORT

psithurismaccountantUrban and Civil

Nov 29, 2013 (3 years and 11 months ago)

762 views


A.5
-
1

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

d. SUBSYSTEM:

Pressurized Systems

e. HAZARD GROUP:

Explosion, Contamination

f. DATE:

M
ay 2
5
, 2007

g. HAZARD TITLE:

Rupture of AMS
-
02
Pressurized Systems: TRD Gas System (Xe & CO
2
),
Cryomagnet Warm Helium Gas System, Tracker Thermal Control System,
Thermal Control Systems, Cryocoolers

i. HAZARD

CATASTROPHIC

X

CATEGORY:

CRITICAL


h. APPLICABLE SAFETY REQUIREMENTS:

NSTS 1700.7B and IS
S Addendum: 200.1, 200.1b, 200.2, 200.3, 200.4a, 201.3, 205, 206,
208.1, 208.2, 208.3, 208.4, 208.4a, 208.4b, 208.4c & 208.4e

j. DESCRIPTION OF HAZARD:

Rupture/Explosion of the pressurized systems results in significant damage to or loss of the
STS, ISS
, crewmembers and/or other payloads.

k. CAUSE
S

1. Inadequate design strength for pressure and other loading environments.

2. Improper material selections and processing.

3. Improper workmanship and/or assembly.

4. Propagation of crack
-
like defects.

5.

Liquefaction/freezing/thawing in lines.

6. Improper filling/over filling of vessel/system.

7. Incorrect commanding of valves.

8. Heater Failure

9. Meteoroid and Orbital Debris (M/OD) impact.

10. Damage to Composite Overwrapped Pressure Vessel

(list
)



o. APPROVAL

PAYLOAD ORGANIZATION

SSP/ISS



PHASE I





PHASE II





PHASE III





A.5
-
2

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

l. HAZARD CONTROL (CONTROL), m. SAFETY VERIFICATION METHODS (SVM), n. STATUS OF VERIFICATIONS (STATUS)

OPS
CONTROL

1. CAUSE: Inadequate design strength for pre
ssure and other loading environments.


1.1 CONTROL: The AMS
-
02 hardware is being designed to provide positive margins using appropriate factors of safety.
The attached tables provide the MDP, factors of safety and associated
margins per NSTS 170
0.7B ISS Addendum
paragraph 208.4
for the pressurized systems addressed in this hazard report. The loading factors and conditions,
mechanical, pressure and thermal have been considered in establishing a positive margin of safety of the pressure systems
as
sociated with the pressurized systems.


1.1.1 SVM: AMS
-
02 Pressure Systems Structural/Stress Analysis and Tests as defined in AMS
-
02 SVP (JSC
28792).


1.1.1 STATUS: Open


1.2 CONTROL: TRD SYSTEM. The TRD consists of three zones of pressure control by

design. The first zone, referred
to as Box S, contains two pressure zones within it. The high pressure supply and the low pressure supply to Box C. The
high pressure side pressure is driven by the pressure vessels that provide the Xenon (at 1550 psia,
nominal) and carbon
dioxide (at 940 psia). Within these high pressure tanks the MDP has been established to be 2960 and 2040 psia respectively
in isolation. These values are based on worst case thermal environments and quantities loaded. As there is a c
onceivable
failure mode that can cross
-
link the two high pressure tanks, the mixing of the two gas supplies yields an approximate
MDP
of 3000 psi

(2980 psi calculated), which is the value used for the Box S high pressure side tanks and lines (3000 psi = 20
6.8
bar). Within Box S these high pressure sources are fed through valves and orifices to fill a mixing tank which has an
MDP
of 300 psia (20.68 bar)
. Pressure monitors are provided in the system to allow for computer control of the valves to
regulate p
ressure/gas management by opening and closing a series of valves in each supply line. This MDP is kept from
being exceeded by the computer
-
controlled valves and orifice delivery system (level 1) and two parallel, series coupled
pressure relief devices set

to 300 psia (260 ± 25psi). Either branch of the pressure relief devices (Burst disk and pressure
relief valve) is capable of handling the full flow of the gas supplies if all the valves were to open. The burst discs are
provided up
-
stream of the pressur
e relief devices for isolation of the pressure relief valves from the operating loops (Rated
295 psig by BS&B Safety Systems). The pressure relief devices will be shown to be insensitive to any debris that the burst
disc may generate in providing MDP prot
ection.



The next zone of the TRD is fed from the mixing tank into Box C, which provides pumping of the gas to the manifold and


A.5
-
3

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

TRD sensor segments (straws). This section also includes the monitor tubes, which contain a small radioactive source, that
mo
nitor the quality of the gas mixture. Pressure is regulated to a
maximum of 300 psi

from Box S through valves and
orifices, and computer controlled valves can vent the gas in addition to two pressure relief valves, these three levels of
control (computer
controlled valves, two pressure relief valves) regulate the pressure to
29.4 psia (2.02 bar) MDP
. TRD
pump design can provide gas flow but is designed not to add to the overall pressure head within the system.


The third zone is the manifold and sensor “s
traws” the pressure of which is controlled by
Box C to 29.4 psia (2.02 bar)
MDP
. Gas flow is supplied through the Box C pumps with an inconsequential pressure head.


1.2.1 SVM: Manufacturer’s Certification/Testing of relief valves to verify opening press
畲u a湤⁦汯眠wa灡c楴y.


ㄮ㈮㈠1噍㨠⁆畮u瑩潮o氠le獴s湧映c潭灵oe爠r潮瑲潬oe搠癡汶敳l


ㄮ㈮㌠1噍㨠⁆汯眠la瑥⁡naly獥猠⡯E楦楣eⰠ癡汶攬l牥汩e映癡汶攠晬潷F


ㄮ㈮㐠1噍㨠⁆畮u瑩潮o氠le獴s湧映条猠晬潷⁰畭灳


ㄮ㈮㔠1噍㨠⁐牥獳畲s⁳ys瑥洠瑨敲浡氠m湡ly獥猠⡩湣汵
摥搠楮⁳瑲t獳⁡湡ly獩sF


1.2.6 SVM: Manufacturer’s qualification/certification of burst disk.


ㄮ㈮㜠1噍㨠⁁sce灴慮ce 呥獴s湧映B畲獴⁤楳c


ㄮ㈮㠠1噍㨠⁇s潵湤潡摩湧⁰牯 e摵de猠瑯⁰牯癩摥⁰牯 e爠晩汬f湧⁣潮摩o楯i猬ⁱ畡汩ty⁡湤ⁱ畡湴n瑩e献


ㄮ㈮㤠1噍㨠⁃
佐嘠l瑲ts猠䅮sly獩s⁐e爠r乓fLA䥁䄠A
-
〸M


ㄮ㈮ㄠ1呁呕p㨠⁏灥渮


ㄮ㈮㈠1呁呕p㨠⁏灥n


ㄮ㈮㌠1呁呕p㨠⁏灥n


ㄮ㈮㐠1呁呕p㨠⁏灥n


ㄮ㈮㔠1呁呕p㨠⁃汯獥搮l⁍ 楮⁔i䐠条猠瑡湫⁳瑲s獳⁡湡ly獩s⁤潣畭e湴敤⁴桥牭r氠慮lly獩s⁲e獵汴猠楮⁅䜠㄰㌴㠬s
c牡c瑵牥 a湤⁓瑲t獳⁒ep
o牴r⁃l
2
/Xenon Tank Assembly PN C4810/D4852 for TRD Gas Supply System, Nov 6,
2001. Tanks are identical to Arde tanks previously flown on ISS.


1.2.6 STATUS: Open


1.2.7 STATUS: Open


A.5
-
4

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


1.2.8 STATUS: Open


1.2.9 STATUS: Open

1.3 CONTROL: WARM HELIU
M GAS SUPPLY. The Warm Helium Gas Supply is designed to have two distinct
pressure zones. The high pressure helium source has an MDP of

244
bar (
3538
psi)
, established by the
fill quantity of the
warm helium sup
ply tank and the worst case thermal
design
environment

(higher than expected worst case)
. The 8.3 liter
gas bottle, a composite wrapped bottle manufactured by Arde, is filled to have a pressure of 200 bar (2900.7 psi), and under
worst case environmental
thermal conditions the pressure could rise to
244
bar (3
538

psi). The Warm Helium Gas Supply
does not utilize any heaters.
The high pressure side with the MDP of
244
bar (
3538
psi) comprises the gas bottle, pressure
manifold, fill and drain valve MV42,
DV22 (A
-
D)
and the
MV40 (
6 bar pressure regulator
)
.

The low pressure side of the Warm Helium Gas Supply is nominally regulated to 6 bar (87.0 psi) and is protected by over
pressurization by an
8 bar (116.0 psi) pressure relief device RV03 and RV04. Pressure within the PVVV is controlled by 10
bar (145.0 psi) burst disks (if the normally open vents are failed closed). The plumbing in the low pressure side is 1/8 inc
h
stainless steel piping. Al
l components and lines meet the appropriate factors of safety as required by NSTS 1700.7.
(Exception to Proof Testing are noted in Control 1.12)


1.3.1 SVM: Manufacturer’s Certification/Testing of relief valve to verify opening pressure and flow capacity
.


ㄮ㌮㈠1噍㨠⁆汯眠la瑥⁡naly獥猠⡯E楦楣eⰠ癡汶攬l牥汩e映癡汶攠晬潷F


ㄮ㌮㌠1噍㨠⁐牥獳畲s⁳ys瑥洠瑨敲浡氠m湡ly獥s


1.3.4 SVM: Manufacturer’s qualification/certification of burst disk.


ㄮ㌮㔠1噍㨠s
<摥汥瑥搠睩d栠牥浯癡氠潦

c潭灯oe湴
Ⱐf䐠ae瑡楮e搠景d⁲eco牤步e灩湧p


ㄮ㌮㘠1噍㨠⁇s潵湤潡摩湧⁰牯 e摵de猠瑯⁰牯癩摥⁰牯 e爠晩汬f湧⁣潮摩o楯i猬ⁱ畡汩ty⁡湤ⁱ畡湴n瑩e献


ㄮ㌮㜠1噍㨠⁃佐嘠l瑲ts猠䅮sly獩s⁐e爠r乓fLA䥁䄠A
-
〸M


ㄮ㌮ㄠ1呁呕p㨠⁏灥渮


ㄮ㌮㈠1呁呕p㨠⁏灥n


ㄮ㌮㌠1呁呕p㨠

佰ln


ㄮ㌮㐠1呁呕p㨠⁏灥n


ㄮ㌮㔠1呁呕p㨠W
<摥汥瑥搠
睩瑨⁲w浯癡氠潦⁣潭灯湥湴Ⱐf䐠aeta楮敤⁦潲o牥co牤步e灩pg>



A.5
-
5

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


1.3.6 STATUS: Open


1.3.7 STATUS: Open

1.4 CONTROL: TTCS TWO PHASE LOOP. The nominal TTCS MDP has been established by TTCS fill and the

worst
case thermal profile of the TTCS. Heater failure for this system is addressed under Cause 8 of this hazard report. This
value is
160 bar (2320 psi)

and encompasses the extremely small pressure differential across the circulation pump. All
other c
omponents and lines are designed to maintain a safety factor of 4.0 per NSTS 1700.7B and ISS Addendum. NOTE:
The TTCS has a special consideration addressed in Control 5.4 where segments of the TTCS are susceptible to freezing of
the carbon dioxide workin
g fluid, these components will have a new MDP established based on the stress of the freeze/thaw
cycle.


1.4.1 SVM: Thermal Analysis


1.4.2 SVM: Manufacturer’s Certification of TTCS Filling.


ㄮ㐮ㄠ1呁呕p㨠⁏灥n


ㄮ㐮㈠1呁呕p㨠⁏灥渮†n


ㄮ㔠1低呒qi㨠

呔䍓 o䅄f䅔佒⁈䕁吠qfm䕓⸠⁔桥⁁䵓
-
〲⁔呃M⁵瑩汩ze猠s⁳ 癥渠獥a汥搠桥a琠灩灥猠楮⁥sc栠h映瑨f
瑷漠呲acke爠剡摩慴潲猠瑨a琠慲e⁳楴畡瑥搠a瑯瀠t桥⁁䵓
-
〲⸠⁔桥獥⁨ a琠灩灥s⁡牥映楤e湴nca氠摥獩g渠瑨牯畧桯畴⁢畴⁷楴栠
癡ry楮geng瑨Ⱐ捯湳瑲畣te搠潦†䅬‶〶㌠A湤

晩汬敤f睩瑨⁡浭潮wa⁷楴栠灩灥ⁱ畡湴n瑩e猠癡ry楮g 睩瑨e湧瑨
㐴⸶t


㔲⸶R
gra浳⤬‱㐠浭⁤楡浥瑥t 睩瑨⁡楮w浵m⁴桩c歮ks猠潦‱⸲㔠浭⸠⁔桩猠桥a琠灩灥⁩猠 a湵晡c瑵te搠睩瑨⁡‴〠浭⁦污湧n⁴桡琠
楳⁵ie搠瑯⁩湴敲晡ce⁷楴栠 桥⁔呃 ⁣潮摥湳n牳⸠⁔he獥⁦污n来猠sr
e milled down for the rest of the heat pipe’s length along
瑨攠t牡cke爠剡摩慴潲⸠周e⁍䑐映瑨 ⁨ a琠灩灥猠a牥⁢ se搠潮⁴桥⁷o牳琠ra獥⁴桥 浡氠灲潦楬o 睨楬攠潮
-
潲扩琠景o⁴桥⁡浭潮楡
晩汬敤⁴畢f猬⁣潮獩摥物rg⁴桥⁷潲獴⁣sse⁨ ate爠ra楬畲u猬⁷楴栠愠s楮慬⁴敭
灥牡t畲u映瑨 ⁳y獴敭猠慳⁢e楮i‵グ ⸠⁔桩猠.䑐⁩猠
290 psi (20 bar)

and is inclusive of all heat pipes although not all heat pipes could possibly see this particular temperature
and pressure. The heat pipes meet a 4.0 factor of safety satisfying the requ
ired 2.5 factor of safety per NSTS 1700.7B and
ISS Addendum. Heater Failure Tolerance is discussed under Cause 8.


