an assessment of health risks and evaluation of regulatory practice

manyhuntingUrban and Civil

Nov 16, 2013 (3 years and 1 month ago)

44 views

www.fhi.no
report 2012:3
Utgitt av Nasjonalt folkehelseinstitutt
Postboks 4404 Nydalen
0403 Oslo
Tel: +47-21 07 70 00
E-mail: folkehelseinstituttet@fhi.no
www.fhi.no
Bestilling:
E-post: publikasjon@fhi.no
Telefon: +47-21 07 82 00
Telefaks: +47-21 07 81 05
ISSN: 1503-1403
ISBN: 978-82-8082-509-4 trykt utgave
ISBN: 978-82-8082-510-0 elektronisk utgave
Low-level radiofrequency
electromagnetic fields – an
assessment of health risks and
evaluation of regulatory practice
Report from the Expert Committee appointed by
the Norwegian Institute of Health, commissioned
by the Ministry of Health and Care Services and
the Ministry of Transport and Communications
English summary
30

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
The use of equipment that emits radio waves has increased in recent years. Wireless communica-
tion technologies such as mobile phones are widespread. In recent years, the demands for better
coverage, enhanced technology and extended features for mobile phone services have resulted
in a significant increase in the number and density of radio transmitters. Exposure to electromag-
netic fields and its potential health effects is a prominent topic in the media. This has led to public
concern and uncertainty, not only about electromagnetic fields emitted from mobile phones,
but also about electromagnetic fields emitted from base stations used by mobile phones and
other wireless networks. The Norwegian Radiation Protection Authority receives daily enquiries
about the possible adverse health effects from such exposure. The Norwegian health authorities
decided that there was a need for a wider review and assessment of the potential health effects
to be carried out by scientists from various disciplines, in order to clarify any risks to human health
and to assess the need for changes in the regulation of electromagnetic fields.
On the basis of the public concerns, the Ministry of Health and Care Services and the Ministry
of Transport and Communications requested, in a letter dated 16.11.2009, that the Norwegian
Institute of Public Health should assemble a cross-disciplinary Expert Committee. The mandate
requested that the group should: “… summarise the knowledge regarding exposure to weak
high-frequency fields. It shall provide a summary of the current management practices in
Norway and in comparable countries. The purpose is to investigate the management and regu-
lations concerning electromagnetic radiation, including the placement of mobile masts, base
stations and wireless networks. The analysis should also include an assessment of the suita-
bility of the threshold limit values, as well as an assessment of how the potential risks related to
exposure from electromagnetic fields should be managed in Norway.”
The Expert Committee was established in spring 2010 and was composed of individuals with exper -
tise in environmental and occupational medicine, biology, physics, metrology, biophysics, bioche -
mistry, epidemiology and philosophy, as well as expertise in administration and risk management:
Jan Alexander, MD PhD, Prof., Deputy Director-General, Norwegian Institute of Public Health
(Chair of Committee)
Gunnar Brunborg, PhD, Department Director, Norwegian Institute of Public Health
Maria Feychting, PhD, Prof., Karolinska Institutet
Ellen Marie Forsberg, PhD, Senior Scientist, Work Research Institute/ Oslo and Akershus
University College of Applied Sciences
Svein Gismervik, Civil Engineer, Technical Team Leader, Trondheim Municipality
Jan Vilis Haanes, MD, Chief Medical Officer, University Hospital of North Norway
Yngve Hamnerius, Prof., Chalmers University of Technology
Merete Hannevik, MSc, Head of Section, Norwegian Radiation Protection Authority
Per Eirik Heimdal, MSc, Head of Section, Norwegian Post and
Telecommunications Authority
Lena Hillert, MD PhD, Associate Prof., Senior Medical Officer, Karolinska Institutet
Lars Klæboe, PhD, Senior Scientist, Norwegian Radiation Protection Authority
Petter Kristensen, MD PhD, Prof., Research Director, National Institute of Occupational Health
Bente Moen, MD PhD, Prof., University of Bergen
Gunnhild Oftedal, PhD, Associate Prof., Sør-Trøndelag University College
Tore Tynes, MD PhD, Senior Medical Officer, National Institute of Occupational Health
Bjørn Tore Langeland, PhD, Norwegian Institute of Public Health (Secretary until 31.1.2012)
Observer: Solveig Glomsrød, Foreningen for el-overfølsomme (FELO) (Association of
electromagnetic-hypersensitive citizens)
This is the English summary
extracted from the
Norwegian report about
low-level radiofrequency
electromagnetic fields (2012:3).
The summary is translated by
the Norwegian Institute of
Public Health.
Rapport 2012:3 • Folkehelseinstituttet
31
Summary
The Expert Committee has reviewed and evaluated recent research in the relevant fields. They
have reviewed recent research reports and expert review reports by international and national
expert groups. Based on this review and on available data about exposure to electromagnetic
fields, the Committee has conducted a risk assessment and also evaluated the current regula-
tory practice.
The Committee’s experts on health and exposure to electromagnetic fields share the main
responsibility for part I and part II of this report. The Committee’s experts on health effects and
biophysics have primarily contributed to the recommendations regarding the regulatory prac-
tices, and ensured that these are consistent with the professional evaluations.
A reference group was established in response to requests from the Ministry of Health and Care
Services and the Ministry of Transport and Communications. A number of institutions were
invited. The reference group consisted of: Per Morten Hoff (ICT Norway), Bjørn Erikson and Ali
Reza Tirna (The Norwegian Confederation of Trade Unions (LO)), and Solveig Glomsrød (FELO).
The reference group has held meetings with the Chair and the Committee’s Secretariat and has
provided valuable input on an ongoing basis.
