Solid State NMR

nothingstockingsMechanics

Oct 30, 2013 (4 years and 8 days ago)

105 views

Biophysics
Student

Seminar Series

introducing

Solid State NMR

Bo Zhao

Zimeng Li

Introduction to NMR

Application

Solid State NMR

Research

Introduction to NMR

Application

Solid State NMR

Research

Physics


Nuclear Magnetic Resonance

Biology


Structure


Dynamics

Introduction to NMR

Physical Origin

Measurement

Introduction to NMR


Rabi

(1938)


Spin
is internal property of
particles


Spin can generate magnetic field


Protons and Neutrons have spin 1/2





Physical Origin

Xu
, Modern Physics (1993)

Physical Origin

Spin ½ System


Nuclei

Unpaired
Protons

Unpaired
Neutrons

Net Spin

γ (
MHz/T)

Abundance

1
H

1

0

1/2

42.58

99.98%

2
H

1

1

1

6.54

0.0184%

14
N

1

1

1

3.08

99.636%

15
N

1

0

1/2

-
4.316

0.34%

12
C

0

0

0

N/A

99%

13
C

0

1

1/2

10.71

1%

19
F

1

0

1/2

40.08

100%

31
P

1

0

1/2

17.25

100%

?


External field


energy splitting





Spin ½ System

Hornak
, The Basics of NMR (1997)

1
H [ppm]


Internal property


External factor


High Field (1964)


Electron shielding


Spin coupling


Chemical Shift



=
𝑣

𝑣
𝑟 
𝑣
𝑟 

ppm




Spin ½ System

?

e

p

Spin coupling

Chemical Shift Anisotropy

Shi, NMR Introduction course (2003)

Trausch

et al., Chemical Physics Letters (2008)


Spin ½ System

Chemical Shift Anisotropy

Dipole
-
Dipole coupling

𝜈


More shielding
-
> lower
chemical shift.

Chemical Shift Anisotropy

𝜎

,
𝐵


,
𝜈


𝜎


𝜎


𝜎


𝐵
𝑠ℎ𝑖𝑙

𝐵

=
𝐵
0

𝐵
𝑠ℎ𝑖𝑙

Rossum
, Solid State NMR and proteins (2009)

J.
Duer
, Solid State NMR spectroscopy (2002)



More shielding
-
>
lower chemical shift.


Dependent on angular
orientation


More shielded

Chemical Shift Anisotropy

𝜎

,
𝐵


,
𝜈



Spin ½ System

Chemical Shift Anisotropy

Dipole
-
Dipole Coupling

Nuclear

Pair

Internuclear

distance
[

]

Dipolar

coupling

[
𝒌𝑯𝒛
]

1
H,
1
H

10

120

1
H,
13
C

1

30

1
H,
13
C

2

3.8


Dipolar coupling causes huge line broadening


Dipole
-
Dipole Coupling

J.
Duer
, Solid State NMR spectroscopy (2002)


(1952)
Purcell and Bloch

Spin ½
System

Equilibrium


Spin ½
System

Equilibrium

B
0

B
1

B
1

Equilibrium

𝐵
0

M

J.
Duer
, Solid State NMR spectroscopy (2002)


𝜔
=



𝐵

Spin ½
System

Goldstein,
Classical Mechanics

𝑤
0

𝐵
0

M

𝐵
0

M

𝐵
1

Spin ½
System

M


Resonance
𝜔
=
𝜔
0


Maximum signal


𝜔
0

𝜔

ℎ𝜈
=
ℏ𝜔


𝜈
0

ℎ𝜈

Physics Origin

Measurement

Introduction to NMR

ℎ𝜈


Conventional


Continuous Wave


Modern


Pulse Signal

Measurement

𝐵
0

𝜈

𝜈

Hornak
, The Basics of NMR (1997)


Conventional


Continuous Wave


Modern


Pulse Signal

Measurement

𝐵
0

𝜈

𝜈
+


𝜈



𝜈
1
𝐻



𝜈
1
𝐻

𝜈
1
𝐻
+


Anisotropy of
1
H


Measurement

Shi, NMR Introduction course (2003)

