Radiation_damagex - USLARP

measlyincompetentUrban and Civil

Nov 29, 2013 (3 years and 6 months ago)

152 views


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Acknowledgments:


G. Ambrosio, F. Cerutti, S
. Clément,
L. S. Esposito, P. Ferracin, P. Fessia, R. Flukiger,
R
.
Gauthier, M. Juchno, A. Mereghetti, N. Peray, J.
-
C. Perez, G. de Rijk, E. Todesco,

Radiation resistance of
insulation systems for IR
Triplets

3

Outline

Outline


Structural requirements for MQXF
based on expected dose


Measurement techniques for
irradiated samples


Experimental results on CTD
-
101K
samples and CE
-
epoxy blend
materials


Experimental and FE simulations of
the SBS Test on G10


Suggested Plan


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

26 July
2012, joint WP2, WP3, and WP10 meeting

Beam screen shielding

Beam screen with
W absorbers at
mid
-
planes

* 0.5 mm clearance between BP and W

0
20
40
60
80
100
120
140
160
180
200
25
30
35
40
45
50
55
60
M
G
y
distance from IP (m)
triplet integrated dose on innermost 3 mm
7.0 TeV proton per 3000 fb
-1
2.3 mm W inserts
7.0 mm W inserts
2 mm BS + 6 mm W absorbers
4

Configurations

Diameter aperture

at mid
-
planes (mm)

3.7 mm BP + 7

mm W inserts

114.6

3.7 mm

BP + 2 mm BS + 6 mm W absorbers*

111.6

Minimum aperture requested from optics is 116 mm


To go below 20 MGy one would need

2 mm BS + 9 mm W absorbers

(105.6 mm residual aperture
)


Maximum thickness shielding for

Q1
-
first half Q2A tailor
-
made


Possible use of other materials for BS/CB
under investigation

With courtesy of F. Cerutti, L.S. Esposito on behalf of CERN FLUKA team [1]

140 mm Nb
3
Sn

Structural
req + energy
deposition

5

Q1 Energy deposition


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

With courtesy of F. Cerutti, L.S. Esposito on behalf of CERN FLUKA team [2]+[3]

Azimuthal energy deposition at Q1 peak

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

6


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

30
-
40 MPa shear

t

t

t

t

Cool
-
down

Max
-
gradient (155 T/m)

150 mm Nb
3
Sn Shear stress

50
-
60 MPa shear

singularity?

Observation of
Shear stress
between turns and
shear between inner
and outer layers

~0 MPa shear

With courtesy of M. Juchno and P. Ferracin [4]

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

7


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

With courtesy of M. Juchno and P. Ferracin [4]

150 mm Nb
3
Sn Azimuthal stress

Cool
-
down

Max
-
gradient (155 T/m)

160 MPa compression stress

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

8

Detailed coil model status


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test


“Rectangular” cable with 150um
G10 insulation


Cable material have similar
properties as initial coil block
(altered to spring model)


High shear stress peaks at cable
corners due to difference in
thermal contraction


Shear stress in coils up to ~30
-
40
MPa (cables and insulation
around conductor in the vicinity of
poles and copper blocks


Possible next step: round
“corners” or strand model with
resin


With courtesy of M. Juchno and P. Ferracin [4]

Plan

End

9

Measurement techniques 1


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Test Nb

1

2

3

4

Name

Flexural test

Ultimate
Tensile Test
(UTS)

Mode I:

intralaminar
crack opening

Mode II:

intralaminar
shear mode

Diagram


Remarks

Recommended
by IEC. Most
radiation
-
sensitive property
for thermoset.

Done at CERN
for yellow books.

Tests

used for radiation effects on insulators for
superconducting fusion magnets by the ATI,
Vienna
. In order to load the anisotropic FRPs in
mode I as well as in mode II under their weakest
condition, the fiber orientation with the lower
fiber content was chosen to be perpendicular to
the notches of the specimens.