1.5.1 SVM: Thermal Analysis of AMS
-
02 for worst case thermal condition of heat pipes


1.5.2 SVM: Manufacturer’s Certification of heat pipe

晩汬f湧.


ㄮ㔮ㄠ1呁呕p㨠⁏灥n


ㄮ㔮㈠1呁呕p㨠⁏灥n



A.5
-
6

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

1.6 CONTROL: TTCS OHP.
<OHP Removed from AMS
-
02,
Control

number retained as deleted entry to maintain
accountability>



1.6.1 SVM:
< OHP Removed from AMS
-
02, SVM number retain
ed as deleted entry to maintain accountability>


1.6.2 SVM:
< OHP Removed from AMS
-
02, SVM number retained as deleted entry to maintain accountability>


1.6.1 STATUS:
<OHP Removed from AMS
-
02, SVM num
ber retained as deleted entry to maintain accountability>


1.6.2 STATUS:
<OHP Removed from AMS
-
02, SVM number retained as deleted entry to maintain accountability>


1.7 CONTROL: TTCS Accumulator Heat Pipe. The TTCS accumulator heat pipe (one on

primary and one on secondary
TTCS systems) is unique in that it is integrated into the TTCS carbon dioxide accumulator structure, a portion of the heat
pipe experiences external pressure as defined by the TTCS system (160 bar) and the rest (100mm extendin
g outside of the
TTCS Accumulator) it’s own internal pressure
畮摥爠r潲獴⁣a獥⁴桥牭r氠l潡摩湧 c潮摩o楯湳映瑨f⁡浭潮楡⁷潲歩湧⁦汵楤⸠
周q⁣潮獴牵r瑩潮o⁴桥⁔呃q⁁ c畭畬a瑯爠桥a琠t楰攠i汳漠摩晦e牳r晲潭o桥爠桥a琠灩灥猠s猠楴⁨ 猠a⁳浯 瑨⁢潲
e⁷楴栠慮
楮獥i瑥搠t牴rry⁷楣欠獴牵c瑵牥⁡汯lg⁴桥⁰ 物灨rry 潦⁴桥⁴畢攠 湤⁢n楤g楮g 獩湧畬慲ly⁡c牯獳⁴桥⁨rat

灩灥⁴漠獵灰py⁷楣歩kg
e晦ec瑳⸠⁔桥⁍tm⁥獴慢s楳桥搠iy⁴桥⁴桥牭r氠捯l摩d楯渠潦⁴桥⁨ a琠t潡搠dp灬pe搠dy⁴桥⁤e摩捡瑥搠tea瑥t猠楮⁴桥⁷潲獴⁣a

e湶楲潮浥n琠桡猠扥e渠n獴a扬b獨s搠瑯⁢攠
50.2

bar (
7
28.1

psi)

relative to vacuum and the MDP of the portion interior to the
accumulator has been set to the MDP of the accumulator
(160 bar, 2320.6 psi).
This “interior” MDP could be set to 160
扡r

浩湵猠n桥潷 獴⁰牥s獵牥映瑨 ⁨ a琠灩灥Ⱐ扵琠景f⁳業灬pc楴y⁴桥⁷潲獴⁣a獥⁩猠慳獵 e搮†周d⁨eat⁰楰敳 e琠愠㈮㔠
晡c瑯爠潦⁳a晥ty⁰e爠rpqp‱㜰〮㝂⁡湤nfpp⁁摤 湤畭
瑨ny a牥⁳e汦⁩l灯獥搠dga楮獴⁡‴⸰ c体⁦潲⁥x瑥t楯爠ix灯獵牥⤮†
䡥a瑥t ca楬畲e⁔潬 ra
湣e⁩猠摩獣畳獥搠畮摥爠䍡畳u‸


ㄮ㜮ㄠ1噍㨠⁔桥牭r氠䅮aly獩s映 呃q⁡湤⁔呃p⁁ c畭畬a瑯爠tea琠t楰攠i灥牡瑩潮猠o湣汵摩ng⁦ i汵牥⁣潮摩o楯湳i


1.7.2 SVM: Manufacturer’s certification on filling the TTCS Accumulator Heat Pipe


ㄮ㜮ㄠ1呁呕p㨠⁏灥n


ㄮ㜮㈠1q
䅔啓r†佰 n


ㄮ㠠1低呒qi㨠⁈W䅔 mfm䕓⸠⁔桥⁁䵓
-
〲⁵瑩汩ze猠s畭扥 映獥a汥搠桥a琠灩灥猠瑨牯sg桯畴⁩瑳⁔tp⁤ 獩s渮†周n獥⁨ea琠
灩灥猠p牥映ax楡氠i牯re⁤e獩s測⁣o湳瑲畣瑥搠潦†䅬‶〶㌮†周A⁍䑐映瑨 ⁨ea琠灩灥猠sre⁢ 獥搠潮⁴de⁷潲獴⁣sse⁴桥 浡氠
灲潦i
汥⁷桩he
-
潲扩琠景r⁴桥⁡浭潮楡⁦楬汥搠瑵扥猬⁣潮獩摥物rg⁴桥⁷潲獴⁣a獥⁨ ate爠ra楬畲u献†周楳 䵄倠景M⁴桥⁗a步⁡湤n
oa洠ma摩慴潲⁈ a琠t楰敳⁡牥
362.5 psi (25 bar)

and is inclusive of all heat pipes although not all heat pipes could possibly
see this par
ticular temperature and hence this pressure. The USS
-
02 heat pipes have an MDP of
20.3 bar (294.4 psi)
. The
CAB heat pipes have an MDP of
20.0 bar (290 psi)
. The heat pipes meet a 4.0 factor of safety satisfying the required 2.5


A.5
-
7

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

factor of safety per NS
TS 1700.7B and ISS Addendum. Heater Failure Tolerance is discussed under Cause 8.


1.8.1 SVM: Thermal Analysis of AMS
-
02 for worst case thermal condition of heat pipes


1.8.2 SVM: Manufacturer’s Certification of heat pipes for proper filling.


ㄮ㠮ㄠ1呁
呕p㨠⁏灥n


ㄮ㠮㈠1呁呕p㨠⁏灥渠

ㄮ㤠1低呒qi㨠⁃AB 䱏佐⁈䕁吠qfm䔮†周e C䅂 i潯瀠䡥a琠t楰攠楳⁡⁣潮瑩湵潵猠潰n渠汯潰⁣潭灯獥搠潦⁡渠
evaporator, reservoir, vapor, liquid and condenser tubes. The entire loop’s MDP is established based on the worst case

e牭r氠灲潦楬e映瑨e⁳ys瑥洠t湤⁴桥⁦楬氠煵慮瑩ly 潦⁡浭潮楡⸠⁔桩猠h䑐⁨慳⁢ae渠n獴a扬b獨s搠瑯⁢攠
294.4 psi (20.3 bar)
.
The components and lines of the CAB Loop Heat Pipe will meet the factors of safety required by NSTS 1700.7B and the
ISS Addendum.


1.9
.1 SVM: Thermal Analysis of AMS
-
02 for worst case thermal condition of CAB Loop Heat Pipe


1.9.2 SVM: Manufacturer’s Certification of CAB Loop Heat Pipe for proper filling.


ㄮ㤮ㄠ1呁呕p㨠⁏灥n


ㄮ㤮㈠1呁呕p㨠⁏灥n


ㄮ㄰⁃低呒qi㨠⁃ov佃住i䕒bi住m⁈ A吠
mfm䔯w䕎fq䠠剁efA呏op⸠⁔桥牥⁡牥⁦潵爠䍲yoc潯汥o i潯瀠䡥a琠
m楰敳⁳y獴敭猬⁩湴敲湡汬y eac栠潦⁴he⁦潵 潯瀠桥a琠灩灥猠桡癥⁰ ra汬e氬⁲ld畮摡湴⁨敡琠t潯灳⸠⁔桥⁨ea琠t猠瑡步渠晲潭⁴桥
Cry潣潯oe牳⁴桲潵g栠hva灯牡瑯牳
Afpf″㈱⤠F潮oec瑥搠瑯⁴桥⁃ty潣潯oe爠r
潬oa爮†r桥⁨ a琠灩灥⁡琠t桥畮捴楯渠潦⁴桥
e癡灯牡瑯爠rre⁳瑡楮 e獳⁳see氠⡁fpf″㈱ ⁴畢 ngⰠ瑨楳⁴畢楮u⁧oe猠瑯⁴桥⁢業e瑡汬tc⁴牡湳楴楯渠i潩湴⁴漠c潮湥c琠t漠瑨攠oi‶
㘳S
瑵扩湧
㑭洠佄Ⱐ㍭, 䥄⤠F桩捨⁩猠獯h摥牥搠瑯⁴桥⁵湤 牳楤r映瑨f⁺e湩n栠牡摩慴潲⁰
ane氮†周l⁍䑐映瑨a⁃ryoc潯汥o
i潯瀠oea琠t楰攠iy獴敭⁩猠s獴慢汩s桥搠扡獥搠潮⁰dopy汥leⁱ畡湴nty ⡷潲歩o朠晬畩搩⁡湤⁴桥nx業畭u瑥浰t牡瑵te⁴桡琠
sy獴敭⁣a渠n瑴a楮⸠⁔桩猠sa猠扥e渠n獴a扬b獨s搠d潮獩摥物湧⁴ e⁴桥 浡氠汯慤m晲潭⁴桥⁃ry潣潯oe爬⁨ra瑥牳
晡楬
e搠潮da琠㘸⸵t
t⤠F湤⁴桥⁥湶楲潮浥n琮†周 ⁍䑐⁨ 猠扥e渠a獳s獳敤⁴漠扥
261 psi (18 bar)

with a maximum propylene fill of 42 grams.
A bypass valve has been implemented in the Loop to allow for bypass of the radiators at low temperatures for performance.
This valve does not create any entrapped volume, only directs flow although its operation is based on the thermal response
of a sealed argon environment within the bypass valves. All components and lines of the Cryocooler Loop Heat Pipe meet
the appropriat
e factors of safety of NSTS 1700.7B and ISS Addendum.


1.10.1 SVM: Thermal Analysis of Cryocooler Loop Heat Pipe to establish MDP.



A.5
-
8

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


1.10.2 SVM: Cryocooler Loop Heat Pipe Filling Certification from Manufacturer


1.10.1 STATUS: Open


1.10.2 STATUS: Ope
n

1.11 CONTROL: CRYOCOOLERS. The Cryocooler is a Sterling cycle heat pump that consists of the single component
that interfaces thermally with the Cryomagnet system and the Cryocooler Loop Heat Pipe, but does not interconnect with
those pressure system
s. The linear piston (magnetically operated) creates a maximum operating pressure of 20 bar (294
psi). The MDP has been established not by operations but while inert at the worst case design temperature of 80°C (176
°F), this value is
20.3 bar
. This non
-
operational condition is a worst case thermal condition compared to full operations
with the heater failed on meant to encompass all possible thermal loads. The Cryocooler will meet the factors of safety
required by NSTS 1700.7B for pressurized component
s.