1.1 Process
An overall assessment of the health risks of exposure to electromagnetic fields – the part of
the frequency spectrum called radiofrequency fields (RF fields; frequency range 100 kHz-300
GHz) – has been implemented in the same way as is common for other types of environmental
exposure. Health risks have been evaluated on the basis of internationally published research
literature, which is very extensive for RF fields. Exposure to RF fields in the Norwegian popula-
tion has been considered primarily using measurements taken by the Norwegian authorities in
the course of 2010. The Expert Committee has assessed the overall health risk based on these
measurements.
Part I of the report describes the current exposure to RF fields, sums up the knowledge of
potential health hazards and contains a risk assessment. Part II of the report addresses the
general health problems that are attributed to electromagnetic fields (electromagnetic hyper-
sensitivity). Part III describes the risk management, risk perception and concern for harmful
effects of RF fields. Part IV reviews the present regulation of RF fields in other countries as well
as in Norway. Part V assesses the current regulations in Norway and provides advice on how to
regulate RF fields.
1.2 Exposure to low-level RF electromagnetic fields (Chapter 3)
Levels of natural (i.e. not man-made) RF fields are very low. RF fields in the environment are
therefore generated by human activity.
The sources of RF fields are primarily equipment used in communications, industry and medicine.
In communication systems (e.g., mobile phones), the antenna functions most often as both the
transmitter and receiver of the electromagnetic field. The main factors that affect exposure are
distance from the antenna, the effect from the transmitter, frequency, the antenna’s transmission
32

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
direction, the antenna location (e.g. height above ground), and the number of antennas. The
source that most often provides the strongest exposure is the mobile phone.
In 2010, the Norwegian Post and Telecommunications Authority and the Norwegian Radia-
tion Protection Authority conducted a study of exposure to RF fields in the environment. Prior
to this, systematic studies had only been conducted in Norway to a limited extent, although
individual measurements had been conducted on many occasions. The 2010 study included
exposure from broadcasting, wireless internet (WLAN) and base stations for services like mobile
broadband, mobile telephony and the public safety radio network (TETRA) in a selection of
buildings and outdoors. Total exposure from all sources in the environment was less than 0.01
W/m
2
for 99 per cent of the measurement points and below 0.001 W/m
2
for 70 per cent of the
measurement points. In most places, the level was well below 1/1000 of the reference values
for maximum exposure as recommended by the International Commission on Non-ionising
Radiation Protection (ICNIRP). These reference values apply as the threshold limit values in the
Norwegian radiation protection regulations. Wireless networks were generally the weakest
of the RF field sources. Base stations for mobile telephony (GSM900 and GSM1800) were, on
average, the source type that contributed the most in relative terms, although the levels from
these sources were still low. In office environments, wireless networks were the dominant
source, but the overall exposure to RF fields was low. Similar measurements carried out in
some other European countries show that the levels in Norway are comparable, with the same
technology.
Due to the short distance, local exposure to the head from hand-held mobile phones is signi-
ficantly higher than that from the other RF sources in the environment, and mobile phones
provide the highest contribution to the total exposure for individuals. The use of hands-free
mobile phones reduces exposure significantly. When a GSM mobile phone transmits at
maximum power, the exposure from some models approaches the ICNIRP’s reference values for
maximum exposure. A greater density of base stations leads to better coverage so that mobile
phones can transmit with lower power, leading to lower exposure. In recent years, technolo -
gical developments have contributed further to lower exposure to RF fields. Even if usage time
of mobile telephony were to continue to increase, it is assumed that the total exposure from
mobile phone use may decrease because of better transmission networks and because the
emitted power from newer UMTS phones is much lower than from GSM phones.
1.3 Health effects from exposure to electromagnetic fields
(Chapter 4)
Chapter 4 provides a summary of possible health hazards following exposure to weak RF fields,
and at which exposure levels these may occur when fields are stronger. In addition, the Expert
Committee has reviewed scientific evidence about the significance of electromagnetic field
exposure for individuals who experience health problems from electromagnetic fields (electro -
magnetic hypersensitivity).
1.3.1 Known health effects from strong RF fields
Thermal effects, i.e., heating of cells and tissues, can occur from exposure to RF fields that
exceed certain intensities in the frequency range 100 kHz - 10 GHz. The degree of heating may
depend on the field intensity and frequency and also on the balance between the amount of
Rapport 2012:3 • Folkehelseinstituttet
33
Summary
absorbed energy per unit time and the body or tissue’s ability to dissipate the heat. There are
exposure thresholds above which heating becomes harmful following exposure to RF fields.
It is known that whole body exposure with SAR = 4 W / kg (for a mean of 30 minutes) can
cause a temperature increase of about 1 °C which is considered to be a threshold for adverse
health effects, implying that a temperature increase of up to 1 °C has no negative conse-
quences. So-called basic restriction values are derived from the exposure threshold values, with
additio nal safety factors. For workers and the general public, the basic restriction values are,
respectively, 1/10 and 1/50 of the exposure threshold value of 4 W / kg for SAR, i.e. 0.4 and 0.08
W/kg. From the basic restriction values, the so-called reference values are derived for external
fields, i.e., these are values which can be measured in the air outside the body.
Excitation of nerve tissue, i.e. the initiation of nerve signals, can occur from exposure to RF
fields in the frequency range up to 10 MHz when electric fields are induced above certain
intensities in the body. The exposure levels required to cause excitation of nerve tissue vary
with frequency. As for heating, the ICNIRP basic restriction values of electric field intensities
are derived from the exposure levels, with additional safety factors. From the basic restriction
values, reference values are derived for the external field.
There is a broad international consensus among experts that the ICNIRP reference values
(recommended values for maximum exposure) provide good protection against both the
excitation of nerve tissue and harmful heating of body tissues. For exposure at levels below the
ICNIRP reference values, the ICNIRP has found no documented adverse effects, despite exten-
sive research. No mechanisms have been identified which could account for any such effect.