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

10

Measurement techniques 2


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Test Nb

5

6

7

Name

Short Beam
Shear (SBS).
Interlaminar

Shear/compression
test

10
°

off
-
axis tensile test

Diagram


Remarks

SBS: interlaminar
strength.

Other tests were done:
double
-
lap
-
shear (DLS)
test method, cycling test, etc. (not presented
here).

10
°

off
-
axis tensile test is normally used for
intralaminar shear strength

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

11

ATI Vienna Facility 1


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

MTS 810 test facility

10 cm

5 cm

Short
-
beam
-
shear test

23 mm

6.4


6.5
mm


Sample thickness should be 3 mm, preferably 4 mm.


At least 10 samples are needed for one test.


In case of a wrapped insulation, the tests should be
carried out parallel
and
perpendicular to the winding
direction (10 + 10 samples).


Approximately 90 shear samples can be
irradiated in one run.

With the courtesy of R. Prokopec [32]

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

Plan

End

12

ATI Vienna Facility 2


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT


At least 5 samples are needed for static tests and
additional 20 samples for stress lifetime curves.


20 samples can be irradiated in one run (for 4 mm
sample thickness).

ATI

d
-
ASTM

ASTM

Static:

with and without strain recording

Dynamic:

load controlled

Tensile tests

20

10

140

70

10

Tensile test specimen

geometries

With the courtesy of R. Prokopec [32]

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test


Dose rate: 40 MGy in 5 open days


1 Container = 1 dose level


Costs: 50 MGy = 16 k


per container +
staff

Plan

End

13

Relative mechanical
properties for CTD
-
101K


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

1%
10%
100%
0
1
10
100
Relative mechanical properties (tests 77 K)

Absorbed dose (MGy)

CTD
-
101K, with 50% Vf
virgin

S
-
2
Glass

Torsional Shear Modulus
Compressive Strength
Compressive Modulus
Flexural Modulus
Torsional Shear Strength
Fracture Resistance GIC
Torsional Shear Strain
Shear Strength
ILSS
0

≈ 120 MPa

30% degradation at 50 MGy

Shear strength and
degradation with
irradiation is the most
sensitive property

[29]+[30]+[31]

UTS: 35
% reduction at 180
Mgy from UTS
0

~ 1050 MPa

Compressive

strength = 1080 MPa at 160 Mgy (Loss 20%)

Fracture Resistance
G
IC
: 66% reduction at 230 MGy

G10 SBS
Test

70% degradation
at 90 MGy

Plan

End

SBS test gives «apparent ILSS»

95% degradation
at 160 MGy

14

Shear/compressive properties of CTD
-
101K


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results


Shear/compression failure envelope


Shear strength increases with
angle till 84
°
, then drops


Compression prevents shear
failure


On vertical plane (at peak dose
location), compression is huge and
shear stress is small



Almost pure compression state

0
50
100
150
200
250
300
0
500
1000
1500
Shear

Strength

(MPa)

Compressive Stress (MPa)

Shear/compression failure envelope for CTD
-
101K
virgin fibers insulation system at 76 K

0° (SBS)
15°
45°
75°
84°
90° (compression)
Angle


45
°

shear/compression test to
characterize both types of heat
treatment (14% reduction)


No significant difference in mechanical
properties between for specimen with
and without heat treatment


Not possible to compare
interlaminar shear properties after
700
°
C heat treatment using SBS test
(tensile mode failure)



UTS of fibers significantly damaged

G10 SBS
Test

[29]+[30]+[31]+[37]+[38]+[39]

Plan

End

FE studies on Shear/Compression test


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

15


Comparison analytical vs numerical
investigations shows inhomogeneous
and tri
-
axial stress state.


Considerable thermal stresses arise
from cooling to cryogenic
temperatures (not evaluated by
analytical considerations)


Failure of the specimens mainly takes
place at the interface (influence of
thermal stresses)


The reliability of the test method is
questionable if the specimen
fractures at the interface.