1.11.1 SVM: Thermal Analysis of AMS
-
02 for worst case thermal environment


1.11.2 SVM: Manufacturer’s Filling Certification for the Cryocooler


ㄮㄱ⸱⁓呁呕p㨠⁏灥n


ㄮㄱ⸲⁓呁呕p㨠⁏灥n


ㄮㄲ⁃低呒qi㨠⁓e湳楴楶攠i潭灯湥湴猠潮⁴桥⁃ryosy獴敭⁰sec汵l
e⁴敳瑩 g⁴漠 桥潭 湡氠ㄮ㔠larg楮癥i⁍䑐⸠⁔桥
Weka heliomatic valve’s activation bellows will distort at pressure 1.5 x MDP making their continued operations in
牥g畬慴楮u cryo来湩挠n潯o楮i⁦汯 猠畮s楫敬y⸠⁆o爠r桥獥 浩瑥搠t潭灯湥湴猬⁡⁰牯 映瑥獴⁴
漠ㄮㄠo⁍䑐⁷楬 ⁢ ⁡cc潭灬楳桥搮


ㄮㄲ⸱⁓噍㨠⁒e癩敷映 䵓
-
〲⁃ry潳y獴敭⁐牥獳畲s⁓y獴敭⁐牯潦⁔e獴⁐污測


ㄮㄲ⸱⁓呁呕p㨠⁃汯獥l⸠⁐牯潦⁔ 獴s湧映f䵓
-
〲⁐牥獳畲s⁓y獴e洠呥獴sm污測⁓灡le⁃ry潭og湥瑩c猬sf獳略‰ㄬs
䑡瑥搠䙥扲畡ry‱㔬′〰


ㄮㄳ⁃低呒qiW

ta牭⁈ 汩畭⁐楬潴⁖o汶敳⁣潵汤⁥o灥物r湣e⁡ 牥癥牳r⁰牥獳畲s ⡳異灬楥搠潵瑳E摥⁴桥⁶ 汶攠lela瑩癥⁴漠 桥
楮ie牮r氠灲l獳畲e⤠潦‴⁢a爮†r桩猠h猠s獴慢汩s桥搠楮⁡⁢汯d步搠d噖嘠s琠㄰⁢tr
橵獴⁰物潲⁴漠扵 獴⁤s獫⁲s汥l獥⤠F湤⁡渠楮ner
湡氠
牥g畬慴u搠灲e獳畲s
映㘠fa爮†r桥獥⁰楬潴⁶慬癥猬se湣汯獥搠ly⁴桥⁐噖 ⁨ 癥⁡⁣a汣畬l瑥搠瑯⁨tve⁡ 浩湩n畭‱⸷⁦uc瑯爠瑯t
yie汤⁡条楮獴⁴桩猠灲s獳畲e⁤楦 ere湴na氮†乓呓‱㜰〮㝂⁡湤⁴桥nfpp⁡摤e湤畭⁲u煵楲q猠s c体映ㄮl⁦潲⁳ c潮oary⁶潬畭e猠
⡴桥⁳ 湳楴楶攠汯ia瑩潮⁩猠瑨攠桯t
獩湧映瑨e⁰楬潴⁶慬癥猠浡摥映 cety氮⤠⁁t⁴桥⁴桥牭r氠捯湤楴l潮猠獵晦楣楥湴⁴漠oc桩敶e⁴桥
㄰⁢1爠r潮摩o楯測⁴桥⁁ ety氠桡猠灡獳e搠潵琠潦⁩d猠杬a獳⁴牡湳楴楯渠灨慳i⁡湤n晲ac瑵te⁩猠湯琠t瑳潭楮慬⁦a楬畲u潲 ⸠⁁.y
摥扲楳⁦牯洠瑨r猠s癥湴⁷n畬搠扥⁣潮o
a楮敤⁩渠瑨攠i噖嘠s湤⁷潵汤潴⁰牯na条瑥⁡⁨aza牤⁴漠瑨攠r牥s獵牥⁳y獴e洮†⡓ee


A.5
-
9

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

Control 7.3)


1.13.1 SVM: Fracture Analysis of Pilot Valves


1.13.1 STATUS: CLOSED. Scientific Magnetics Memo 2904 from Mark Gallilee, “Phase 2 Safety:Fracture
C潮瑲潬⁦潲
m楬潴⁖o汶攠楮⁐楬潴⁖o汶攠lac畵洠ue獳敬
m噖嘩Ⱐ,a瑥搠〲tㄴ⼲〰㜮

㈮⁃䅕p䔺†f浰牯灥爠ra瑥t楡氠獥汥c瑩潮猠o湤⁰noce獳s湧.


㈮ㄠO低呒qi㨠⁁汬⁁ p
-
〲⁰Me獳畲s⁳y獴敭a瑥t楡汳⁷楬氠扥⁳l汥l瑥搠瑯t浥m琠t桥⁲ 煵楲e浥湴猠潦m䵓cC
-
p呄
-
㌰㈹⁦潲o
獴牥獳⁣潲牯獩r
渠n牡c歩kg.†䵡瑥t楡汳⁷楴栠桩h栠牥獩獴慮se⁴漠獴牥獳⁣s牲潳楯o⁣牡c歩kg⁷楬 ⁢ ⁵ e搠d桥牥⁰潳獩扬攮†b桥牥
浡瑥物r汳⁷楴栠浯摥ha瑥⁴漠汯眠oe獩s瑡湣e⁴漠獴牥獳sc潲o潳楯o⁣rac歩kg⁡牥⁵ 楬楺e搬⁍啁猠桡癥⁢ e渠灲p灡re搠d湤⁷楬n⁢
獵扭楴瑥搠t潲⁡灰牯pa氮


O
⸱⸱⁓噍㨠⁓瑲t獳⁃潲o潳楯o⁅癡汵慴楯渠潦l瑥tia汳楳i⁡湤⁤na睩湧献


㈮ㄮ㈠O噍㨠⁅s㐯䵡瑥物r氠慮搠偲潣e獳e猠sra湣栠Ce牴楦楣a瑩潮⁦o爠浡瑥物rl猠畳慧s.


㈮ㄮㄠO呁呕p㨠⁏灥n


㈮ㄮ㈠O呁呕p㨠⁏灥n


㈮㈠O低呒qi㨠⁗潲歩og⁦汵楤猯ga獳敳sa牥⁩湥牴⁡湤⁷楬n⁢ 

-
牥ac瑩癥Ⱐ睩瑨⁴桥⁥xce灴p潮o⁡浭潮楡⁡湤⁰n潰yle湥⸠.
䅬氠睯A歩湧⁦汵楤猠 牥⁣o浰慴楢me⁷楴栠慬氠 a瑥t楡汳映l潮獴牵r瑩潮⸠⁍o瑥t楡汳映i潮獴牵r瑩潮⁡re⁰ 楮捩灡汬y⁳瑡楮 e獳⁳s
ee氠
a湤⁡汵l楮畭⸠⁔桥⁔剄
睯w歩kg⁦汵楤猠捡牢潮⁤楯 楤攠i湤nxe湯温na湤

ta牭⁨r汩畭⁧a猠扯s瑬e
䅲摥⤠a牥⁳瑡楮 e獳⁳see氠
汩湥搬⁣潭灯o楴e癥牷ra灰p搠瑡湫献†周d⁔剄⁡汳漠桡猠s潭灯o楴e
-
睯畮搠we湳潲猠瑨牯ng栠睨楣栠gas⁩猠灵浰敤⁡琠t潷o
灲p獳畲s.


㈮㈮ㄠO噍㨠⁍慴s物r汳⁃潭灡瑩扩汩ty⁁獳 獳se湴


㈮㈮㈠O噍㨠⁁灰s潶o氠潦慴 物r氠
畳u⁡湤⁍n䅳Aby⁊pC⁅ 㐯䵡瑥物r汳⁡湤⁐牯le獳敳sB牡nch


㈮㈮ㄠO呁呕p㨠⁏灥n


㈮㈮㈠O呁呕p㨠⁏灥n


㈮㌠O低呒qip㨠⁃汥l湩湧慴 物r汳⁷楬氠扥⁣潭灡瑩扬攠b楴栠睯h歩湧 晬畩搠f湤慴n物r汳映c潮獴r畣瑩潮o


㈮㌮ㄠO噍㨠⁍慴s物r汳⁃潭灡瑩扩汩ty⁁獳 獳se湴noe癩敷


㈮㌮ㄠO呁呕p㨠⁏灥n



A.5
-
10

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

2.4 CONTROL: Metallic materials that touch in the pressure system will be assessed for potential galvanic reactions that
could degrade welds and other joints.


2.4.1 SVM: Material Compatibility Assessment


2.4.2 SVM: Approval o
f material use and MUAs by JSC ES4/Materials and Processes Branch


2.4.1 STATUS: Open


2.4.2 STATUS: Open


3. CAUSE: Improper workmanship and/or assembly.


3.1 CONTROL: Manufacturing and Assembly AMS
-
02 pressurized systems will be done in accordance
with approved
drawings and procedures. Manufacturing and Assembly processes have certification processes in place to document
compliance with approved drawings and procedures.


3.1.1 SVM: All discrepancies and deviations from approved drawings/procedures

are reconciled through a MRB
process to assure compliance with requirements.


3.1.1 STATUS: Open


3.2 CONTROL: All welds will be compliant to the standards of the AMS
-
02 weld policy (compliant with JSC standards for
welding).


3.2.1 SVM: Review of wel
d plans, processes and certification of welds of the AMS
-
02 systems.

ES4 approval.


3.2.2 SVM: Proof Pressure Testing, Dye Penetrant inspection, Radiological (or ultrasound) inspection of welds.



3.2.1 STATUS: Open


3.2.2 STATUS: Open


4. CAUSE: Pro
pagation of crack
-
like defects.


4.1 CONTROL: The AMS
-
02 pressurized systems uses JSC 25863A to implement the fracture control requirements of
NASA
-
STD
-
5003 and SSP 30558C.


4.1.1 SVM: Compliance with the fracture control requirements of NASA
-
STD
-
5003 a
nd SSP
-
30558C will be
verified by approval of fracture control summary by JSC ES4/Materials and Processes Branch.


4.1.1 STATUS: Open



A.5
-
11

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

5. CAUSE: Liquefaction/freezing/thawing in lines


5.1 CONTROL: TRD GAS SUPPLY. The TRD Gas Supply system (CO2 & Xe
non) will not freeze under the worst case
thermal conditions that the system will experience on
-
orbit. The high pressure TRD system is mounted on a common
thermal plate to keep the entire high pressure side thermally uniform. The lowest temperature that
has been assessed for the
TRD system, using an indefinite period at the worst possible cold attitude with no other attitudes occurring (extremely
conservative), to be
-
50°C (
-
43°C at 200 hours of exposure with asymptotic approach to approximately
-
50°C).
Even with
TRD heaters failed on for the tank only (more than two failures), driving the pressure up, and heaters off for the lines and
components, the pressure
-
temperature curve for CO
2

will not transition to solid phase. Xenon’s physical properties make i

浯牥⁤楦 楣畬琠i漠晲eeze⁴桡渠䍏
2
. The low pressure side does not have a constant supply of carbon dioxide sufficient to fill
a potentially frozen segment with CO
2
. Liquid CO
2

is prevented from going from the CO
2

tank to the lines by a dual heater
syst
em (Side A and B) that will keep the CO
2

gaseous before entering the high pressure lines. If power is lost for the
heaters, power is also lost for operating the valves (normally close) that would allow for the introduction of liquid CO
2

into
potentially i
solated segments. Heater operations on these isolated segments are controlled in a 2 fault tolerant manner,
reference Control 8.1.


5.1.1 SVM: AMS
-
02 Thermal Assessment


5.1.2 SVM: TRD Thermal Assessment for Freezing of CO
2

and Xenon


5.1.3 SVM: Review

of TRD Heater Design for
fault tolerant design.


5.1.1 STATUS: Open


5.1.2 STATUS: Open


5.1.3 STATUS: Open


5.2 CONTROL: WARM HELIUM GAS SUPPLY. The Cryomagnet Warm Helium Supply will utilize the same quality of
helium as used to fill the Cr
yomagnet for superfluid helium, minimizing the potential for contaminants that could freeze
solid, plug lines and create a pressure build up. In order to achieve solid (frozen) helium a pressure in excess of 25
atmospheres is required to compress the cry
ogenic helium, a pressure the AMS
-
02 can not achieve.


5.2.1 SVM: Loading procedures to assure purity of helium loaded into Warm Helium Gas Supply.


5.2.2 SVM: Analysis/Review of Helium Freezing Potential


5.2.1 STATUS: Open



A.5
-
12

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


5.2.2 STATUS: Closed. Mem
o ESCG
-
4390
-
06
-
SP
-
MEMO
-
0002, “Freezing of Helium withing AMS
-
02” dated 8
䑥ce浢e爠㈰r㔬⁦牯洠r䵓
-
〲⁃桩敦⁅湧楮ie爠r桲楳⁔畴h.