The Expert Committee has used the ICNIRP’s basic restriction and reference values as the foun-
dation for its review and assessment of possible adverse effects that may occur as a result of
exposure to weak RF fields. The questions discussed by the Expert Committee mainly concern
whether there may be adverse effects at exposures lower than the ICNIRP basic and reference
values, i.e., weak RF fields. Is there evidence of harmful effects from the scientific study of
cells, animals or people? If the answer to that question is no - how good is the evidence that
exposure is safe at levels below the ICNIRP levels?
1.3.2 Health effects of weak RF fields
1
There are a large number of older and newer studies of possible health effects caused by RF
fields. Compared with many other types of environmental exposure where there is a proven
health risk, the research literature for weak RF fields is extensive.
The Expert Committee has reviewed previous scientific reports from independent expert
panels worldwide, as well as recently published studies on the possible effects on health
following exposure to weak RF fields. Emphasis has been placed on whether there is consensus
among the conclusions of the various expert groups. The health effects that are most studied
are : the risk of cancer development and effects associated with cancer development (e.g.,
DNA damage); the effects on reproduction; the nervous system; the cardiovascular system;
the immune system; hormone regulation; gene expression in cells; and the significance of
electromagnetic fields for individuals who experience health problems following exposure to
electromagnetic fields (electromagnetic hypersensitivity). The conclusions below are based on
an overall assessment of both older and newer studies, performed in either cells and tissues, in
animals, or in humans - i.e., experimental clinical trials and population studies.
1
Weak RF fields are defined by the Expert Committee as being below ICNIRP´s Reference Values
34

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
M o s t r e c e n t s t u d i e s h a v e i n v e s t i g a t e d t h e p o s s i b l e h e a l t h e ff e c t s f r o m e x p o s u r e t o w e a k R F
fi e l d s a t l e v e l s t h a t a r e l o w e r t h a n t h o s e k n o w n t o c a u s e d i e l e c t r i c h e a t i n g o r e x c i t a t i o n o f
n e r v e t i s s u e.
S o m e s t u d i e s o b s e r v e d t h a t e x p o s u r e t o w e a k R F fi e l d s m a y h a v e m e a s u r a b l e b i o l o g i c a l e ff e c t s.
I n s e v e r a l s t u d i e s, i t i s d i ffi c u l t t o r u l e o u t t h a t e x p o s u r e m i g h t h a v e l e d t o l o c a l h e a t i n g. I t i s
i m p o r t a n t t o n o t e t h a t c e l l s a n d t i s s u e s t h a t a r e e x p o s e d t o v e r y l o w h e a t w i l l r e s p o n d w i t h
m e a s u r a b l e b i o l o g i c a l r e s p o n s e s i n t h e s a m e w a y t h a t t h e b o d y r e s p o n d s t o o t h e r p h y s i c a l
i n fl u e n c e s, s u c h a s h e a t a n d c o l d f r o m o t h e r s o u r c e s. I n s u c h c a s e s, t h e b o d y w i l l s e e k t o m a i n -
t a i n n o r m a l b o d y t e m p e r a t u r e. T h u s, s u c h b i o l o g i c a l r e s p o n s e s d o n o t i m p l y t h a t a n a d v e r s e
h e a l t h e ff e c t h a s b e e n i n d u c e d.
1.3.2.1 C a n c e r
A n u m b e r o f p o p u l a t i o n s t u d i e s h a v e s t u d i e d p o s s i b l e c a n c e r r i s k s a s a r e s u l t o f R F e x p o s u r e.
M o s t s t u d i e s h a v e b e e n o n h e a d t u m o u r s i n c o n n e c t i o n w i t h t h e u s e o f m o b i l e p h o n e s, s i n c e
t h i s i s t h e a r e a w i t h t h e h i g h e s t R F e x p o s u r e. M e t h o d o l o g i c a l p r o b l e m s i n t h e s e s t u d i e s i n c l u d e
t h e r i s k o f e r r o n e o u s r e g i s t r a t i o n o f R F e x p o s u r e b y m o b i l e p h o n e u s e. I n c o h o r t s t u d i e s ( w h e r e
p o p u l a t i o n s a r e f o l l o w e d a n d e x p o s u r e d a t a i s c o l l e c t e d b e f o r e a n y d i s e a s e d i a g n o s i s ), i n a c-
c u r a t e e x p o s u r e d a t a c a n m e a n t h a t p o s s i b l e a s s o c i a t i o n s a r e n o t d e t e c t e d. I n c a s e - c o n t r o l
s t u d i e s, m o b i l e p h o n e u s e a m o n g p a t i e n t s w h o d e v e l o p e d b r a i n c a n c e r i s c o m p a r e d w i t h
m o b i l e p h o n e u s e a m o n g h e a l t h y c o n t r o l s u b j e c t s. E x p o s u r e d a t a i s c o l l e c t e d a f t e r d i a g n o s i s.
I n s u c h s t u d i e s, e x p o s u r e r e p o r t s c a n b e a ff e c t e d b y d i s e a s e s t a t u s, l e a d i n g t o f a l s e o r a p p a r e n t
a s s o c i a t i o n s, w h e r e i n r e a l i t y t h e r e a r e n o n e ( r e c a l l b i a s ). I t i s r e a s o n a b l e t o a s s u m e t h a t t h e
g r a d u a l l y i n c r e a s i n g a n d w i d e s p r e a d u s e o f m o b i l e p h o n e s w o u l d h a v e l e d t o a n i n c r e a s e d
c a n c e r i n c i d e n c e o v e r t i m e, i f u s e w a s c a r c i n o g e n i c. U s i n g s e v e r a l c a n c e r r e g i s t r i e s, i n c i d e n c e
s t u d i e s h a v e e x a m i n e d c h a n g e s i n t h e i n c i d e n c e o f s u s p e c t e d c a n c e r s s i n c e m o b i l e t e l e p h o n y
w a s i n t r o d u c e d. A n o v e r a l l a s s e s s m e n t m u s t t a k e i n t o a c c o u n t t h e r e s u l t s f r o m a l l t y p e s o f
s t u d i e s, i.e., c o h o r t s t u d i e s, c a s e c o n t r o l s t u d i e s a n d i n c i d e n c e s t u d i e s. W i t h t h e e x c e p t i o n o f
s o m e c a s e - c o n t r o l s t u d i e s, t h e m a j o r i t y o f t h e c a s e - c o n t r o l s t u d i e s a n d c o h o r t s t u d i e s h a v e
r e p o r t e d n o i n c r e a s e d r i s k o f c a n c e r. T h e r e s u l t s o f t h e i n c i d e n c e s t u d i e s s h o w n o e v i d e n c e o f
i n c r e a s i n g i n c i d e n c e o f t h e s e c a n c e r s o v e r t i m e.
