Biophysics
Student
Seminar Series
introducing
Solid State NMR
Bo Zhao
Zimeng Li
Introduction to NMR
Application
Solid State NMR
Research
Introduction to NMR
Application
Solid State NMR
Research
Physics
•
Nuclear Magnetic Resonance
Biology
•
Structure
•
Dynamics
Introduction to NMR
Physical Origin
Measurement
Introduction to NMR
•
Rabi
(1938)
•
Spin
is internal property of
particles
•
Spin can generate magnetic field
•
Protons and Neutrons have spin 1/2
Physical Origin
Xu
, Modern Physics (1993)
Physical Origin
Spin ½ System
Nuclei
Unpaired
Protons
Unpaired
Neutrons
Net Spin
γ (
MHz/T)
Abundance
1
H
1
0
1/2
42.58
99.98%
2
H
1
1
1
6.54
0.0184%
14
N
1
1
1
3.08
99.636%
15
N
1
0
1/2
-
4.316
0.34%
12
C
0
0
0
N/A
99%
13
C
0
1
1/2
10.71
1%
19
F
1
0
1/2
40.08
100%
31
P
1
0
1/2
17.25
100%
?
•
External field
–
energy splitting
Spin ½ System
Hornak
, The Basics of NMR (1997)
1
H [ppm]
•
Internal property
•
External factor
–
High Field (1964)
–
Electron shielding
–
Spin coupling
•
Chemical Shift
=
𝑣
−
𝑣
𝑟
𝑣
𝑟
ppm
Spin ½ System
?
e
p
Spin coupling
Chemical Shift Anisotropy
Shi, NMR Introduction course (2003)
Trausch
et al., Chemical Physics Letters (2008)
Spin ½ System
Chemical Shift Anisotropy
Dipole
-
Dipole coupling
𝜈
•
More shielding
-
> lower
chemical shift.
Chemical Shift Anisotropy
𝜎
↑
,
𝐵
↓
,
𝜈
↓
𝜎
𝜎
𝜎
𝐵
𝑠ℎ𝑖𝑙
𝐵
=
𝐵
0
−
𝐵
𝑠ℎ𝑖𝑙
Rossum
, Solid State NMR and proteins (2009)
J.
Duer
, Solid State NMR spectroscopy (2002)
•
More shielding
-
>
lower chemical shift.
•
Dependent on angular
orientation
More shielded
Chemical Shift Anisotropy
𝜎
↑
,
𝐵
↓
,
𝜈
↓
Spin ½ System
Chemical Shift Anisotropy
Dipole
-
Dipole Coupling
Nuclear
Pair
Internuclear
distance
[
Å
]
Dipolar
coupling
[
𝒌𝑯𝒛
]
1
H,
1
H
10
120
1
H,
13
C
1
30
1
H,
13
C
2
3.8
•
Dipolar coupling causes huge line broadening
Dipole
-
Dipole Coupling
J.
Duer
, Solid State NMR spectroscopy (2002)
•
(1952)
Purcell and Bloch
Spin ½
System
Equilibrium
Spin ½
System
Equilibrium
B
0
B
1
B
1
Equilibrium
𝐵
0
M
J.
Duer
, Solid State NMR spectroscopy (2002)
•
𝜔
=
∙
𝐵
Spin ½
System
Goldstein,
Classical Mechanics
𝑤
0
𝐵
0
M
𝐵
0
M
𝐵
1
Spin ½
System
M
•
Resonance
𝜔
=
𝜔
0
•
Maximum signal
𝜔
0
𝜔
ℎ𝜈
=
ℏ𝜔
ℎ
𝜈
0
ℎ𝜈
Physics Origin
Measurement
Introduction to NMR
ℎ𝜈
•
Conventional
–
Continuous Wave
•
Modern
–
Pulse Signal
Measurement
𝐵
0
𝜈
𝜈
Hornak
, The Basics of NMR (1997)
•
Conventional
–
Continuous Wave
•
Modern
–
Pulse Signal
Measurement
𝐵
0
𝜈
𝜈
+
𝜈
−
𝜈
1
𝐻
−
𝜈
1
𝐻
𝜈
1
𝐻
+
Anisotropy of
1
H
Measurement
Shi, NMR Introduction course (2003)
Introduction to NMR
Application
Solid State NMR
Research
•
Protein 3D structure and function study at
atomic resolution
•
(1976)
R
. R.