㔮㌠R低呒qi㨠⁔呃p 呗传偈䅓䔠i住m⸠⁔桥⁔ ac步爠rhe牭r氠l潮o牯氠ry獴敭
s呃q⤠F楬氠l牥eze⁵湤 爠r潳 映
灯睥爠r牯洠瑨攠fpp⁵
摥爠r潲獴⁣ase⁴桥 浡氠m潮摩d楯湳⁡琠i桥⁣潮摥湳n牳r潣 瑥搠潮⁴桥⁔ ac步爠ra摩慴潲献†周s⁔呃
c潭灯湥湴猠獵扪ec琠t漠晲eez楮i⁨ ve⁨ 搠瑨敩d⁍䑐猠敳瑡扬楳桥搠扡獥搠潮⁡⁦ eez楮i⁥ve湴⁡湤⁳畢獥煵q湴⁨敡瑩ng⽴桡睩wg
瑨慴⁲e獵汴猠楮⁡⁴牡灰p搠d潬畭e映 ar
扯渠摩潸楤攮†i桥⁣潮摥湳e爠瑵扥猠潦s瑨攠t呃q⁣潵汤⁦oeeze⁡湤⁴桡n⁡湤⁴桥n
牥獵汴楮i⁍䑐⁨ 猠扥e渠e獴慢汩s桥搠瑯⁢攠㌰〹⁢d爠r㐳㘴ㄮ㤠灳Q⤮†印散楡氠灲潯p⁴敳瑩湧 a湤⁎n䔠b楬氠扥⁣潮摵o瑥搠潮⁴桥
獡浰me潴映瑨 ⁴畢 湧 畳u搠楮⁴桥⁣潮獴牵r瑩潮o潦⁴桥⁣o
湤n湳e牳⁴漠r汬o眠w潲⁡ 牥摵d瑩潮⁩渠o桥⁡cce灴慢pe⁦ c瑯爠潦⁳ 晥ty
⡰E爠rp㐩⸠⁕獩sg⁳瑡湤 r搠瑥d桮楱略猠潦⁡naly獩sⰠ瑨攠瑵扩湧⁩湤 ca瑥猠a⁢畲獴⁰牯潦⁦ c瑯t映獡fety映㈮ㄴⰠ扵琠,映瑨f
material’s strain hardening is taken into account this value ris
e猠瑯‴⸶⸠⁔桥牭r氠䅮lly獩s⁩湤 ca瑥猠t桡琠慬氠潴桥爠r呃q
sy獴敭⁣潭灯湥湴猠o湤楮敳⁡牥潴⁳畢橥ute搠瑯⁦deez楮g⁰潴敮瑩慬


㔮㌮ㄠR噍㨠⁔s獴s湧映 a牢潮r摩潸楤攠i牥ez楮i⽨ea瑩湧 cyc汥l


㔮㌮㈠R噍㨠⁔桥牭r氠䅮aly獩s


㔮㌮㌠R噍㨠⁍䑐⁁湡ly獩s⁢ 獥搠潮d
睯w獴⁣sse⁴桥 浡氠灲潦楬o猠a湤⁴睯⁦a楬畲u猠⡩映s灰汩ca扬攩


㔮㌮㐠R噍㨠⁒e癩敷⁡湤⁡灰牯pa氠潦⁴l獴sng⁰污渠 潲⁦牥ez楮i⽴桡睩wg 湥s⁢y⁊pC⽅L㐮


㔮㌮㔠R噍㨠⁔s獴s湧⽡湡lys楳映i汩g桴⁨慲d睡re⁰ 爠瑥獴s湧⁰污渠潦‵⸳⸴


㔮㌮㘠R噍㨠⁔桥牭r氠䅮aly獩s
映f呃q⁓y獴敭⁴漠o獴慢汩s栠晲eez楮g⽮潮
-
f牥ez楮i e汥浥湴献


㔮㌮ㄠR呁呕p㨠⁏灥n


㔮㌮㈠R呁呕p㨠⁏灥n


㔮㌮㌠R呁呕p㨠⁏灥n


㔮㌮㐠R呁呕p㨠⁏灥n


㔮㌮㔠R呁呕p㨠⁏灥n


㔮㌮㘠R呁呕p㨠⁃汯獥搮l⁅ Cd
-
㐴㜰
-

-
呅qk
-
䑏a
-
〰㌲Ⱐ≁汰桡⁍M杮g瑩c⁓灥c瑲潭t瑥爠r䅍p
-
〲⤠M
牡cke爠
周q牭r氠l潮瑲潬⁓y獴敭s⡔呃q⤠䍯汤⁅湶F牯湭r湴⁔n浰敲a瑵te猩Ⱐsate搠䵡牣栠㈲Ⱐ㈰〶Ⱐh牯洠䕓r䜯䔮di⸠
奡g潤o⁩湤 cate猠湯s桥爠ry獴敭se汥浥湴猠睩汬⁦ eeze.


㔮㐠R低呒qi㨠⁔呃p 䅃A啍ri䅔佒⁈䕁吠qfm䔮†⁔桥⁔呃 ⁁ c畭畬a瑯爠tea琠t楰攠楳⁦楬ie搠睩瑨″d
杲g浳映
a浭潮楡⁡湤⁷楬n潴⁲ ac栠瑥浰h牡瑵牥猠瑨慴⁣a渠晲eeze⁴桥 a浭潮楡⸠†o佔䔺⁅癥渠楦⁴桥⁡浭潮楡⁷e牥 capa扬攠潦


A.5
-
13

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

freezing, the straight pipe construction with interior mesh and fill quantity of the heat pipe would preclude an accumulation

of a sol
id block of ammonia.


5.4.1 SVM: Thermal Analysis


5.4.1 STATUS: Open

5.5 CONTROL: HEAT PIPES. The design of the ammonia heat pipes allows for the ammonia to condense and freeze
without damage to the heat pipes. The low quantity of ammonia, interior

shape of heat pipes and the melting/vaporization
of the ammonia cannot create trapped volumes that can generate elevated pressures.


5.5.1 SVM: Review of design


5.5.2 SVM: Vendor Certification/Testing


5.5.1 STATUS: Open


5.5.2 STATUS: Open


5.6 CON
TROL:
< OHP Removed from AMS
-
02, Control numb
er retained as deleted entry to maintain accountability>
.


5.6.1 SVM:
<OHP Removed from AMS
-
02, SVM number retained as deleted entry to maintain accountability>


5.6.2 SVM:
<OHP Removed from AMS
-
02, SVM number retained as deleted entry to

maintain accountability>


5.6.3 SVM:
<OHP Removed from AMS
-
02, SVM number retained as deleted entry to maintain accountability>


5.6.1 STATUS
:
<OHP Removed from AMS
-
02, SVM number retained as deleted entry to maintain accountability>


5.6.2 STATUS:
<OHP Removed from AMS
-
02, SVM number retained as deleted entry to maintain accountability>


5.6.3 STATUS:
<OHP Removed fro
m AMS
-
02, SVM number retained as deleted entry to maintain accountability>


5.7 CONTROL: CAB LOOP HEAT PIPE. The Cryogenic Avionics Box Loop Heat Pipe was established to have a small
segment that had the potential to freeze ammonia with the loss of

AMS
-
02 power. Thermal MLI insulation has been
applied to these segments to allow a greater than 10°C margin over the freezing temperature of ammonia (
-
78°C).


5.7.1 SVM: Thermal Analysis of CAB Loop Heat Pipe


5.7.2 SVM: Review of Design


5.7.3 SVM: I
nspection of as built hardware.


5.7.1 STATUS: Closed. AMS
-
02
-
TN
-
CGS
-
010. 7/03/2005



A.5
-
14

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


5.7.2 STATUS: Open


5.7.3 STATUS: Open

5.8 CONTROL: Cryocooler Loop Heat Pipe/Zenith Radiator. Propylene freezes at a temperature of
-
185.25°C (
-
301.4°F),
this te
mperature is substantially colder than the worst case thermal environment that the Cryocooler Loop Heat Pipe/Zenith
Radiator can achieve.


5.8.1 SVM: Thermal Analysis showing worst case cold temperature for Cryocooler Loop Heat Pipe/Zenith Radiator


5.8.2

SVM: Filling Procedure/Certification of Fill


5.8.1 STATUS: Open


5.8.2 STATUS: Open


5.9 CONTROL: Cryocoolers. The working fluid for the Cryocoolers is 0.72 grams of helium, and the Cryocooler is
incapable of achieving temperatures (77 K, temperat
ures must approach <2 K to freeze) and pressures needed (MDP 20 bar,
25+ bar needed to freeze helium) to freeze helium. In addition as the system does not have lines and fittings of a tradition
al
sort where freeze/thaw is considered to be a hazard, the cr
yocoolers have no risk even if the helium could freeze.


5.9.1 SVM: Analysis/Review of Helium Freezing Potential


5.9.2 SVM: Manufacturer’s certification of fill.


㔮㤮ㄠR呁呕p㨠W汯獥搮†䵥浯⁅mCd
-
㐳㤰
-

-

-
䵅䵏
-
0002, “Freezing of Helium withing AMS
-
02”

摡瑥搠㠠
䑥ce浢e爠㈰r㔬⁦牯洠r䵓
-
〲⁃桩敦⁅湧楮ie爠r桲楳⁔畴h.


㔮㤮㈠R呁呕p㨠⁏灥n


㘮⁃䅕p䔺†f浰牯灥爠r楬汩湧⽯癥L 晩汬f湧映癥獳e氯sy獴敭s


㘮ㄠS低呒qi㨠⁁汬⁰ e獳畲楺e搠dy獴敭猠睩s氠扥⁦i汬e搠睩瑨⁨dg栠灵h楴y 条獥猠s湤⁡灰牯p物a瑥ⁱ畡湴n瑩e献


㘮ㄮ
ㄠ1噍㨠⁒e癩敷映 o䐠a牯畮r⁆楬汩湧⁐牯ce摵牥献


㘮ㄮ㈠S噍㨠⁒e癩敷映 a牭⁈e汩畭⁇u猠s異灬u c楬汩ng⁐牯re摵牥献


㘮ㄮ㌠S噍㨠⁒e癩敷映 牡c步爠r桥牭r氠l潮瑲潬⁓y獴敭⁆楬汩湧⁐牯ce摵de献


6.1.4 SVM: Manufacturers’ certifications on filling of Ammonia He
a琠t楰敳⸠


㘮ㄮ㔠S噍㨠s
<佈m⁒e浯癥搠m牯洠r䵓
-
〲ⰠMs䴠湵M扥爠re瑡楮t搠a猠摥le瑥搠t湴ny⁴漠 a楮ia楮⁡cc潵湴慢楬oty>



A.5
-
15

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


6.1.6 SVM: Manufacturer’s certification on filling of CAB Loop Heat Pipe


㘮ㄮ㜠S噍㨠

Manufacturer’s certification on filling Cryocooler Loop Heat Pipe/Zenith Radiators


6.1.8 SVM: Manufacturer’s certification on filling Cryocooler.


㘮ㄮㄠS呁呕p㨠⁏灥n


㘮ㄮ㈠S呁呕p㨠⁏灥n


㘮ㄮ㌠S呁呕p㨠⁏灥n


㘮ㄮ㐠S呁呕p㨠⁏灥n


㘮ㄮ㔠S呁呕p㨠W
<佈m⁒e
浯癥搠m牯洠r䵓
-
〲M⁓噍畭扥爠re瑡楮t搠a猠摥汥瑥搠d湴ny⁴漠 a楮iai渠ncc潵湴慢楬oty>


㘮ㄮ㘠S呁呕p㨠⁏灥n


㘮ㄮ㜠S呁呕p㨠⁏灥n


㘮ㄮ㠠S呁呕p㨠⁏灥n

㜮⁃䅕p䔺†f湣o牲ec琠捯浭a湤楮n映癡汶e献


㜮ㄠT低呒qi㨠⁔W䐠a奓呅䴮†周v⁔剄⁳y獴s洠桡猠m⁰潴敮瑩慬
景f⁥湴ra灰楮p 条猠s湤n煵楤⁢整睥e渠n潮瑲潬o楮g
癡汶敳⸠⁎潭o湡汬y 牥摵d摡湴楮攠桥a瑥t猠潮⁴he 条猠晥e搠汩湥猠晲潭⁴桥⁴慮歳⁷楬氠灲l癥湴楱畩搠晲潭⁢敩湧⁰ e獥湴⁩渠瑨攠
汩湥猠s湤⁴桵n⁴慫 渠楮n漠瑨攠o湴牡灰p搠癯汵de⸠.eea瑥t e牡瑩潮猠oay⁩湤 癩摵慬
ly⁦ 楬Ⱐ扵琠愠瑯瑡氠,潷o爠汯獳⁦潲⁴桥
sy獴敭⁷潵汤⁰sec汵摥灥湩湧⁴桥⁶a汶敳⁡猠瑨攠癡汶敳⁡re潲浡汬y⁣汯獥搮†d潭灵oe爠潰r牡瑩潮猠睩汬潴⁡汬潷⁴桥⁶ 汶敳l
瑯⁣ycle⁩映瑨 ⁴敭灥牡瑵te映瑨  湥⁩猠湯琠慴⁡ 癥氠l漠灲o癥湴⁴桥⁩湴牯摵c瑩潮o 煵
楤⁩湴漠n桥 湥献†䄠灲e獳畲e⁲ 汩e映
摥癩捥⁳ 琠t漠汥o欠kac欠獴a牴楮r a琠愠㈵⁰獩⁤楦te牥n瑩a氠慮搠l畬u⁦汯 ⁣apa扩b楴y⁡琠愠㄰〠灳椠摩晦ere湴na氠l猠灲潶楤s搠楮⁴
桥⁦楲獴s
e湴牡灰p搠癯汵de⁴漠慬汯眠wny 煵楤⁩渠瑨攠汩湥⁴漠扥⁲ 汩e癥搠dac欠楮k漠瑨e⁴慮欠
睨楣栠ca渠湯琠扥na琠潲ta爠䵄m⁴漠桡癥
汩煵楤⁰牥獥湴⁴漠oa畳u⁴ 楳⁣潮摩i楯温⸠i
NOTE: In addition to these three levels of control, the TRD valves (Marotta MV
197) will relieve under a back pressure differential of 1535 psid (Manufactuer’s Data). Assumi
ng that the highest pressure
upstream is the MDP of the system (which can not be the case and have liquid to ingest into the lines to cause it to occur)
the maximum pressure of this segment considering two failures would be 4535 psia. In this extreme unre
alistic case of
compounded failures, after
three

failures, the factor of safety of the lines, and fittings are 2.8 not the required 4.0 (after two
failures).