Strong dependency of surface
conditions (arbitrary circumstances)


Irradiation problem: high activation of
steel plates

[37]+[41]

Plan

End

16

Mechanical properties for CE
-
epoxy blend


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

O
O
C
H
3
H
C
N
C
N
Cyanate ester

(AroCy
-
L10)

G10 SBS
Test

[
32+[33]+[34]

Plan

End

G10 SBS experimental results


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

SBS
[MPa]

F
SBS
_1

F
SBS
_2

F
SBS
_3

F
SBS
_4

F
SBS
_5

Average


Standard deviation

Coefficient of variation %

Series A

54.80

58.03

55.87

55.37

56.77

56.17

1.27

2.26

Series B

53.50

54.22

52.14

48.32

51.68

51.97

2.28

4.39

Series C

38.17

36.30

35.84

36.11

33.54

35.99

1.65

4.59

Series D

54.91

56.28

55.86

55.04

54.86

55.39

0.64

1.16



Nb of
specimen

L
(mm)

b
(mm)

t
(mm)

l
(mm)

l/t

Specimens

A

5

24

10

4

12

3

Specimens

B

5

24

10

4

16

4

Specimens

C

5

42

10

4

28

7

Specimens

D

5

24

6

4

16

4

With the courtesy of A. Gerardin (EDMS N
°

1259235) + [40]

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

17

Plan

End

FE studies on SBS test


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

18


f
-
factor = 1 inside the specimens



the stress is equal to the shear
stress obtained from an analytical 2D
solution


The real “ILSSs” are higher than the
experimental results

[36]

Plan

End

G10 SBS FE results


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

19

Shear

at

D (MPa)

Shear

at

F (MPa)

Sigma x at F
Inside (MPa)

Sigma z at F
Inside (MPa)

Exp
. ILSS SBS
(MPa)

Inside

Outside

f
-
factor

Inside

Outside

Series A

56.17

55.61

67.97

1.22

129.79

140.24

374.48

-
127.01

Series B

51.97

51.05

63.63

1.25

125.01

130.38

454.98

-
122.71

Series C

35.99

33.99

43.84

1.29

88.36

82.41

509.98

-
86.82

Series D

55.39

55.38

64.83

1.17

133.19

147.61

494.08

-
130.83

Contrainte de rupture à la flexion, <= 10 mm

perpendiculairement aux strates, sens longitudinal : > 350 N/mm2

Plan

End


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

20

21

Suggested plan

Internal test campaign prior to irradiation campaign (
unirradiated

fibers)


SBS test of heat treated fibers with 3 resins (CTD
-
101K,
CE/epoxy blend, MY750)


Resin with 1)virgin fiber, 2) 50h @700
°
C fiber, 3
) 50h @700
°
C
ht

fiber +
ceramic binder + 4)
50h @700
°
C
ht

fiber + PVA


10
°

off axis
-
test as support of SBS test


Shear/compression test of the system [cable + insulation]

Irradiation campaign (to be discussed)


What is the maximum dose level (20 MGy)?


SBS


Interlaminar shear test (qualitative)


Shear/compression test of the system [cable + insulation]
(Quantitative)


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

CTD
-
101K

MY750

CE

Virgin fibers

Fibers after reaction

Fibers

after reaction
and ceramic binder

Plan

End

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

22


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

Plan

End

Outline

Structural
req + energy
deposition

Measurement
techniques

CTD
-
101K +
CE
-
epoxy
results

G10 SBS
Test

24


Elvis Fornasiere | CERN, 26
th

February 2013

TE
-
MSC
-
MDT

With courtesy of M. Juchno and P. Ferracin [4]

150 mm Nb
3
Sn Radial stress

References

1.
F. Cerutti, L.S. Esposito on behalf of CERN
Fluka

team, “Shielding the 140 option”, Hi
-
Lumi

LHC WP10, CERN,
26
July
2012.