Ernst:
Multi dimensional NMR
•
(1979)
K
.
Wuthrich
:
Solve protein structure
Application
Markley, the Scientists
–
magazine of life science (2005)
•
Protein Dynamics/Protein folding
intermediates
Application
Frank, et al. Nature (2010)
•
Fast structure determination/recognition of
macromolecular compound
•
Medical
Imaging
Application
Solid
Solution
Dipolar
Coupling (10
-
100kHz)
Scalar
Coupling (10
-
100Hz)
Anisotropic interactions
Isotropic interactions
13
C detection
1
H detection
Sensitivity
low
Sensitivity
high
Require special techniques to improve
linewidth
Natural
tumbling of molecules
Solution vs. Solid State NMR
Application
Application
Introduction to NMR
Solid State NMR
Research
Problems
General Techniques
OS
-
NMR
MAS
-
NMR
•
Powder Spectra
13
C NMR of
glycine
Problems with SSNMR
Adapted from M.
Edén
,
Concepts in Magnetic Resonance
18A, 24.
D.
Lide
, G. W. A. Milne,
Handbook of Data on Organic Compounds:
Compounds 10001
-
15600 Cha
-
Hex. (CRC Press, 1994).
Solid
Liquid
Problems with SSNMR
•
Goal: simplify solid state spectra
Adapted from R.
Tycko
,
Annu
. Rev. Phys. Chem.
52, 575 (2001).
Problems
General Techniques
MAS
-
NMR
Solid State NMR
OS
-
NMR
•
Developed in 1976
•
Suppresses
1
H
-
1
H and
1
H
-
S coupling
•
Resolves dilute spins based on chemical
environment
•
Gives dipolar coupling information
Separated Local Field
R. K. Hester, J. L. Ackerman, B. L. Neff, J. S. Waugh,
Physical Review Letters
36, 1081 (1976).
•
Hartmann
-
Hahn Condition
–
Detailed in 1962
–
Between
heteroatoms
–
Same
Larmor
frequency
–
Allows for cross relaxation
L. W.
Jelinski
, M. T. Melchior,
Applied Spectroscopy Reviews
35, 25 (2004/05/24, 2004).
Cross Polarization
•
First published in 1973
•
Transfer population information from I to S
•
Detect off of dilute species
–
Cleaner spectra
–
More sensitive
Cross Relaxation
Barth
-
Jan van
Rossum
: Solid
-
state NMR and proteins, a pictorial introduction
Problems
General Techniques
MAS
-
NMR
Solid State NMR
OS
-
NMR
Magic Angle Spinning
Simulating the “tumbling” of molecules
http://www.rs2d.com/english/images/protasis/doty/doty.jpg
Magic Angle Spinning
•
Proposed in 1958
•
Coupling dependent on
–
At magic angle, 54.7356
°
, equals zero
•
Spin sample to decouple
–
1
H
-
1
H coupling ~40kHz
E. R. Andrew,
Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences
299, 505 (March 18, 1981,
1981).
3.6kHz
Static
MAS decoupling
Problems
General Techniques
MAS
-
NMR
Solid State NMR
OS
-
NMR
Physical Orientation
Lipids
Oriented Sample NMR
G.
Orädd
, G.
Lindblom
,
Magnetic Resonance in Chemistry
42, 123 (2004).
C. R. Sanders, K.
Oxenoid
,
Biochimica
et
Biophysica
Acta
(BBA)
-
Biomembranes
1508, 129 (2000).
http://avantilipids.com
Replacing “tumbling” with
Rf
irradiation
•
Polarization Inversion Spin Exchange at the
Magic Angle
–
Developed in 1994
•
Form of SLF with enhanced sensitivity
•
Further suppression of
1
H
-
1
H coupling
C. H. Wu, A.
Ramamoorthy
, S. J.
Opella
,
Journal of Magnetic Resonance, Series A
109, 270 (1994).
PISEMA
SLF
PISEMA
Modified SLF
PISEMA
vs
SLF
C. H. Wu, A.
Ramamoorthy
, S. J.