7.1.1 SVM: Review of TRD Design


7.1.2 SVM: Inspection of TRD Flight hardware



A.5
-
16

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


7.1.3 SVM: Func
tional testing of thermal interlock of valve operations


7.1.4 SVM: Testing of Pressure Relief Valves


7.1.5 SVM: Thermal Analysis


7.1.1 STATUS: Open


7.1.2 STATUS: Open


7.1.3 STATUS: Open


7.1.4 STATUS: Open


7.1.5 STATUS: Open

7.2 CONTROL: TT
CS TWO PHASE LOOP.
<VALVES HAVE BEEN DELETED FROM DESIGN>


7.2.1 SVM:
<DELETE
D>


7.2.1 STATUS: Open


7.3 CONTROL: WARM HELIUM GAS SUPPLY. Valve operations within the Warm Helium Gas Supply do not result in
entrapped volumes that can exceed the established MDPs for the systems. Normal Valve operations of the Weka valves
will re
lease helium within the Pilot Valve Vacuum Vessel as part of normal operation. Nominally this volume is vented
through valves DV 20 A
-
D, and in the event these redundant valve systems fail closed or are commanded closed burst disks
(in parallel) provide a

third level of control to preclude pressures exceeding 10 bar (145 psi). In the failure case prior to
burst disk operation, the exterior pressurization of the housings of the valves maintains a 1.7 margin of safety over the
damage threshold. The possibl
e damage to the housing of the pilot valve is not considered a pressure system failure in the
usual sense, but a component damage event, secondary pressurized volumes. This design meets the design factor of safety
of 1.5 per NSTS 1700.7B and ISS Addendum
by analysis. (See Control 1.13)


7.3.1 SVM: Design margin analysis on Pilot Valve damage from externally supplied pressure.


7.3.1 STATUS: Closed. Scientific Magnetics Memorandum 2904, Phase 2 Safety: Fracture Control for pilot
Valves in Pilot Valve Vac
uum Vessel (PVVV), from Mark Gallilee, dated February 14, 2007


8. CAUSE: Heater Failure


8.1 CONTROL: TRD GAS SUPPLY. The TRD utilizes heaters to allow for pressure sensing within the TRD tanks
(unable to measure liquid state). These heaters are cap
able of causing a condition where the MDP would be exceeded if the


A.5
-
17

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

heaters are failed on and the system is exposed to the worst case thermal environment. To preclude these heaters from
failing on, there are

four

thermostatic control devices controlling the operation of the heaters (
two
in return leg of heaters) in
addition to a computer control of the heater’s operations through heater power application and thermal feedback from
瑥浰t牡瑵te⁳ 湳潲献†
c
o畲⁡牥⁵ e搠瑯⁡獳畲e⁴ a琠t桥牥⁡牥漠灲潸業楴y 晡i汵牥猠⡯s⁨ a瑥t猩⁴sa琠睯畬搠ua步⁡⁴桥 浯獴a瑩c
c潮瑲潬e獳⁲s獰潮獩癥

as獵物湧⁴睯⁦a畬u⁴潬e牡湣e
⸠.
䕡c栠h映瑨f⁔剄⁴慮 猠畴楬ize猠瑷漠獴物湧猠潦⁨ea瑥t猬sa湤⁥ac栠獴物rg
桡猠楮摥灥湤n湴⁣潮n牯汳

c潭灵oe爠楳潴⁴a汬楥搠i猠s⁳ 晥ty⁣潮o牯氩⸠⁔桥r浡氠獥琠灯t湴猠景n⁴桥⁔o䐠ay獴敭⁡牥 a瑴ac桥搠瑯d
瑨t猠桡za牤⁲e灯牴⸠⁔剄p䝡猠s異灬y⁩獯 a瑥搠獥杭敮瑳⁦g潭⁴桥⁸e湯渠n湤⁣a牢潮r摩潸楤攠瑡湫猬⁵獥搠瑯⁣潮瑲潬⁴桥慳猠
潦⁧o猠楮s牯摵re搠楮d漠瑨o⁳y獴敭Ⱐ
a牥⁰牯瑥c瑥搠t牯洠m桥牭r氠數瑲t浥猠来湥牡瑥搠ty⁴桥⁶ 汶e⁢汯捫 桥a瑥t 牵湡way⁢y⁴桥
畳u映瑷漠晡畬u⁴潬era湣e⁴桥 浯獴a瑩c⁣潮瑲潬渠oac栠桥a瑥tⰠ睩瑨湥映瑨f⁴桥 浯獴a瑩c⁤ 癩ve猠楮⁴桥⁲ 瑵牮tg映瑨e

桥a瑥t c楲i畩u.


㠮ㄮㄠU噍㨠⁒e癩敷映 e獩
g渠


㠮ㄮ㈠U噍㨠⁔桥牭r氠䅮aly獩s
 獴a扬b獨楮s慸業畭⁴e浰敲a瑵牥⁳ 瑴楮杳⁡湤⁴桥n浡氠獥湳楴楶ity 潦⁴桥牭潳瑡瑩挠
c潮瑲潬潣a瑩潮献


㠮ㄮ㌠U噍㨠⁆畮u瑩潮o氠le獴s湧⽁Lce灴慮ce⁴敳瑩 g映瑨 牭潳瑡瑩挠獷楴c桥献


㠮ㄮ㐠U噍㨠sf湳灥c瑩潮o⁦汩 桴⁨h牤ra牥
景爠灲潰e爠楮獴慬污瑩潮映瑨敲浯m瑡瑩挠獷楴c桥献


㠮ㄮㄠU呁呕p㨠⁏灥n


㠮ㄮ㈠U呁呕p㨠⁏灥n


㠮ㄮ㌠U呁呕p㨠⁏灥n


㠮ㄮ㐠U呁呕p㨠⁏灥n

㠮㈠U低呒qi㨠⁗䅒䴠䡅䱉啍⁇䅓⁓啐ri央†v桥⁗a牭⁈e汩畭⁇a猠s異灬y⁤潥猠湯s⁵瑩汩ze⁡ny⁨ a瑥t猠湯爠楳⁴桥
睡牭⁨r汩畭⁧u
猠獵灰sy 瑡湫⁳畢橥c琠t漠oxce獳s癥⁨ a瑩湧⸠.


㠮㈮ㄠU噍㨠⁒e癩敷映 e獩sn


㠮㈮ㄠU呁呕p㨠⁏灥n


㠮㌠U低呒qi㨠⁔呃p 䡅䅔⁐fm䕓⸠⁔桥⁨ea瑥牳渠瑨r⁔呃 ⁲ 摩慴潲 桥a琠灩灥猠睩汬⁵瑩汩ze⁴ 漠晡畬u⁴潬e牡湣e⁩渠 桥
業灬敭p湴慴楯渠潦⁴桥牭潳瑡瑩挠r潮瑲潬o

瑨攠桥a瑥t献†呯⁰sec汵摥⁴桥獥⁨ea瑥t猠晲潭⁦a楬楮i測⁴桥牥⁡re⁴桲 e
瑨敲浯獴a瑩c⁣潮瑲潬⁤敶ice猠s潮瑲潬o楮g⁴桥灥rat楯渠潦⁴桥⁨ a瑥牳
潮o⁩渠牥瑵牮tg映 ea瑥牳r⁩渠 摤楴楯渠i漠o⁣潭灵oe

control of the heater’s operations through heater power

a灰汩ca瑩潮⁡湤⁴桥n浡氠mee摢dc欠晲潭⁴e浰e牡瑵te⁳ 湳潲献†nac栠


A.5
-
18

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

string of the heaters on the radiators is controlled in this two fault tolerance manner. The thermostatic threshold for the
heaters is set to
-
35ºC to
-
25 ºC.


8.3.1 SVM: Review of Design
for inclusion of heater thermostatic control and thermal threshold values


8.3.2 SVM: Thermal Analysis to Establish MDP


8.3.3 SVM: Functional testing/Acceptance Testing of thermostatic switches.


8.3.4 SVM: Inspection of flight hardware for proper inst
allation of thermostatic switches.


8.3.1 STATUS: Open


8.3.2 STATUS: Open


8.3.3 STATUS: Open


8.3.4 STATUS: Open

8.4 CONTROL: TTCS TWO PHASE LOOP. The Tracker Thermal Controls System utilizes heaters on the two phase loop
that are not controlled
in a two
-
fault tolerant means to prevent continuous heater operation. Thermal analysis of the two
phase loop indicates that only the temperature of the accumulator is capable of driving the pressure of the system to MDP.
Failed on heaters on the “loop” w
楬氠潮ly⁦ 牣e⁴ e 煵楤⁰桡獥映瑨 ⁷潲歩湧⁦汵楤⁴漠o渠n汴e牮r瑥t汯捡瑩潮⸠⁏湬y⁳楮g汥l
瑨敲浯獴a瑩c⁣潮瑲潬⁩猠業灬敭p湴敤⁡琠t桥獥 湥 桥a瑥t献†周e⁡cc畭畬a瑯爠桥a瑥爠ry獴e洠m浰me浥湴猠m⁴睯
-
晡畬u⁴潬e牡湴n
桥a瑥t c潮瑲潬⁣楲c畩ury a猠摥獣物扥搠楮⁃
潮瑲潬‸⸵⸠⁎潴攺†䍯湴牯汳‸⸵⁡湤‸⸱ㄠ摯n畭敮琠桥a瑥爠r汥浥湴猠n桡琠慲e⁣a灡扬攠
潦⁤o楶i湧⁴桥⁰牥獳畲e ⁴桥⁔呃q⁔ 漠o桡獥 io潰o


㠮㐮ㄠU噍㨠⁁湡ly獩s映呔䍓⁔ 漠o桡獥 i潯瀠o桥牭r氠牥獰潮se⁴漠晡楬ed⁨ a瑥t e牡瑩潮献


㠮㐮ㄠU呁呕p㨠⁏灥n


㠮㔠Ul
乔oli㨠⁔呃p 䅃A啍ri䅔佒⁈䕁吠qfm䔯呔䍓⁁䍃啍ri䅔佒⸠⁔桥⁔呃 ⁁cc畭畬a瑯爠楳⁨敡te搠dy
瑨攠t呃q⁡cc畭畬a瑯爠tea琠灩灥⁴桡琠楳⁳楴畡瑥搠摯t渠瑨攠ne湴n爠潦⁴桥 acc畭畬a瑯爠t湤⁰潳獩扬y⁢y⁐e汴楥i⁄ 癩捥猠
a瑴ac桥搠瑯⁴桥⁁cc畭畬a瑯爠獨t汬⸠⁔桥⁡cc畭畬a瑯爠t
ea琠灩灥⁥x瑥湤猠潵琠潦⁴桥⁡cc畭畬a瑯爠t湤⁩n⁦楴 e搠睩瑨⁨敡瑥t猠s湤n
瑨敲浯獴a瑩c⁳睩瑣桥献†s桥獥⁨ ate牳⽐e汴楥i⁤ 癩ve猠睩汬⁢ ⁣潮瑲潬oe搠dy⁴桥牭潳瑡瑩挠r潮瑲潬⁤敶楣e猠瑨慴⁡牥 a瑴ac桥搠瑯

瑨攠桥a琠灩灥⁡湤nacc畭u污瑯爠by 睡y映瑨 牭r汬y⁣潮摵o瑩v
e⁦楸瑵牥献†周s⁴桥 浯獴a瑩c⁣潮瑲潬⁦or⁴桥⁨ a瑥t猯se汴楥i
摥癩捥猠楳⁴睯⁦a畬u⁴潬era湴Ⱐ睩n栠潮h⁴桥 浯獴a瑩c⁣潮瑲潬⁤敶楣e⁩ 灬敭p湴敤⁩渠瑨攠ne瑵牮tg映 桥⁨ a瑥牳⸠⁎佔䔺†f渠
a摤楴楯渠i漠桥a瑥t⁣潮瑲潬⁢y⁴桥 浯獴a瑩c⁤e癩捥猬s瑨攠灲e獳畲s映f
桥⁔呃 ⁩猠 潮楴潲o搠d湤⁡⁣潭o畴敲⁳y獴敭⁩猠sa灡扬攠
潦⁳桵瑴o湧⁤潷渠瑨 ⁨ ate爠獯畲ce猠楦⁴桥⁰se獳畲s 楳⁴潯⁨楧栠景h⁥晦楣楥湴灥牡瑩潮猬⁴桩猠癡汵h⁩猠 潷o爠瑨r渠瑨攠䵄m.