Introduction to NMR

Application

Solid State NMR

Research


Protein 3D structure and function study at
atomic resolution


(1976)
R
. R.
Ernst:
Multi dimensional NMR


(1979)

K
.
Wuthrich
:
Solve protein structure


Application

Markley, the Scientists


magazine of life science (2005)


Protein Dynamics/Protein folding
intermediates


Application

Frank, et al. Nature (2010)


Fast structure determination/recognition of
macromolecular compound


Medical
Imaging


Application

Solid

Solution

Dipolar

Coupling (10
-
100kHz)

Scalar

Coupling (10
-
100Hz)

Anisotropic interactions

Isotropic interactions

13
C detection

1
H detection

Sensitivity

low

Sensitivity

high

Require special techniques to improve

linewidth

Natural

tumbling of molecules

Solution vs. Solid State NMR

Application

Application

Introduction to NMR

Solid State NMR

Research

Problems

General Techniques

OS
-
NMR

MAS
-
NMR


Powder Spectra



13
C NMR of
glycine


Problems with SSNMR

Adapted from M.
Edén
,
Concepts in Magnetic Resonance
18A, 24.

D.
Lide
, G. W. A. Milne,
Handbook of Data on Organic Compounds:
Compounds 10001
-
15600 Cha
-
Hex. (CRC Press, 1994).

Solid

Liquid

Problems with SSNMR


Goal: simplify solid state spectra


Adapted from R.
Tycko
,
Annu
. Rev. Phys. Chem.
52, 575 (2001).

Problems

General Techniques

MAS
-
NMR

Solid State NMR

OS
-
NMR


Developed in 1976


Suppresses
1
H
-
1
H and
1
H
-
S coupling


Resolves dilute spins based on chemical
environment


Gives dipolar coupling information



Separated Local Field

R. K. Hester, J. L. Ackerman, B. L. Neff, J. S. Waugh,
Physical Review Letters
36, 1081 (1976).


Hartmann
-
Hahn Condition


Detailed in 1962


Between
heteroatoms


Same
Larmor

frequency




Allows for cross relaxation


L. W.
Jelinski
, M. T. Melchior,
Applied Spectroscopy Reviews
35, 25 (2004/05/24, 2004).

Cross Polarization


First published in 1973


Transfer population information from I to S


Detect off of dilute species


Cleaner spectra


More sensitive


Cross Relaxation

Barth
-
Jan van
Rossum
: Solid
-
state NMR and proteins, a pictorial introduction


Problems

General Techniques

MAS
-
NMR

Solid State NMR

OS
-
NMR

Magic Angle Spinning

Simulating the “tumbling” of molecules


http://www.rs2d.com/english/images/protasis/doty/doty.jpg

Magic Angle Spinning


Proposed in 1958


Coupling dependent on




At magic angle, 54.7356
°
, equals zero


Spin sample to decouple


1
H
-
1
H coupling ~40kHz

E. R. Andrew,
Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences
299, 505 (March 18, 1981,
1981).

3.6kHz

Static

MAS decoupling

Problems

General Techniques

MAS
-
NMR

Solid State NMR

OS
-
NMR

Physical Orientation



Lipids


Oriented Sample NMR

G.
Orädd
, G.
Lindblom
,
Magnetic Resonance in Chemistry
42, 123 (2004).

C. R. Sanders, K.
Oxenoid
,
Biochimica

et
Biophysica

Acta

(BBA)
-

Biomembranes

1508, 129 (2000).

http://avantilipids.com

Replacing “tumbling” with
Rf

irradiation



Polarization Inversion Spin Exchange at the
Magic Angle


Developed in 1994


Form of SLF with enhanced sensitivity


Further suppression of
1
H
-

1
H coupling

C. H. Wu, A.
Ramamoorthy
, S. J.
Opella
,
Journal of Magnetic Resonance, Series A
109, 270 (1994).

PISEMA

SLF

PISEMA

Modified SLF

PISEMA
vs

SLF

C. H. Wu, A.
Ramamoorthy
, S. J.
Opella
,
Journal of Magnetic Resonance, Series A
109, 270 (1994).

D. S.
Thiriot
, A. A.
Nevzorov
, S. J.
Opella
,
Protein
Sci

14, 1064 (Apr, 2005).