Opella
,
Journal of Magnetic Resonance, Series A
109, 270 (1994).
D. S.
Thiriot
, A. A.
Nevzorov
, S. J.
Opella
,
Protein
Sci
14, 1064 (Apr, 2005).
Polar Index Slant Angle Wheel
S. Kim, T. A. Cross,
Journal of Magnetic Resonance
168, 187 (2004).
G. A. Cook, S. J.
Opella
,
Methods Mol
Biol
637, 263 (2010).
PISA Wheel
Limitations of PISEMA
A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
185, 59 (2007).
•
Compliments PISEMA
–
Developed in 2003
•
Averages out
homonuclear
spin
-
spin interaction
•
More uniform over wide range
linewidths
A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
164, 182 (2003).
SAMMY
Limitations of SAMMY
A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
185, 59 (2007).
•
Slight modification of SAMMY
–
Developed in 2007
•
Combines pros of PISEMA and SAMMY
–
Sensitivity of PISEMA
–
Range of SAMMY
•
Can be implemented generally
A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
185, 59 (2007).
SAMPI4
Application
Introduction to NMR
Solid State NMR
Research
Sensitivity Enhancement
Spectroscopic Assignment
Structure Calculations
•
What is mosaic spread?
Reducing the effects of mosaic spread
Sensitivity Enhancement
C. R. Sanders, K.
Oxenoid
,
Biochimica
et
Biophysica
Acta
(BBA)
-
Biomembranes
1508, 129 (2000).
M. J.
Duer
,
Solid
-
state NMR spectroscopy: principles and applications.
(Blackwell Science, 2001).
A. A.
Nevzorov
,
The Journal of Physical Chemistry B
115, 15406 (2011/12/29, 2011).
Sensitivity Enhancement
Static
Slow diffusion
Fast diffusion
Uniaxial
Diffusion
Sensitivity Enhancement
Spectroscopic Assignment
Structure Calculations
Research
Spectroscopic Assignment
D. S.
Thiriot
, A. A.
Nevzorov
, S. J.
Opella
,
Protein
Sci
14, 1064 (Apr, 2005).
Assigning peaks in uniformly labeled proteins
Spectroscopic Assignment
A. A. De Angelis, S. C. Howell, A. A.
Nevzorov
, S. J.
Opella
,
Journal of the
American Chemical Society
128, 12256 (2006/09/01, 2006).
R. W. Knox, G. J. Lu, S. J.
Opella
, A. A.
Nevzorov
,
Journal of the American
Chemical Society
132, 8255 (2010/06/23, 2010).
•
Can identify coupling up to
6.7Å away
•
Previous methods only
identify coupling < 5Å
Sensitivity Enhancement
Spectroscopic Assignment
Structure Calculations
Research
Determining structure from “shiftless” data
Y. Yin, A. A.
Nevzorov
,
Journal of Magnetic Resonance
212, 64 (2011).
Structure Calculations
C. H. Wu, S. J.
Opella
,
J
Chem
Phys
128, 052312 (Feb 7, 2008).
Y. Yin, A. A.
Nevzorov
,
Journal of Magnetic Resonance
212, 64 (2011).
Structure Calculations
Acknowledgement:
•
Dr. Sharon Campbell
•
Dr. Barry Lentz
•
Dr
. Alexander
Nevzorov
Thank you!
•
W
hy SSNMR is important?
•
What do you
think
the next development for
solid state NMR is
?
•
Can you briefly compare the two major
structure determination techniques: NMR and
X
-
ray crystallography?
Discussion Questions
C.
Glaubitz
, A. Watts,
Journal of Magnetic Resonance
130, 305 (1998).
MAOSS
Compare methods of solving Protein Structure
Discussion
NMR
X
-
ray Crystallography
No
crystal needed
Crystal
Can be used in solution
Solid only
Not good for large proteins, smaller
molecules are comparable to X
-
ray
Generally higher solution
Can measure
dynamics
Stationary
In
vivo
possible (imaging)
In
vitro
D. S.
Thiriot
, A. A.
Nevzorov
, S. J.
Opella
,
Protein
Sci
14, 1064 (Apr, 2005).
PISA Wheel
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Preparing document for printing…
0%
Comments 0
Log in to post a comment