A.5
-
19

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


8.5.1 SVM: Review of Design for inclusion of heater thermostatic control and

thermal threshold values


8.5.2 SVM: Thermal Analysis to Establish MDP


8.5.3 SVM: Functional testing/Acceptance Testing of thermostatic switches.


8.5.4 SVM: Inspection of flight hardware for proper installation of thermostatic switches.


8.5.1 STATUS
: Open


8.5.2 STATUS: Open


8.5.3 STATUS: Open


8.3.4 STATUS: Open

8.6 CONTROL: HEAT PIPES. The worst case thermal conditioning for heat pipes consider the heaters that have been
provided on the Tracker Radiator


o䅍Ⱐ䵡楮⁒a摩慴潲


o䅍Ⱐ呲acke爠
oa摩慴潲


ta步Ⱐ䵡楮ioa摩慴潲


ta步Ⱐ,䅂
桥a琠灩灥⁡湤⁴桥⁐䑓⁨ a琠灩灥献†䕡c栠潦⁴he獥⁨ea瑥t⁳y獴敭猠桡猠業灬p浥湴m搠d⁴睯⁦a畬u⁴潬era湴⁳y獴敭⁦潲⁩湨 扩b楮i
桥a瑥t e牡瑩潮猠潶o爠瑨r⁴桥 浡氠瑨牥獨潬搠瑨慴⁣潵汤⁩湤畣e⁰牥獳畲e猠潶e爠瑨r⁍䑐⸠
.
e琠灯t湴猠景n⁳潭e⁴桥 浯獴a瑳t
a牥潷 爠瑨r渠瑨攠瑨n牭r氠敮癩l潮浥湴猠o桡琠慣瑵t汬y⁤物癥⁴桥⁍ m⸩†䅬氠桥A瑥t⁳y獴敭猠畴楬楺e湥⁴桥 浯獴a瑩c⁳睩瑣栠楮
瑨攠灯te爠汥gⰠ潮e⁩渠 桥 牥瑵牮tg⁴桡琠 牥⁳ 琠t漠o潷o爬⁨ra汴栠浡楮瑥湡湣e⁴敭灥牡瑵牥猠扥汯眠瑨
e⁳ 晥ty 浩琠慮搠t⁴桩牤r
“safety” thermostat that is dedicated to precluding exceeding the safety threshold for temperature (60°C, main radiators)
畮摥爠r潲獴⁣a獥⁣潮摩oi潮猠o湤⁦n畬u献†乯瑥㨠f湤e灥湤n湴映瑨攠na晥ty co湴牯汳⁴桥牥⁩猠愠 潭灵oer⁢ 獥d
Ⱐ瑨敲浡氠獥湳n爠
摲楶d渠n潮瑲潬映瑨o e湴n牥⁨ ate爠r楲c畩ury⁰潷 爠獵灰sy⁴桡琠睩汬⁡c瑩癡瑥⁩映瑥浰敲a瑵te ge瑳⁴潯⁨og栠瑯⁰牯瑥c琠t桥
e汥l瑲潮楣献


㠮㘮ㄠU噍㨠⁈sa瑥t ca畬u⁔潬 牡湣e⁔桥牭r氠䅮llys楳


㠮㘮㈠U噍㨠⁒e癩敷映摥獩s渠景爠楮r汵獩潮o⁨ at
e爠瑨r牭潳瑡瑩挠r潮瑲潬⁡湤⁴桥n浡氠瑨牥獨潬搠癡l略s


㠮㘮㌠U噍㨠sf湳灥c瑩潮o⁆汩杨琠䡡牤rare⁴漠慳獵牥⁰牯 e爠瑨r牭潳瑡瑩挠ro湴牯氠灬ace浥湴⁡湤⁰a牴r⁵獥搮


㠮㘮㐠U噍㨠⁆畮u瑩潮o氠le獴s湧映瑨 牭潳瑡瑩挠獷楴c桥猯䅣ce灴a湣e⁴e獴s湧n


㠮㘮ㄠU呁呕p㨠⁏灥
渮†n桲楳瑩a渠噥瑴潲o⁨ 猠so浰me瑥搠瑨t⁥獳敮瑩慬⁷潲欠k湤⁷楬n⁢ ⁰牯 畣楮g⁴桥⁦楮 氠牥灯牴⸠
⠱ㄯㄸ⼲〰㔩


㠮㘮㈠U呁呕p㨠⁏灥n


㠮㘮㌠U呁呕p㨠⁏灥n



A.5
-
20

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


8.6.4 STATUS: Open

8.7 CONTROL: CAB LOOP HEAT PIPE. The CAB Loop Heat Pipe is indirectly heated by h
eaters within the CAB box
used to keep the avionics within an operating temperature range. These heaters are limited by thermostatic control (single
fault tolerant) and computer based control from exceeding the CAB operating threshold temperatures. The u
pper thermal
limit of the CAB Loop Heat Pipe is established by this temperature and hence the MDP for the heat pipes. At least one
thermostatic control devices will be located in the return leg of the heater circuit.


8.7.1 SVM: Review of Design for inclu
sion of heater thermostatic control and thermal threshold values


8.7.2 SVM: Thermal Analysis to Establish MDP


8.7.3 SVM: Functional testing/Acceptance Testing of thermostatic switches and computer control


8.7.4 SVM: Inspection of flight hardware for
proper installation of thermostatic switches.


8.7.1 STATUS: Open


8.7.2 STATUS: Open


8.7.3 STATUS: Open


8.7.4 STATUS: Open


8.8 CONTROL: CRYOCOOLER LOOP HEAT PIPE. The Cryocooler Loop Heat Pipe and the extension of those heat
pipes into the Zenit
h Radiators (four heat pipes) utilize a heater attached to the individual Cryocoolers attached thermally to
the loop heat pipes evaporators. The thermal load of the Cryocoolers under worst case conditions, fault and environmental
conditions has been used
to establish the MDP for the loop heat pipes. This fault condition is controlled by a single
thermostat dedicated to the heater (68.5 W) itself, and as the Cryocooler provides the actual driving heat source, two
independent thermocontrol devices will shut

down the Cryocooler operations (150W max) when the thermal threshold is
met. The MDP of the Cryocooler Loop Heat Pipe is established under this fault condition.


8.8.1 SVM: Review of design to assure single thermostatic control of heater and Cryocooler
thermal cut off devices
and control.


8.8.2 SVM: Inspection of the flight hardware for inclusion of thermostatic control for heater and Cryocooler cut off
devices.


8.8.3 SVM: Thermal Analysis of Cryocooler Loop Heat Pipe to establish MDP.


8.8.1 STATUS
: Open



A.5
-
21

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


8.8.2 STATUS: Open



8.8.3 STATUS: Open


8.9 CONTROL: CRYOCOOLERS. The each Cryocooler is equipped with a 68.5 watt heater with a single thermostatic
control and the heat load of the Cryocooler operating at it’s maximum capability is 150W.
周楳⁨敡te爠桡猠扥e渠n獳敳se搠
景f⁦ 楬e搠潮dc潮摩o楯湳⁡湤⁷楴栠瑨攠潰h牡瑩ng⁴桥牭r氠l潡搠潦⁴桥⁃ry潣潯汥l⸠⁍䑐.映瑨 ⁃ry潣o潬敲⁡湤⁴桥⁃ny潣潯oe爠
i潯瀠oea琠t楰支we湩n栠ha摩慴潲⁨ 癥⁢ee渠e獴慢汩s桥搠扡獥搠潮⁴桩猠s湡lys楳i


㠮㤮ㄠU噍㨠⁒e癩敷映摥s
楧渠瑯⁡獳畲e⁳楮g汥⁴桥牭潳瑡瑩挠r潮瑲潬映桥a瑥t⁡湤⁣ry潣潯汥爠瑨r牭r氠捵琠潦映摥癩ve猠
a湤⁣潮瑲潬o


㠮㤮㈠U噍㨠sf湳灥c瑩潮o⁴桥⁦汩g桴⁨a牤ra牥⁦ 爠r湣汵獩潮o⁴桥 浯獴a瑩c c潮瑲潬⁦潲⁨ a瑥t a湤⁣ry潣潯汥o⁣畴u映
摥癩捥献


㠮㤮㌠U噍㨠⁔桥牭r氠䅮a
ly獩s映䍲yoc潯汥o⁴漠敳瑡扬楳栠䵄倮


㠮㤮ㄠU呁呕p㨠⁏灥n


㠮㤮㈠U呁呕p㨠⁏灥n



㠮㤮㌠U呁呕p㨠⁏灥n



㠮㄰⁃低呒qi㨠W
<佈m⁒e浯癥搠m牯洠r䵓
-
〲Ⱐ,潮瑲潬畭扥爠re瑡楮t搠d猠摥汥瑥搠d湴ry⁴漠 a楮ia楮⁡ic潵湴慢楬oty>


㠮㄰⸱⁓噍㨠s
<佈m⁒e浯癥搠m牯洠r䵓
-
〲ⰠM噍畭扥爠reta楮敤⁡猠se汥瑥搠d湴ny⁴漠 a楮ia楮⁡cc潵湴慢楬oty>


㠮㄰⸲⁓呁呕p㨠W
<佈m⁒e浯癥搠m牯洠r䵓
-
〲M⁓噍畭扥爠re瑡楮t搠a猠摥汥瑥搠d湴ny⁴漠 a楮iai渠
acc潵湴慢楬oty>


㠮ㄱ⁃低呒qi㨠⁔呃p p瑡t琠啰⁈ta瑥牳⸠⁔桥⁔呃q⁓瑡t琠啰⁈ta瑥t猠桡癥⁢ e渠a獳敳獥搠d猠se楮g⁣a灡扬攠b映摲楶ing⁴桥
灲p獳畲s映瑨f⁔
呃q⁃伲潯灳⁳畦l楣楥湴ny⁴漠 a牲a湴⁴睯⁦a畬u⁴潬era湴⁴桥牭潳瑡瑩挠r潮瑲潬⁤敶楣e猠瑯⁢e⁩ 灬敭p湴敤n
潮⁥ac栠潦⁴he⁔呃 ⁓瑡t琠啰⁈ta瑥t潯灳⸠⁔.e獥⁴桥 浯獴a瑩c⁳睩瑣桥猠桡癥⁢ e渠獥琠t漠瑨o牭r氠l桲e獨潬搠癡汵敳⁴桡琠睩t氠
灲pc汵摥⁴桥 呔䍓⁓瑡t琠啰⁈
ea瑥牳⁦牯洠摲楶ing 瑨攠灲e獳畲s映瑨f⁔呃 ⁴睯⁰桡獥潯瀠扥y潮搠o桥⁥獴慢汩s桥搠䵄倮†
呷漠瑨敲浯獴a瑩c⁣潮瑲潬⁤ 癩捥猠s牥⁩渠 桥⁳潵 ce
灯 er⤠瑯⁴桥⁨ a瑥爠r汥浥湴猠m湤⁡⁳楮 le⁴桥 m潳瑡瑩挠o潮瑲潬⁤敶楣i⁩

瑨攠te瑵牮tg⁦牯洠瑨攠桥a瑥t⁥汥le湴献


㠮ㄱ⸱⁓噍㨠⁒e癩敷映 e獩s渠景f⁩湣汵獩潮o⁨ea瑥t⁴桥牭潳瑡瑩挠r潮瑲潬⁡湤⁴桥n浡氠瑨牥獨潬搠癡汵敳


㠮ㄱ⸲⁓噍㨠⁔桥牭r氠l湡ly獩s⁴漠䕳 a扬b獨⁍䑐



A.5
-
22

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II


8.11.3 SVM: Functional testing/Acceptance Testing of thermostatic switches.


8.11.4 SVM: Inspection
of flight hardware for proper installation of thermostatic switches.


8.11.1 STATUS: Open


8.11.2 STATUS: Open


8.11.3 STATUS: Open


8.11.4 STATUS: Open

9. CAUSE: Meteoroid and Orbital Debris (M/OD) impact.


9.1 CONTROL: All pressurized tanks will
be protected by M/OD shields. The shields are designed to meet the Probability
of Non
-
Penetration (PNP) requirement of SSP 52005. While the AMS
-
02 will have an extended on
-
orbit life, the
pressurized tanks will only represent a hazardous condition for a
limited period of time before the pressure reserves are
spent. Each tank will be assessed for PNP for the duration of operational life.


9.1.1 SVM: AMS
-
02 M/OD Risk Analysis


9.1.2 SVM: Analysis of AMS
-
02 pressurized system utilization to establish on
-
o
rbit penetration threat life duration
(period during which M/OD represents a hazard to the pressure vessel.)


9.1.1 STATUS: Open


9.1.2 STATUS: Open


9.2 CONTROL: The Warm Helium Tank will release any residual helium gas through cycling of pilot valves

at the end of
the Cryomagnet’s life (loss of superfluid helium after approximately 5 years).


㤮㈮ㄠV噍㨠⁒e癩敷映摥獩s港䅮aly獩s⁴漠捯湦楲洠慢楬mty⁴漠e浰my⁲e獩摵慬⁧s猠晲潭⁗a牭⁈e汩u洠m異灬y⁔a湫n


㤮㈮㈠V噍㨠⁒e癩敷映偲潣e摵de猠景s⁩湣汵獩潮f

ta牭⁈e汩畭⁓異灬y oe獩摵慬⁒e汥l獥
 䵓 m牯橥c琠
m牯re摵牥F


㤮㈮ㄠV呁呕p㨠⁃汯獥搮l⁓c楥湴楦楣⁍ g湥瑩c猠䵥浯牡湤畭′㤰㌬⁐桡獥′⁓a晥ty㨠Wy獴敭⁦潲 䑵浰楮a映 a牭r
䡥汩畭⁓異灬y a琠䵩獳s潮⁅湤Ⱐo牯洠䵡牫⁇a汬楬eeⰠ摡瑥搠ce扲bary‱㐬′〰T


㤮㈮㈠V呁呕p㨠

佰ln

fE䄩

㤮㌠V低呒qi㨠⁔We⁔剄⁘ 湯渠n湤⁃a牢潮r䑩潸楤攠ia湫猠睩n氠捯湴楮le⁴漠扥⁵瑩 楺e搠d晴f爠瑨r⁥湤n 晥映瑨
獵灥牣潮摵o瑩ng gne琠ta歩湧⁳ 楥湴楦ic⁤ 瑡⸠⁕灯渠摥灬整楯渠潦湥⁳異灬yⰠ瑨攠潴桥爠獵灰ry⁷楬 ⁢ ⁳汯睬y⁲e汥lse搠
fE䄩


A.5
-
23

JSC 49978A

PAYLOAD FLIGHT HAZARD REPORT

a. NO:

AMS
-
02
-
F05

b. PAYLOAD

Alpha Magnetic Spectrometer
-
02 (AMS
-
02)

c. PHASE:

II

through the TR
D purging system until the tank is also depleted.