T h e E x p e r t C o m m i t t e e c o n s i d e r s t h e i n c r e a s e d r i s k r e p o r t e d i n s o m e c a s e - c o n t r o l s t u d i e s t o b e
i n c o n s i s t e n t w i t h t h e r e s u l t s f r o m s t u d i e s o f t i m e t r e n d s b a s e d o n c a n c e r r e g i s t r y d a t a i n e i t h e r
t h e N o r d i c o r o t h e r c o u n t r i e s.
O v e r a l l, t h e a v a i l a b l e d a t a s h o w n o a s s o c i a t i o n b e t w e e n e x p o s u r e t o R F fi e l d s f r o m a m o b i l e
p h o n e a n d f a s t - g r o w i n g t u m o u r s, i n c l u d i n g g l i o m a s i n t h e b r a i n w h i c h h a v e a s h o r t i n d u c t i o n
p e r i o d ( t i m e f r o m e x p o s u r e t o d i s e a s e ).
F o r s l o w - g r o w i n g t u m o u r s, i n c l u d i n g m e n i n g i o m a s a n d a c o u s t i c n e u r o m a s, t h e d a t a a v a i l a b l e
s o f a r d o n o t i n d i c a t e a n i n c r e a s e d r i s k. H o w e v e r, i t i s t o o e a r l y t o c o m p l e t e l y e x c l u d e t h e p o s s i -
b i l i t y t h a t t h e r e m a y b e a n a s s o c i a t i o n w i t h e x p o s u r e t o R F fi e l d s f r o m m o b i l e p h o n e s, b e c a u s e
t h e p e r i o d o f u s e o f m o b i l e p h o n e s i s s t i l l t o o s h o r t. A v a i l a b l e e p i d e m i o l o g i c a l c o h o r t a n d c a s e -
c o n t r o l s t u d i e s p r o v i d e n o i n f o r m a t i o n a b o u t a p o s s i b l e e ff e c t a f t e r a l o n g i n d u c t i o n p e r i o d.
T h e l o n g e s t i n d u c t i o n p e r i o d s t u d i e d i s 1 3 y e a r s, a n d n o p a r t i c i p a n t s h a d u s e d m o b i l e p h o n e s
f o r m o r e t h a n 2 0 y e a r s o l d w h e n t h e s t u d i e s w e r e c o n d u c t e d.
Rapport 2012:3 • Folkehelseinstituttet
35
Summary
For leukaemia, lymphoma, salivary gland tumours and other tumours, there are insufficient
data to draw conclusions, but the available studies do not suggest an increased risk. The
only study that looked at exposure to RF fields from mobile phones and the possible risk of
brain tumours among children and adolescents does not support an association, but a minor
increase in risk cannot be excluded as a result of limited statistical power in the study.
There are several registry-based studies that have examined the development of the incidence
of brain tumours over time among children and adolescents. They show no indication of
increased disease incidence in these groups after the introduction of mobile phones.
Exposure from base stations and radio and television transmitters is significantly lower than
from using a mobile phone and the available data do not suggest that such low exposure could
increase the risk of cancer.
A number of studies of cancer in animals have been performed, and relevant mechanisms
have also been studied using micro-organisms and cells. Overall, these studies provide further
evidence that exposure to weak RF fields does not lead to cancer.
As a result of the specific methodological problems, new case-control studies would probably
only provide limited new information. In new studies, it will be more important to monitor the
incidence of brain tumours in population-based cancer registries with high quality records. This
should identify whether the incidence of these tumours in children, adolescents and adults
remains unchanged.
1.3.2.2 Reproductive health
It is well known that exposure to RF fields at levels that provide thermal effects (dielectric
heating), can damage sperm. Several studies of sperm samples from humans and animals
have been carried out to investigate possible non-thermal effects of RF exposure on sperm.
Since sperm cells are particularly sensitive to heating from RF fields, it is important that there
is good control of exposure during the experiments. Most of the earlier studies were of too
poor quality, particularly with regard to control of this aspect of exposure, for any conclu-
sion to be drawn from them. Some recent experimental studies have high methodological
quality and good control of exposure. The results of these studies are ambiguous. Several new
animal studies of high quality showed no effect on sperm quality after RF exposure. There are
three new studies of reasonable quality where the exposure is performed on human sperm
samples. Two showed effects from weak RF fields, while one study showed no effect. The effects
are observed on mature sperm, and the changes are likely to revert when new sperm are
produced. The results must be reproduced and confirmed by several research groups before
conclusions can be made. It is uncertain what the relevance of exposure of sperm outside the
body is compared to exposure of sperm in the testicles. Furthermore, there is a lack of know-
ledge about the significance of moderate changes in sperm quality on male fertility. There are
few population studies of a possible change in fertility caused by RF exposure, and they have
significant weaknesses, so conclusions cannot be drawn from these.
Very few of the older studies show evidence of harmful effects on the foetus after exposure
to weak RF fields. Recent animal studies with good exposure control have shown no signs of
injury. A few population studies of possible effects on the foetus after exposure to weak RF
fields have been carried out, and those that exist have significant weaknesses.