2.
F. Cerutti, L.S. Esposito on behalf of CERN
Fluka

team,
“First estimates of energy deposition for the new inner
triplet”,
Hi
-
Lumi

LHC WP10, CERN,
7
June

2012.

3.
L.S. Esposito,
private

communication, CERN, 25.02.2013.

4.
M. Juchno,
private

communication, CERN, 25.02.2013.

5.
C.
Barrère
, D. Dal
Maso
,
Résines

époxy

réticulées

par des polyamines: structure et
propriétés
, Revue de
L’Institut

Français

du
Pétrole
, Vol. 52, N
°

3, Mai
-
Juin

1997

6.
P.
Bardonnet
,
Résines

époxydes

(EP)


Composants

et
propriétés
, Doc. A 3 465, Techniques de
l’Ingénieur
, 2012

7.
T.
Devanne
,
Vieillissement

radiochimique

d’un
réseau

époxyde
,
Thèse

N
°

2003
-
05, E.N.S.A.M, 16 Mai 2003

8.
D.W. Clegg, A. A.
Collyer
,
Irradiation effects on polymers
, Elsevier Science Publishers LTD, London, 1991

9.
A.
Idesaki
, A. Shimada, N.
Morishita
, M. Sugimoto, M. Yoshikawa,
Evalutation

of Radiation Resistance for
Organic Materials Used in Atomic Energy
-
related Facilities
, Radiation Effects in Super Conducting Magnet
Materials (RESMM’12),
Fermilab
, February 13
-
15,2012

10.
D. Reed,
Radiation Tolerance of Resins
, Rad
-
Hard Insulation Workshop,
Fermilab
, April 20, 2007

11.
H
.
Schönbacher
, A.
Stolarz
-
Izycka
,
Compilation of radiation damage test data


Part II: Thermosetting and
thermoplastic resins
, CERN 79
-
08, Geneva, 1979

12.
M
. H. Van de
Voorde
,
Effects of radiation on materials and components
, CERN 70
-
5, Geneva,
1970

13.
M. H. Van de
Voorde
,
Action des radiations
ionisantes

sur

les
résines

époxydes
,
CERN
70
-
10,
Geneva,
1970

14.
M. Tavlet, A. Fontaine and H.
Schönbacher
, “Compilation of radiation damage test data, pt.2: Thermoset and
thermoplastic resins, composite materials”, CERN
-
98
-
01, Geneva : CERN, 1998.
-

173 p
.


25

26/02/2013

E. Fornasiere

References

15.
International
Electrotechnical

Commission, Geneva, Publication No. 544: Guide for
determining the
effects of
ionizing radiation on insulating materials, Part I: Radiation interaction, Ref.
544

1 (1977
); Part 2: Procedures for
irradiation, Ref. 544

2 (1979); Part 3: Test procedures for
permanent effects
, Ref. 544

3 (1979); Part 4:
Classification system for service in radiation
environments, Ref
. 544

4 (1985
).

16.
D.C. Phillips et al., The selection and properties of epoxide resins used for the insulation of
magnet systems
in
radiation
enviroments
, CERN 81

05 (1981
).

17.
H
. Schönbacher, B.
Szeless

and M. Tavlet, “Results of radiation tests at cryogenic temperature on some selected
organic materials for the LHC”, CERN 96
-
05, Geneva,
1996

18.
G
.
Lipták

et al., “Radiation tests on selected electrical insulating materials for high
-
power and
highvoltage

application”, CERN 85

02, Geneva,
1985.