9.3.1 SVM: Review of design/Analysis to confirm ability to empty residual gas from TRD Pressurized Tanks.


9.3.2 SVM: Review of Procedures for inclusion of TRD Pressurized Tank Residual Release (AMS Pro
ject
Procedure)


9.3.1 STATUS: Open


9.3.2 STATUS: Open

10.0 CAUSE: Damage to Composite Overwrapped Pressure Vessel


10.1 CONTROL: All Composite Overwrapped Pressure Vessels will implement the ground handling damage control
requirements of ANSI
/AIAA S
-
081 for the protection and inspection of COPV.


10.1.1 SVM: Review of TRD COPV Protection Protocols


10.1.2 SVM: Review of Warm Helium Gas Supply COPV Protection Protocols


10.1.3 SVM: Inspection of TRD COPVs (at late in process as possible prio
r to flight)


10.1.4 SVM: Inspection of Warm Helium Gas Supply COPV (at late in process as possible prior to flight)


10.1.1 STATUS: Open


10.1.2STATUS: Open


10.1.3STATUS: Open


10.1.4STATUS: Open


10.2 CONTROL: Thermostatic control of the heaters
mounted to the exterior of the TRD Composite Overwrapped
Pressure Vessels have four thermostatic control devices that are set to a thermal limit below the temperature that could
possibly induce delaminations.


10.2.1 SVM: Arde Certification of thermosta
tic control acceptability.


10.2.2 SVM: Inspection of as built hardware for proper thermostat installation.


10.2.1 STATUS: Open


10.2.2 STATUS: Open


NOTES:



A.5
-
24

JSC 49978A




ACRONYMS

°C


摥gree猠se湴ng牡de ⡃E汳l畳u

浭m


浩汬i浥瑥r

Af䅁


䅭A物ra渠f湳瑩瑵te⁁
e牯湡畴uc猠a湤⁁獴n潮o畴ucs

䵕M猠


䵡瑥t楡氠啳age 䅧Aee浥湴m

䅍A
-
〲M


䅬灨A⁍ g湥瑩c⁓灥c瑲潭t瑥t
-



佈m


佳l楬污瑩湧⁈ea琠m楰攠iex灥物浥湴n

䅎pf


䅭A物ra渠乡瑩o湡氠l瑡湤t牤猠f湳瑩瑵te

m乐k


m牯扡扩b楴y映 漠me湥瑲t瑩潮

C䅂


Cry潭og湥琠䅶t潮楣猠oo
x

灳椠


m潵湤猠灥爠獱畡牥⁩湣h


2



Ca牢潮r䑩潸楤a

灳楡p


m潵湤猠灥爠獱畡牥 楮捨⁡扳潬畴u

C佐嘠


C潭灯o楴e⁏癥牷牡灰e搠d牥獳畲s 噥獳sl

p噍s


pa晥ty⁖e物r楣a瑩潮⁍o瑨潤




䡥汩畭

p噐s


p瑲畣瑵牡氠噥物r楣a瑩潮⁐污l

䡐e


䡥a琠t楰i

呒䐠


呲a湳楴楯渠ia摩
a瑩潮⁄o瑥t瑯t

䴯佄M


䵥瑥潲潩搯佲扩ba氠䑥扲楳

呔䍓


呲ac步爠rhe牭rl⁃潮瑲潬⁓y獴敭

䵄倠


䵡x業u洠䑥獩杮⁐牥獳畲s

啓r
-
〲M


啮楱略⁓異灯u琠t瑲畣瑵牥‰

Mif


䵵汴楬aye爠楮獵污r楯i




塥湯n

C映䌠


Ce牴楦楣a瑥t⁃潭灬楡湣e

歳椠


歩k漠灯畮摳⁰o爠獱畡
牥⁩湣

汢映


灯畮搠p潲oe

浢慲


浩汬楢慲

䵕M


䵡瑥t楡氠啳age 䅧Aee浥湴m

佰猠


佰l牡瑩潮o

允n


兵n汩ty 䅳獵Aance

啬琠
-

啬瑩浡瑥


A.5
-
25

JSC 49978A


A. TRD Gas Supply


TRD Pressure System Components



Description



Material Of
Construction

Mass

Of Fluid


Operating

Pres
sure (max)

MDP
1




Burst

Pressure

Burst SF

Proof

Pressure

Proof

SF



Analysis

Test or

Similarity

Reference

Document



Req

Actual

kg

lbm

bar

psid

bar

psid

bar

psid

bar

psid

Xe Storage
Vessel, ARDE
D4815
(similarity:
D4636)
2

Carbon Fiber

Overwrapped
Stainless Steel
Liner

49.4

109

173

2500

206.8

3,000

641.2

9,300

2

3.1

310.3

4500

1.5

Similarity
& Test

MIL
-
STD
-
1522A


SSP 30559C

CO
2

Storage
Vessel, ARDE
D4816
(similarity:
D4683)
2

Carbon Fiber
Overwrapped
Stainless Steel
Liner

5.0

11.0

100

1440

206.8

3,000

441.3

6,400

2

2.1

330.9

4800

1.6

Similarity
& Test

SSP 30559C

Mixing Vessel,
ARDE C4810
2

Stainless Steel

0.1

0.22

13.8

200

20.7

300

82.7

1,200

2

4.0

41.4

600

2

Test

SSP 30559C

TRD "Straw"
Tubes

Wrapped
Carbon
-
Kapton
-
Aluminum
Composite

1.17


2.58


1.2

17..4

2.0

29.4

>5

>72.5

2

2.5

3.0

44.1

1.5

Test

NSTS 1700.7B
SSP 30559C

Plumbing Line
1/8"

Stainless Steel

0.003

0.01

120.0

1,740

206.8

3,000

882.5

12,800

4

4.3

413.7

6,000

2

Test



Plumbing Line
1/4"

Stainless Steel

0.005

0.01

120.0

1,74
0

206.8

3,000

882.5

12,800

4

4.3

413.7

6,000

2

Test

NSTS 17007B
SSP 30559C

Plumbing Line
1/16"

Stainless Steel

<0.001

<0.002

1.2

17.4

2.0

29.4

>11.0

160

4

5.44

3

44.1

1.5

Test

NSTA 17007B
SSP 30559 C

TRD segment
metal fitting

Stainless steel
aluminum
Vit
on

<0.001

<0.002

1.2

17.4

2.0

29.4

>11.0

160

4

5.44

3

44.1

1.5

Test

NSTA 17007B
SSP 30559 C

Marotta MV
100 Valves
2

See Data
Sheet

<0.002

0.004

2.0

29.4

20.7

300

517.1

7,500

2.5

25

310.3

4,500

15

Similarity
& Test

NSTS 1700.7B
Marotta Spec
SP 1200

Marott
a MV
197 Valves

2

See Data
Sheet

<0.002

0.004

106.9

1,550

206.8

3,000

1,723.7

25,000

2.5

8.3

868.7

12,600

4.2

Similarity
& Test

NSTS 1700.7B
Marotta Spec
SP 1200

Bürkert Type
6124 Flipper
Valves
Manifold: VA,
B, C, D)
9

See Data
Sheet

N/A

N/A

1.2

17.4

2.0

29.4

8.6

125

2.5

4.3

3.0

44.1

1.5

Similarity
& Test



GP
-
50 Pressure
See Data
<0.002

0.004

1.4

20.4

2.0

29.4

41.4

600

2.5

20.4

13.8

200.0

6.8

Similarity
NSTS 1700.7B

A.5
-
26

JSC 49978A

TRD Pressure System Components



Description



Material Of
Construction

Mass

Of Fluid


Operating

Pres
sure (max)

MDP
1




Burst

Pressure

Burst SF

Proof

Pressure

Proof

SF



Analysis

Test or

Similarity

Reference

Document



Req

Actual

kg

lbm

bar

psid

bar

psid

bar

psid

bar

psid

Sensors
3

Sheet

& Test

SSP 30559C

GP
-
50 Pressure
Sensors
3

See Data
Sheet

<0.002

<0.004

13.8

200

20.7

300

62.1

900

2.5

3.0

41.4

600

2

Similarity
& Test

NSTS 1700.7B
SSP 30559C

GP
-
50 Pressure
Sensors
3

See Data
Sheet

<0.002

<0.004

106.9

1,550

206.8

3,000

620.5

9,000

2.5

3.0

413.7

6,000

2

Similarity
& Test

NSTS 1700.7B
SSP 30559C

Kulite Pres
sure
Senosrs
3

Stainless Steel

<0.002

<0.004

13.8

200

20.7

300

62.1

900

2.5

3.0

41.4

600

2

Similarity
& Test

NSTS 1700.7B
SSP 30559C

Kulite Pressure
Senosrs
3

Stainless Steel

<0.002

<0.004

106.9

1,550

206.8

3,000

620.5

9,000

2.5

3.0

310.3

4,500

1.5

Simila
rity
& Test

NSTS 1700.7B
SSP 30559C

TheLeeCo
restictors

Stainless
Steel, 304L

N/A

N/A

20.7

300

206.8

3,000

413.7

6,000

2.5

2.0

TBD

TBD

TBD

Test



7 micron Inline
Filters

See Data
Sheet

N/A

N/A

106.9

1,550

206.8

3,000

827.4

12,000

2.5

4.0

TBD

TBD

TBD

Simi
larity
& Test



Pressure
Container for
CO
2

sensor,
Box C
4, 5

Stainless Steel

<0.01

<0.02

1.2

17.4

2.0

29.4

4.1

58.8

2

2.0

3.0

44.1

1.5

Test

MIL
-
STD
-
1522A


SSP 30559C

Monitor Tubes

Stainless Steel
CrNi 18.10

<0.002

<0.004

1.2

17.4

2.0

29.4

8.1

117.6

4

4.
0

3.0

44.1

1.5

Test

NSTS 1700.7B
SSP 30559C

Pumps

See Data
Sheet

<0.002

<0.004

1.2

17.4

1.7

25.0

2.4

35.0

N/A


N/A

N/A

N/A

N/A

Test

NSTS 1700.7B
SSP 30559C

Marotta
Pressure Relief
Valves
2

See Data
Sheet

<.002

<0.004

13.8

200

20.7

300

61.0

885

2
.5

3.0

32
.8

475

1.6

Similarity
& Test

NSTS 1700.7B
SSP 30559C

Pressure Relief
Valve Box C

See Data
Sheet

<.002

<0.004

1.2

17.4

2.0

29.4

20.7

300.0

2
.5

10.2

3.0

44.1

1.5

Test

MIL
-
STD
-
1522A


SSP 30559C

Burst Disks Box
S
2 ,6

Stainless Steel

<.002

<0.004

13.8

200

20
.3

295

20.3

295

N/A

N/A

N/A

N/A

N/A

Similarity
& Test

BS & B, M.S.
18

Xe Fill Port
Valves

Stainless Steel





106.9

1550

206.8

3,000

TBD

TBD

2.5

TBD



TBD

TBD





CO
2

Fill Port
Valves

4

Stainless Steel





64.8

940

206.8

3,000

TBD

TBD

2.5

TBD



TBD

TBD





Xe Fill Port
Caps
4

Stainless Steel





106.9

1550

206.8

3,000

TBD

TBD

2.5

TBD



TBD

TBD





CO
2

Fill Port
Caps

4

Stainless Steel





64.8

940

206.8

3,000

TBD

TBD

2.5

TBD



TBD

TBD





Notes:

1

MDP has been established based on worst case thermal
profile and where applicable (with mechanisms to fail) worst case two fault condition.

2

Pressure is in psig.

3

Pressure is in psia

4

Manufactured at CERN and pressure is in psia

5
As per data approved by Peter Fisher, file: TRD_gas
-
press.doc, 06/23/2004

6

Burst pressure equals

5% to the stamped burst pressure of 295 psig; proof SF is 80% of stamped burst pressure.


A.5
-
27

JSC 49978A

TRD Pressure System Components



Description



Material Of
Construction

Mass

Of Fluid


Operating

Pres
sure (max)

MDP
1




Burst

Pressure

Burst SF

Proof

Pressure

Proof

SF



Analysis

Test or

Similarity

Reference

Document



Req

Actual

kg

lbm

bar

psid

bar

psid

bar

psid

bar

psid

7) All 328 Straw modules have been tested to 1.8 bar (26.1 psid)

8) Maximum applied test pressure

9) The valves are completely contained insid
e potted magnetic shielding








A.5
-
28

JSC 49978A


TRD Box S


A.5
-
29

JSC 49978A


TRD Box C


A.5
-
30

JSC 49978A


TRD Manifold
-
Straw Representation


Legend for TRD Schematics


A.5
-
31

JSC 49978A


TRD Tank Heaters


A.5
-
32

JSC 49978A


TRD GAS Tanks With Installed Heaters


A.5
-
33

JSC 49978A


TRD Gas Valve Block Heater



A.5
-
34

JSC 49978A


Location

Temperature
Range

A
verage
Temperature

T Open

T Close

Tolerance

Number

Xe Tank

20°C
-
65°C

42.5°C

49°C

38°C

±2.8°C

8

CO2 Tank

34°C
-
65°C

48.5°C

54

43

±2.8°C

8

Tower

24°C
-
41°C

32.5°C

38

27

±2.8°C

2

2 Valve Filters, 2
Valve GP50

5°C
-
39°C

22°C

27

16

±2.8°C

4

4 Valve, Vent Valv
e

5°C
-
39°C

22°C

27

16

±2.8°C

4+1

Box C

7°C
-
24°C

15.5°C

21

10

±2.8°C

2+1

Preheater

34°C
-
65°C

48.5°C

54

43

±2.8°C

8


TRD Gas Supply Thermostat List


A.5
-
35

JSC 49978A


TRD coldest thermal conditions assuming greater than 200 hours in coldest attitude and power off.