36

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
B e h a v i o u r a n d d e v e l o p m e n t i n c h i l d r e n o f m o t h e r s w h o u s e d m o b i l e p h o n e s d u r i n g p r e g -
n a n c y h a v e b e e n s t u d i e d i n a f e w, r e l a t i v e l y l a r g e p o p u l a t i o n s t u d i e s. T h e s e s t u d i e s p r o v i d e
l i t t l e e v i d e n c e t h a t t h e r e i s a l i n k b e t w e e n p r e g n a n t m o t h e r s ’ u s e o f m o b i l e p h o n e s a n d t h e r i s k
o f c h a n g e s i n t h e b e h a v i o u r a n d d e v e l o p m e n t o f t h e c h i l d.
O v e r a l l, t h e r e i s l i t t l e i n d i c a t i o n t h a t e x p o s u r e t o w e a k R F fi e l d s a d v e r s e l y a ff e c t s f e r t i l i t y. T h e
f e w s t u d i e s t h a t d o e x i s t d o n o t p r o v i d e e v i d e n c e t h a t e x p o s u r e t o w e a k R F fi e l d s d u r i n g
p r e g n a n c y h a s a d v e r s e e ff e c t s o n t h e f o e t u s.
1.3.2.3 H e a r t, b l o o d p r e s s u r e a n d c i r c u l a t i o n
T h e r e a r e s e v e r a l e a r l i e r s t u d i e s o f t h e c a r d i o v a s c u l a r s y s t e m i n a n i m a l s a n d h u m a n s e x p o s e d
t o w e a k R F fi e l d s, b u t r e l a t i v e l y f e w s t u d i e s h a v e b e e n r e p o r t e d i n r e c e n t y e a r s. O v e r a l l, t h e
s t u d i e s o f h i g h q u a l i t y p r e s e n t n o e v i d e n c e t h a t w e a k R F fi e l d s h a v e a d v e r s e e ff e c t s o n t h e
c a r d i o v a s c u l a r s y s t e m.
1.3.2.4 T h e i m m u n e s y s t e m
There are several earlier studies of the possible effects of RF exposure on the immune system; in
some of these, transient effects due to heat and stress have been observed. In recent years, there
have only been a few studies on the immune system of animals and humans and on immune cells
outside the body (in vitro). Older studies, as well as recent high quality studies, provide no clear
evidence of negative effects of exposure to weak RF fields on the immune system.
1.3.2.5 Hormonal effects
There are relatively few earlier or recent studies where the effect of exposure to weak RF fields
on hormonal regulation has been investigated. Several studies have examined whether there
are changes in melatonin production, a hormone that regulates circadian rhythm. There is less
information on other hormone systems. Several studies have methodological weaknesses, and
therefore emphasis should not be placed on them; however there are also some high quality
studies. Previous and recent studies do not provide evidence that exposure to weak RF fields
adversely affects the hormone system in humans.
1.3.2.6 Effects on the nervous system
The possible effects of weak RF fields on the nervous system have been investigated in many
studies, and are divided into three main groups. These include biological effects and func-
tional changes, effects on performance and behaviour, and possible adverse health effects. As
previously mentioned, any observed biological effects and functional changes do not neces-
sarily have an impact on performance or health or disease, even in the nervous system. In
many cases, the responses can represent a physical adaptation to external stimuli, as with other
physical stimuli such as heat or cold
Animal studies provide no basis for assuming that exposure to weak RF fields causes biological
effects in the nervous system. Most human studies monitor electrical brain activity using EEG.
Many of these are of high quality, and they provide some evidence that exposure to RF fields
from GSM phones can cause small and transient changes measured at rest and during sleep.
The changes in brain activity are not accompanied by symptoms or poor sleep quality. 3G
(UMTS) phones do not seem to have such an effect, but there are few studies of this type of
phone. Some human studies have examined blood flow in the brain, or effects on brain meta-
bolism following RF exposure, but there are few studies and the results are inconsistent.
Rapport 2012:3 • Folkehelseinstituttet
37
Summary
Performance and behaviour in adults after exposure to weak RF fields have been studied in
several large studies of high quality. There are few studies of adolescents and these are of
variable quality. Overall, there is no evidence that exposure to weak RF fields affects perfor-
mance or behaviour.
Based on a large number of studies, many of which are of high quality, there is no evidence
that weak RF fields cause symptoms such as headache, fatigue or concentration problems,
either after short or long-term exposure. From animal studies there is no evidence of damage
to vision, hearing or the balance organ. Human studies support this conclusion with regard
to short-term effects on hearing and balance. Long-term effects on hearing have only been
investigated in a few studies, which have methodological limitations. Few animal studies and
epidemiological studies have examined severe effects on the central nervous system. So far
there is no evidence that severe disorders can occur as a result of exposure to weak RF fields.
Although certain changes in electrical brain activity from some forms of exposure to weak RF
fields have been observed, there is no evidence that such exposure can have negative effects
on performance or behaviour, or have health-related consequences for the nervous system.
There is no evidence that exposure to weak RF fields leads to an increased risk of disease of
the nervous system. A limited number of studies have been conducted with children and
adolescents, but the results so far provide no evidence that children differ from adults in terms
of possible effects on the nervous system.
1.3.2.7 Changes in gene expression
In recent years, there have been a large number of cell and animal studies on the effect of
RF fields on gene expression. Gene expression in cells is normally in constant change, e.g.,
when cells are exposed to internal or external stimuli. Changes in gene expression have been
observed after RF exposure, but studies show inconsistent results, especially with regard
to which groups of genes show altered regulation. At present, there is little to suggest that
exposure to weak RF fields causes changes in gene expression that can be linked to adverse
effects in humans.