Polar Index Slant Angle Wheel

S. Kim, T. A. Cross,
Journal of Magnetic Resonance
168, 187 (2004).

G. A. Cook, S. J.
Opella
,
Methods Mol
Biol

637, 263 (2010).

PISA Wheel

Limitations of PISEMA

A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
185, 59 (2007).


Compliments PISEMA


Developed in 2003


Averages out
homonuclear

spin
-
spin interaction


More uniform over wide range
linewidths



A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
164, 182 (2003).

SAMMY

Limitations of SAMMY

A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
185, 59 (2007).


Slight modification of SAMMY


Developed in 2007


Combines pros of PISEMA and SAMMY


Sensitivity of PISEMA


Range of SAMMY


Can be implemented generally

A. A.
Nevzorov
, S. J.
Opella
,
Journal of Magnetic Resonance
185, 59 (2007).

SAMPI4

Application

Introduction to NMR

Solid State NMR

Research

Sensitivity Enhancement

Spectroscopic Assignment

Structure Calculations


What is mosaic spread?

Reducing the effects of mosaic spread


Sensitivity Enhancement

C. R. Sanders, K.
Oxenoid
,
Biochimica

et
Biophysica

Acta

(BBA)
-

Biomembranes

1508, 129 (2000).

M. J.
Duer
,
Solid
-
state NMR spectroscopy: principles and applications.
(Blackwell Science, 2001).

A. A.
Nevzorov
,
The Journal of Physical Chemistry B
115, 15406 (2011/12/29, 2011).

Sensitivity Enhancement

Static

Slow diffusion

Fast diffusion

Uniaxial

Diffusion


Sensitivity Enhancement

Spectroscopic Assignment

Structure Calculations

Research

Spectroscopic Assignment

D. S.
Thiriot
, A. A.
Nevzorov
, S. J.
Opella
,
Protein
Sci

14, 1064 (Apr, 2005).

Assigning peaks in uniformly labeled proteins


Spectroscopic Assignment

A. A. De Angelis, S. C. Howell, A. A.
Nevzorov
, S. J.
Opella
,
Journal of the
American Chemical Society
128, 12256 (2006/09/01, 2006).

R. W. Knox, G. J. Lu, S. J.
Opella
, A. A.
Nevzorov
,
Journal of the American
Chemical Society
132, 8255 (2010/06/23, 2010).


Can identify coupling up to


6.7Å away


Previous methods only


identify coupling < 5Å

Sensitivity Enhancement

Spectroscopic Assignment

Structure Calculations

Research




Determining structure from “shiftless” data

Y. Yin, A. A.
Nevzorov
,
Journal of Magnetic Resonance
212, 64 (2011).

Structure Calculations


C. H. Wu, S. J.
Opella
,
J
Chem

Phys
128, 052312 (Feb 7, 2008).

Y. Yin, A. A.
Nevzorov
,
Journal of Magnetic Resonance
212, 64 (2011).

Structure Calculations

Acknowledgement:


Dr. Sharon Campbell


Dr. Barry Lentz


Dr
. Alexander
Nevzorov

Thank you!


W
hy SSNMR is important?


What do you
think
the next development for
solid state NMR is
?


Can you briefly compare the two major
structure determination techniques: NMR and
X
-
ray crystallography?



Discussion Questions

C.
Glaubitz
, A. Watts,
Journal of Magnetic Resonance
130, 305 (1998).

MAOSS

Compare methods of solving Protein Structure

Discussion

NMR

X
-
ray Crystallography

No

crystal needed

Crystal

Can be used in solution

Solid only

Not good for large proteins, smaller

molecules are comparable to X
-
ray

Generally higher solution

Can measure

dynamics

Stationary

In

vivo

possible (imaging)

In

vitro

D. S.
Thiriot
, A. A.
Nevzorov
, S. J.
Opella
,
Protein
Sci

14, 1064 (Apr, 2005).

PISA Wheel