A.5
-
36

JSC 49978A

B. Warm Helium Gas Supply


Warm Helium Gas Supply Pressure System Components

Description

Volume

Operating

Pressure

Material

(See Note 2)

Temp


MDP

MDP

Determin
-
ation

Burst

Pressure

Burst

Safety Factor

Proof

Pressure

Proof

SF

Basis

(See

Note 3)

Reference

Document

Units

Liter

(in^3)

Bar

(psid)


(K)

Bar

(psid)


Bar

(psid)

Reqd

Actual

Bar

(psid)


A:Analysis

T:Test


Burst Disc

BD17A

BD17B

<10

(<610)

-
1 (
-
14.5)

Stainless steel

316L

Nickel 200

300

11 (159.5)

See

Note 6

-

-

-

-

-

-

T

(TBD)


Warm valves

DV20A
-
D

<10

(<610)

-
1 (
-
14.5)

CRES

300

10 (145)

See Note 1

689.7 (10000)

2.5

45

413.8(6000)

41.4

-

See
Manufacturers
Qualification Docs
(TBD)

Warm valves

DV22A
-
D

<10

(<610)

6 (87)

CRES

300

244(3538)

See Note 1
3

689.7 (10000)

2.5

2.83

413.8(6000)

1.7

-

See Manufacturers
Qualification Docs
(TBD)

Warm valves

DV21A
-
D

DV52

DV53

DV55

DV56A
-
B

DV57

DV60

DV62

DV64

<10

(<610)

6 (87)

PAA GF60,
Brass, Spring
Steel, Steel,
Nitric Rubber,
POM,
Aluminium

300

8 (116)

See Note 1

>20

(>290)

2.5

>2.5

>12 (>174)

>1.5

T

(TBD)


Warm
Valves

MV40


<10

(<610)

Outlet:

6 (87)


Inlet:

200 (2900)

Al
. Aly.,
CRES 17
-
4PH, CRES
300 SER,
Nylon

300

Outlet:

8 (116)


Inlet:

244(3538)
)

See Note 1

>20

(>290)



800(11760)

2.5

3.28

Outlet:

15.6 (226.2)

See Note 8


Inlet:

480 (6960)

Inlet:

1.95


Outlet:

1.
97

T

(TBD)

Manufacturers data


Stan
ford Mu

Warm
Helium Fill
and Drain
Port

MV42

<10

(<610)

200 (2900)

6Al4V
Titanium

300

244(3538)

See Note 1

800

(11600)

2.5

3.28

480 (6960)

1.
97

T

(TBD)

Manufacturers data
-

Marotta

Warm
Helium
Supply
COPV

8.3

(506)

200

(2900)

Al 2219,
Ca
rbon Fibre

300

244(3538)

See Note 1

610(8845)

2.5

2.
5

500

(7250)

2.05

T

(TBD

Manufacturers
drawing / data


A.5
-
37

JSC 49978A

Description

Volume

Operating

Pressure

Material

(See Note 2)

Temp


MDP

MDP

Determin
-
ation

Burst

Pressure

Burst

Safety Factor

Proof

Pressure

Proof

SF

Basis

(See

Note 3)

Reference

Document

Units

Liter

(in^3)

Bar

(psid)


(K)

Bar

(psid)


Bar

(psid)

Reqd

Actual

Bar

(psid)


A:Analysis

T:Test


Warm pilot
valve tubing.
See Note 11
for all
fittings

<10

(<610)

6 (87)


316 SS Grade
A

300


10 (145)




See Note 1

1485

(21532)




4

185



16.5 (239.3)

1.5

A

SCL


AMS
-
02
Pressure system
parts.xls

Tube from
COPV to
DV22

and
MV4
2
. See
Note 11 for
fittings

<10

(<610)

200 (2900)

AISI 316 L


300

244(3538)

See Note 1
3

1739

(25215)

4

7.13

480 (6960)

1.
97


A

SCL


AMS
-
02
Pressure system
parts.xls

Tube from
DV22

to
MV40
valve

<10

(<610)

200
(2900)

AISI 316 L


300

244(3538)

See Note 1
3

1739

(25215)

4

7.13

480(6960)

1.
97

A

SCL


AMS
-
02
Pressure system
parts.xls

Tube from
DV
22 valves
to PS01 and
PS02

<10

(<610)

6 (
87
)

AISI 316 L


300

8 (116)

See Note 1

1739

(25215)

4

217

12 (174)

1.5

A

SCL


AMS
-
02
Pressure system
parts.xls

PS01 and
PS02

<10

(<610)

6 (
87
)

AISI 316 L


300

8 (116)

See Note 1

>20

(>290)

2.5

>2.5

20 (2
90)

2.5

T (TBD
manufactur
er)

United Electronic
Controls Drawing
E17W
-
H97

Tube from
PS01 and
PS02 to
warm pilot
valves

<10

(<610)

6 (
87
)

AISI 316 L


300

8 (116)

See Note 1

693

(10048.5)

2.5

86

12 (174)

1.5

T (TBD)

SCL


AMS
-
02
Pressure system
parts.xl
s

Tube from
PS01 and
PS02 to cold
pilot valves

<10

(<610)

6 (
87
)

AISI 316 L


300

8 (116)

See Note 1

1485

(21532.5)

2.5

185

12 (174)

1.5

T (TBD)

SCL


AMS
-
02
Pressure system
parts.xls

Warm Weka
valves
actuation
bellows for

DV09A


B

DV11A


B

DV15A



D

DV16A


B

<10

(<610)

6 (87)

St St 316Ti/
EN1.4571

300



8 (116)



See Note 1



>20

(>290)

2.5

>2.5

8.8 (127.6)

1.1

T (Weka)


Weka qualification
and acceptance tests
of warm valves

Pilot valve
vacuum
vessel
(PVVV)

4.0

-
1 (
-
14.5)

Stainless Steel

304
-
S1
2

300

10 (145)

See Note 1

91.5 (1326.7)

2.5

9

15

(217.5)

1.5

A

See Note 9

T(TBD)

SCL


AMS
-
02
Pressure system
parts.xls


A.5
-
38

JSC 49978A

Description

Volume

Operating

Pressure

Material

(See Note 2)

Temp


MDP

MDP

Determin
-
ation

Burst

Pressure

Burst

Safety Factor

Proof

Pressure

Proof

SF

Basis

(See

Note 3)

Reference

Document

Units

Liter

(in^3)

Bar

(psid)


(K)

Bar

(psid)


Bar

(psid)

Reqd

Actual

Bar

(psid)


A:Analysis

T:Test


Tube from
PVVV to
DV20
Valves

<10

(<610)

-
1 (
-
14.5)

AISI 316 L


300

10 (145)

See Note 1

1739 (25215)

2.5

174

15

(217.5)

1.5

T (TBD)


Tube from
MV43 to
PVVV

<10

(<610)

-
1 (
-
14.5)

AISI 316 L


300

10 (145)

See Note 1

2080 (30160)

2.5

208

15

(217.5)

1.5

T (TBD)


Tube from
PVVV to
MV44

<10

(<610)

-
1 (
-
14.5)

AISI 316 L


300

10 (145)

See Note 1

2080 (30160)

2.5

208

15

(217.5)

1.5

T (TBD)



Warm valve
pilot valves

DV61AS
-
BS

DV61AO
-
BO

DV66AS
-
BS

DV66AO
-
BO

DV59AS
-
BS

DV59AS
-
BO

DV65AS
-
DS

DV65AO
-
DO

<10

(<610)

6 (87)

PAA GF60,
Brass, Spring
Steel, Steel,
Nitric Rubber,
POM,
Aluminium

300

8 (116)

See Note 1

>20

(>290)

2.5

>2.5

12 (174)

>1.5

T

(T
BD)


Relief valve

RV03

<10

(<610)

6 (87)

6061 T6 Al.
Aly., 316
SST,
VESPEL SP1,
320 SST,
TEFLON

300

Fault:

8 (116)


See Note 1

24.8 (365)

2.5

3.1

15 (217.5)

1.8

-

See Manufacturers
Qualification Docs
(TBD)

Relief valve

RV04

<10

(<610)

6 (87)

6061 T6 Al
.
Aly., 316
SST,
VESPEL SP1,
320 SST,
TEFLON

300

Fault:

8 (116)


See Note 1

24.8 (359.6)

2.5

3.1

15 (217.5)

1.8

-

See Manufacturers
Qualification Docs
(TBD)

Note 1: Derivation of MDP values per NSTS 1700.7B and ISS Addendum, section 208.4

The maximum des
ign pressure (MDP) for all systems considered in this report is set by the upper defined limit of the relevant pressure relie
f device which is a
space
-
qualified bursting disc or relief valve

or by the highest pressure attainable based on fill and thermal e
nvironments.



The bursting disc systems have been extensively assessed by LM/NASA and SCL and accepted.



A.5
-
39

JSC 49978A

a)

3 bar Pressure Relief


The pressure is set by the upper limit on the differential pressure, when cold, necessary to rupture bursting disc BD03, show
n

on SCL
Cryogenic System Schematic Drawing SCD 1000.



In service and in test, the downstream pressure on this disc is kept at zero bar absolute.




In the warm state, the bursting disc will rupture at less than 3 bar.


b)

20 bar Pressure Relief


The pressure

is set by the upper limit on the differential pressure, when cold, necessary to rupture bursting disc BD02, shown on SCL
Cryogenic System Schematic Drawing SCD 1000.



Although in service the downstream pressure is ~ 10 mbar (fill vacuum), the design allo
ws for the downstream pressure being 3 bar abs.
The superfluid cooling loop SCL is thus designed for 20 bar abs (and differential), whereas the bursting disc BD02 is set for

a maximum
differential of
20

bar, in the cold state.



In the warm state, the bur
sting disc BD02 will rupture at less than 22 bar differential.


c)

10 bar Pressure Relief


The pressure is set by the upper limit on the burst disc differential pressure and vacuum case vacuum, when cold, necessary t
o rupture
bursting discs BD05A, BD05B, BD1
0A, BD11A,BD11B, BD12A, BD12B, BD13 shown on SCL Cryogenic System Schematic Drawing
SCD 1000.



Although in service the pipework pressure is < 1.0 bar, the design allows for the trapped volume pressures being up to 11 bar

abs. (10 bar
differential of the

bursting disc failing to atmosphere + 1 bar vacuum in the Vacuum Case) The general pipework is thus designed for 11
bar abs (and differential), whereas the bursting discs listed are set for a maximum differential of 10 bar.


d)

RV03 / RV04


RV03 and RV04 re
lief valves operate in parallel and pressure is set by the upper limit of the relief valve cracking pressures.




Note 2: Materials of pressure
-
containing part.


Note 3: Basis for verification of Burst Safety Factor.


Note 4: This is a vacuum vessel and

the MDP only applies in the event of contingency case.


Note 5: Ground Case
-

Worst case thermal pressure environment caused by rupture of the Super Fluid He Tank into the Vacuum Case.


Note 6: Pressure on upstream side of disc, absolute.


A.5
-
40

JSC 49978A


Note 7: For
all items in this table, the designed on
-
orbit life is: 3 years + 2 contingency years. Expected life is TBD as the AMS
-
02 does not have an
independent means of end of life disposal from the ISS.


Note 8: Proof pressure is based upon current specification

for valve fittings and will be updated when valves are ordered to meet requirements of 1.5 times MDP.


Note 9: Current pilot valve vacuum vessel design based upon calculations in BS 5500. Vessel will be proof tested to 16.5 ba
r once manufactured.


Note
10: Actuation, hence pressurisation can only occur when DV22A


D are open; therefore MDP determination set by RV04 due to two relief valves being
present in the system.


Note 11: Any fittings are designed to have a minimum wall thickness equivalent to the

pipework they are connecting.


Note 12: A proof pressure of 1.1 MDP is applicable to all bi
-
metallic feedthroughs as they will be pressure tested with the helium vessel and not prior to this.
Analysis shows that factors of safety against burst are tens o
f times greater than MDP therefore a 1.1 proof test is deemed acceptable.


Note 13: MDP Determined by controlling the fill of warm helium gas as per SCL memo 2906 Control of Warm Helium Gas System Fil
l_Rev04.pdf dated 4
th

April
2007.




A.5
-
41

JSC 49978A


Cryogenic Su
perfluid Helium System (With Warm Helium Gas Supply)



A.5
-
42

JSC 49978A


Warm Helium Gas Supply (See Legend on Cryosystem Diagram)