1.3.2.8 Health problems attributed to electromagnetic fields (electromagnetic
hypersensitivity)
A large number of controlled experiments have been carried out on groups of individuals
with adverse health effects that they attribute to electromagnetic fields (see also 1.5). Most
studies are performed in the laboratory, in the workplace or in the home. Although the quality
varies, there are many trials that are methodologically sound. One study of good quality was a
follow-up study of groups of individuals (defining themselves as electromagnetic hypersensi-
tive or not; the former group had more health problems but they did not seem to be related
to electromagnetic field exposure); this is the only prospective study that is available. A few
experiments have been designed to examine individuals with repeated exposure. The relati-
vely extensive literature provides no evidence that exposure to electromagnetic fields is the
real cause of the health problems that individuals attribute to electromagnetic fields, whether
exposure occurs alone or in combination with other factors that may affect the induction of
symptoms. There is also no evidence that individuals with health problems that they attribute
to electromagnetic fields are able to detect such exposure. Blind trials show that symptoms
also occur when subjects are not exposed. This means that electromagnetic fields do not
need to be present for health problems attributed to electromagnetic fields to occur. Health
38

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
p r o b l e m s c a n t h u s b e d u e t o o t h e r f a c t o r s; s e e f u r t h e r d i s c u s s i o n i n S e c t i o n 1.5. T h e E x p e r t
C o m m i t t e e c o n c l u d e s t h a t s c i e n t i fi c s t u d i e s i n d i c a t e t h a t e l e c t r o m a g n e t i c fi e l d s a r e n o t t h e
d i r e c t o r c o n t r i b u t i n g c a u s e o f t h e c o n d i t i o n o f h e a l t h p r o b l e m s a t t r i b u t e d t o e l e c t r o m a g n e t i c
fi e l d s ( e l e c t r o m a g n e t i c h y p e r s e n s i t i v i t y ).
1.3.3 O v e r a l l c o n c l u s i o n o n t h e p o s s i b l e h e a l t h h a z a r d s f r o m e x p o s u r e t o w e a k
R F fi e l d s
A l a r g e n u m b e r o f s t u d i e s h a v e e x a m i n e d t h e p o s s i b l e e ff e c t s o f e x p o s u r e t o w e a k R F fi e l d s
( i.e., e x p o s u r e w i t h i n t h e I C N I R P ’ s r e f e r e n c e v a l u e s ). T h e s t u d i e s h a v e b e e n p e r f o r m e d o n c e l l s
a n d t i s s u e s, a n d i n a n i m a l s a n d h u m a n s. T h e e ff e c t s t h a t h a v e b e e n s t u d i e d a p p l y t o c h a n g e s
i n o r g a n s y s t e m s, f u n c t i o n s a n d o t h e r e ff e c t s. T h e r e a r e a l s o a l a r g e n u m b e r o f p o p u l a t i o n
s t u d i e s w i t h a n e m p h a s i s o n s t u d i e s o f c a n c e r r i s k. T h e l a r g e t o t a l n u m b e r o f s t u d i e s p r o v i d e s
n o e v i d e n c e t h a t e x p o s u r e t o w e a k R F fi e l d s c a u s e s a d v e r s e h e a l t h e ff e c t s. S o m e m e a s u r a b l e
b i o l o g i c a l / p h y s i o l o g i c a l e ff e c t s c a n n o t b e r u l e d o u t.
1.4 C h a r a c t e r i s a t i o n o f r i s k a n d a s s e s s m e n t o f u n c e r t a i n t y
( C h a p t e r 5 )
C h a r a c t e r i s a t i o n o f r i s k f o l l o w i n g e x p o s u r e t o w e a k R F fi e l d s i n t h e N o r w e g i a n p o p u l a t i o n i s
a c c o m p l i s h e d b y c o m p a r i n g t h e a c t u a l e x p o s u r e, a s d e s c r i b e d i n C h a p t e r 3, w i t h t h e h e a l t h
p r o b l e m s t h a t c a n b e c a u s e d b y d i ff e r e n t d e g r e e s o f R F e x p o s u r e, d e s c r i b e d i n C h a p t e r 4.
A s t y p i c a l e x p o s u r e l i e s f a r b e l o w t h e I C N I R P ’ s r e c o m m e n d e d r e f e r e n c e v a l u e s, a n d s i n c e i t i s
n o t s c i e n t i fi c a l l y p r o v e n t h a t a d v e r s e h e a l t h e ff e c t s m a y o c c u r a f t e r e x p o s u r e u n d e r t h e I C N I R P
r e f e r e n c e l e v e l s, t h e r e i s n o r e a s o n t o a s s u m e t h a t t h e l o w t y p i c a l e x p o s u r e i n N o r w a y i s a s s o-
c i a t e d w i t h h e a l t h r i s k s. O n t h i s b a s i s t h e E x p e r t C o m m i t t e e c o n s i d e r s t h a t t h e g e n e r a l p u b l i c i s
w e l l p r o t e c t e d a g a i n s t a d v e r s e h e a l t h e ff e c t s f r o m R F e x p o s u r e.
I n t h e m a n d a t e, t h e C o m m i t t e e w a s a l s o a s k e d t o a s s e s s a n y u n c e r t a i n t i e s i n t h e r i s k a s s e s s m e n t,
a n d h o w t h e y s h o u l d b e t a k e n i n t o a c c o u n t i n t h e r i s k m a n a g e m e n t.