19.
H
. W. Weber
et al.,
“Low temperature neutron and gamma irradiation of glass fiber reinforced epoxies”, Journal
of Nuclear Materials 115 (1983)
11
-
15

20.
K
. Humer
et al.
, “Radiation effects on insulators for superconducting fusion magnets”, Cryogenics 35 (1995)
871
-
882

21.
René
Flükiger, Gijs de Rijk, “Review of WAMSDO 2011 Workshop: Superconductors in LHC Upgrade (
HiLumi

LHC)”, RESMM’12,
Fermilab
,
13
-
15.02.2012

22.
Ezio
Todesco, “ High Luminosity LHC: Magnets”, Applied Superconductivity Conference, Portland, 9
th

October
2012

23.
P
. Ferracin, “MQXF coil cross
-
section status”,
HiLumi

WP3 Video
-
meeting, 28 August,
2012

24.
P
. Fessia, “The CERN magnet program and the conductor needs”, LTHFS
Worhshop
, Napa Valley


5
th

to 7
th

November
2012


26

25/02/2013

E. Fornasiere

References

25.
K
. Humer
et al.
, “Tensile and shear fracture behavior of fiber reinforced plastics at 77 K irradiated by various
radiation sources”, Adv.
Cryog
. Eng. 40 (
1993)

26.
K
. Humer
et al.
, “Low temperature tensile and fracture mechanical strength in mode I and mode II of fiber
reinforced plastics following various irradiation conditions”, Fusion Technology
1994

27.
K
. Humer
et al.
, “Tensile and fracture behavior in mode I and mode II of fiber reinforced plastics following
reactor irradiation”, Advances in Cryogenic Engineering (1996), Vol.
42

28.
K
. Humer
et al.
, “Low
-
temperature interlaminar shear strength of reactor irradiated glass
-
fibre
-
reinforced
laminates”, Cryogenics 36 (1996) 611
-
617

29.
Composite Technology Development, Inc. “CTD
-
101 and CTD
-
101K Epoxy Resin System”, Datasheet, 2003.

30.
Composite Technology Development, Inc. “CTD
-
101K Epoxy Resin System”, Datasheet, 2003.

31.
Composite Technology Development, Inc. “CTD
-
101K Epoxy Resin System”, Datasheet, 2012
.

32.
N. A.
Munshi
, J. K. Walsh, M. W. Hooker, H. K. Babcock, “Radiation Resistant Electrical Insulation Qualified for
ITER TF Coils”, Applied
Supeconductivity

Conference, Portland (OR), October 2012.

33.
Composite Technology Development, Inc.
“CTD
-
400 Series Cyanate Ester Resins for RTM High Performance,
Eady

Processing”,
Datasheet,
2002.

34.
Composite Technology Development, Inc.
“Cyanate Ester
-
based Insulations Summary Data Sheet”, Datasheet.

35.
R. Prokopec, “Mechanical tests on radiation resistant insulation materials”, PPT Presentation,
19.12.2012

36.
D.H.
Pahr
, F.G.
Rammerstorfer
, P.
Rosenkranz
, K. Humer, H.W. Weber, “A study of short
-
beam
-
shear and double
-
lap
-
shear specimens of glass fabric/epoxy composites”, Composites: Part B 33 (2002) 125
-
132.

37.
D.H.
Pahr
, H.J.
Böhm
, K. Humer, H. W. Weber, “Analytical and finite element investigations of shear/compression
test fixtures”, Cryogenics 45 (2005), 606
-
616.

27

26/02/2013

E. Fornasiere

References

38.
P.E. Fabian, J. B.
Schutz
, C. S. Hazelton, R. P. Reed, “Properties of candidate ITER Vacuum Impregnation
Insulation Systems”, Advances in Cryogenic Engineering, Vol. 40, New York, 1994

39.
P.E. Fabian, R.P. Reed, J.B.
Schutz
, T.S. Bauer
-
McDaniel, “Shear/compressive properties of candidate ITER
inuslation

systems at low temperatures”, Cryogenics 35 (1995) 689
-
692

40.
R. P. Reed, J. B.
Darr
, J. B.
Schutz
, “Short
-
Beam Shear Testing of candidate magnet
inulators
”, Cryogenics (1992),
Vol. 32 ICMC Supplement

41.
H. Weber,
private

communication,
Email exchange, 19.02.2013
.



28

26/02/2013

E. Fornasiere