T h e C o m m i t t e e b e l i e v e s t h a t o u r k n o w l e d g e o f t y p i c a l p u b l i c e x p o s u r e i s b a s e d o n r e a l i s t i c
m e a s u r e m e n t s. W i t h r e g a r d s t o p o t e n t i a l h e a l t h h a z a r d s f r o m e x p o s u r e t o w e a k R F fi e l d s, m a n y
s t u d i e s h a v e b e e n c a r r i e d o u t w i t h d i ff e r e n t m e t h o d o l o g i e s. I n g e n e r a l, t h e d o c u m e n t a t i o n
i s v e r y c o m p r e h e n s i v e. T h e s c o p e a n d q u a l i t y v a r y w i t h r e s p e c t t o t h e v a r i o u s h e a l t h e ff e c t s
t h a t h a v e b e e n s t u d i e d. I n p a r t i c u l a r, f o r h e a l t h e ff e c t s o f a m o r e s e v e r e n a t u r e, s u c h a s c a n c e r
a n d e ff e c t s o n t h e n e r v o u s s y s t e m, m a n y s t u d i e s h a v e b e e n c a r r i e d o u t u s i n g b o t h a n i m a l
a n d h u m a n d a t a. M a n y o f t h e e x p e r i m e n t a l s t u d i e s h a v e u s e d e x p o s u r e w i t h w e a k R F fi e l d s,
a l t h o u g h t h e l e v e l s a r e r e l a t i v e l y h i g h c o m p a r e d t o t y p i c a l e x p o s u r e. T h e r e m a i n i n g u n c e r t a i n -
t i e s i n t h e r i s k a s s e s s m e n t m a i n l y r e l a t e t o h e a l t h e ff e c t s a r i s i n g a f t e r a v e r y l o n g t i m e, a n d t o
s i t u a t i o n s t h a t p r o d u c e t h e h i g h e s t e x p o s u r e ( i.e., p e r s o n a l u s e o f a m o b i l e p h o n e ). T h i s u n c e r-
t a i n t y i n t h e r i s k a s s e s s m e n t i s c o n s i d e r e d t o b e l o w. T h e r e i s n e g l i g i b l e u n c e r t a i n t y i n t h e r i s k
a s s e s s m e n t a s s o c i a t e d w i t h o t h e r s o u r c e s, s u c h a s b a s e s t a t i o n s, w i r e l e s s n e t w o r k s, t e l e v i s i o n
t r a n s m i t t e r s a n d t h e u s e o f m o b i l e p h o n e s b y o t h e r i n d i v i d u a l s.
O v e r a l l, t h e u n c e r t a i n t y i n r i s k a s s e s s m e n t i s t h e r e f o r e s m a l l.
Rapport 2012:3 • Folkehelseinstituttet
39
Summary
1.5 Health problems attributed to electromagnetic fields (electro-
magnetic hypersensitivity) (Chapter 6)
Health problems attributed to electromagnetic fields, often referred to as electromagnetic
hypersensitivity, denotes a condition where individuals believe that their health problems are
caused by electromagnetic fields. A large number of scientific studies provide evidence that
electromagnetic fields do not cause the symptoms (see 1.3.2.8). However, their health problems
as such are genuine and must be taken seriously. There are large differences between indivi-
duals with health problems attributed to electromagnetic fields, such as the symptoms they
experience, their severity, and which forms of electromagnetic fields trigger them. The propor-
tion of the population with such health problems is unknown. Figures from other countries are
uncertain and vary significantly, from 1.5 per cent up to 10 per cent of the population.
There are several possible circumstances that may contribute to health problems attributed to
electromagnetic fields. There is probably no single explanatory model that will apply to all of
these problems. The primary cause of symptoms may be other influences: physical, psycholo-
gical and social; and different circumstances can play a role. Cultural conditions, stress reac-
tions, adaptation and other psychological mechanisms can explain why electromagnetic fields
in particular are perceived to be the cause of health problems, even if there is no physical link.
An overall assessment of health and of possible adverse physical, psychological and social
burdens, as well as the patient’s own motivation, is needed as a basis for medical treatment and
other interventions. The goal of treatment and intervention is to reduce symptoms and their
negative impact on life. It is important to develop a relationship of trust between doctor and
patient, and that the patient’s own experience of problems is taken seriously while scientific
information is provided in a supportive way. In some cases, it has emerged that a diagnosable
disease is causing the symptoms. It is therefore important that the first consultation with the
doctor should always result in an adequate medical examination of patients reporting such
problems. Scientific knowledge gives no basis to recommend measures to reduce or avoid
exposure to electromagnetic fields.
Patients with health problems attributed to electromagnetic fields can be characterised as a
sub-group of patients with health problems attributed to environmental factors (e.g., multiple
chemical hypersensitivity and hypersensitivity to their own amalgam fillings). A common
feature for the group of patients who attribute their health problems to electromagnetic fields,
and patients who attribute their health problems to other environmental factors is that they
often have a strong belief in a causal relationship, but scientific studies are unable to demon-
strate or to confirm this.
1.6 Risk management and risk perception (chapters 7 and 8)
The result of the risk assessment, i.e., the degree of risk of adverse health effects and severity of
health problems, is essential for the authorities’ risk management. Risk management may cover
legal regulation, including the establishment of threshold limit values, information, and other
measures. In addition, any uncertainties in risk assessment will have significance, among other
things, in selecting a precautionary strategy.
40

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
1.6.1 P r e c a u t i o n a r y m e a s u r e s
R i s k m a n a g e m e n t a l s o i n v o l v e s a s s e s s i n g w h e t h e r t h e r e i s a n e e d t o i n t r o d u c e p r e c a u t i o n a r y
m e a s u r e s ( i f a p p l i c a b l e ) a n d i f s o a t w h a t l e v e l. T h e C o m m i t t e e h a s o u t l i n e d t h r e e l e v e l s o f
p r e c a u t i o n t h a t c a n b e e x e r c i s e d w h e n h a n d l i n g a r i s k, d e p e n d i n g o n t h e n a t u r e o f t h e r i s k, t h e
s e v e r i t y, u n c e r t a i n t y i n t h e a s s e s s m e n t, a n d a n y c o n s e q u e n c e s. T h e s e l e v e l s c a n b e d e s c r i b e d
a s f o l l o w s:
L e v e l 1: “ A n y e x p o s u r e s h o u l d n o t b e h i g h e r t h a n n e e d e d t o a c h i e v e t h e i n t e n d e d p u r p o s e.” F o r
e x a m p l e, i n o r d e r t o a c h i e v e t h e i n t e n d e d p u r p o s e o f a t e c h n o l o g y, i n m a n y c a s e s o n l y a f r a c-
t i o n o f t h e a c c e p t a b l e e x p o s u r e f r o m a h e a l t h r i s k p e r s p e c t i v e i s r e q u i r e d. T h i s i s p a r t i c u l a r l y
t r u e f o r e x p o s u r e s w h e r e a d v e r s e h e a l t h e ff e c t s a r e u n k n o w n.
L e v e l 2: “ P r u d e n t a v o i d a n c e ” i s a n i n t e r n a t i o n a l l y u s e d p r i n c i p l e t h a t i m p l i e s a s t r i c t e r l e v e l o f
c a u t i o n t h a n t h e “ g e n e r a l c a u t i o n ” s p e c i fi e d i n l e v e l 1.
L e v e l 3: T h e “ p r e c a u t i o n a r y p r i n c i p l e ” i s a r e g u l a t o r y p r i n c i p l e t h a t i s u s e d w h e n t h e r e a r e
s u b s t a n t i a l s c i e n t i fi c u n c e r t a i n t i e s a n d i n j u r y s c e n a r i o s t h a t a r e b a s e d o n p l a u s i b l e s c i e n -
t i fi c k n o w l e d g e. T h e p o t e n t i a l d a m a g e i s s e v e r e o r p o t e n t i a l l y i r r e v e r s i b l e. T h e u s e o f t h e
p r e c a u t i o n a r y p r i n c i p l e m a y h a v e s i g n i fi c a n t s o c i e t a l i m p l i c a t i o n s, s u c h a s e c o n o m i c a n d o t h e r
d i s a d v a n t a g e s. T h e r e i s c o n s e n s u s t h a t t h e r e s h o u l d b e r e q u i r e m e n t s f o r g r o u n d s o n w h i c h t h e
p r i n c i p l e s h o u l d b e a p p l i e d.
1.6.2 P e r c e p t i o n o f r i s k
A n u m b e r o f f a c t o r s a s s o c i a t e d w i t h h o w t h e r i s k i s i n t e r p r e t e d c o u l d h e l p t o m o d i f y i n d i -
v i d u a l r i s k p e r c e p t i o n o f p o s s i b l e a d v e r s e h e a l t h e ff e c t s f r o m e n v i r o n m e n t a l e x p o s u r e. T h i s
a l s o a p p l i e s t o e l e c t r o m a g n e t i c fi e l d s. T h e m a j o r i t y o f t h e p o p u l a t i o n s e e m s t o h a v e l o w o r
m o d e r a t e c o n c e r n a b o u t a d v e r s e h e a l t h e ff e c t s r e s u l t i n g f r o m e x p o s u r e t o R F/e l e c t r o m a g n e t i c
fi e l d s. H o w e v e r, a s i g n i fi c a n t m i n o r i t y i s c o n c e r n e d t o v a r y i n g d e g r e e s a n d/o r b e l i e v e s t h a t t h e y
e x p e r i e n c e h e a l t h p r o b l e m s d u e t o e x p o s u r e. T h i s c o n c e r n d o e s n o t c o r r e s p o n d w i t h t h e r e s u l t
o f t h e r i s k a s s e s s m e n t d e s c r i b e d i n p a r t I o f t h i s r e p o r t.
Whether a precautionary strategy should be introduced depends on the nature and severity of
the uncertainty in the basis of the risk assessment. Measures to further reduce public exposure
to RF fields should not be implemented unless there is a scientific basis for assuming that
the exposure could be harmful. It is relatively well supported that the use of certain types of
precautionary measures not justified by a risk assessment does not reduce public concern
about the adverse health effects. In some cases, such measures may increase concern. Good
risk communication is considered to be a useful tool in the dialogue between the authorities
and the public. This should be transparent and should form the basis for good understanding
of the risks and for the implementation of measures.
1.7 International regulation practices and strategies (Chapter 9)
Chapter 9 gives a brief overview of international organisations’ findings and recommendations.
There is also a brief review of regulatory practices and strategies in various parts of the world
with emphasis on comparable countries. In most industrial countries in recent years, organi-
sations and expert committees have been established with a mission to evaluate research in
Rapport 2012:3 • Folkehelseinstituttet
41
Summary
this area and/or make recommendations to the authorities. This applies to both threshold limit
values and other regulatory measures. In recent years, several other national and international
institutions have compiled and published reports in this area, either on their own initiative
or commissioned by governments or international organisations. These include the World
Health Organization (WHO) and the ICNIRP. The ICNIRP recommends guidelines for maximum
exposure to non-ionising radiation, based on extensive and ongoing research into the health
effects of exposure to such radiation. ICNIRP guidelines are used in more than 80 countries.
ICNIRP collaborates with WHO. WHO decides on its advice on an independent basis.
1.7.1 Regulations in Europe
The European Commission has funded research into electromagnetic fields and potential health
effects since 1999. The Scientific Committee on Emerging and Newly Identified Health Risks
(SCENIHR), an independent scientific European Committee under the Directorate General for
Health and Consumers (DG SANCO), has summarised and reviewed research into electromagnetic
fields, the last time in 2009. The European Union’s Ministerial Council Recommendation, dated
12.7.1999, concerning the restriction of exposure of the public to electromagnetic fields (0 Hz to
300 GHz), follows the ICNIRP’s recommended levels for maximum exposure. In some countries,
the recommendations have been incorporated into binding national legislation, meaning that
the ICNIRP’s recommended reference levels must be followed. This applies to: Cyprus, the Czech
Republic, Estonia, Finland, France, Hungary, Ireland, Malta, Portugal, Romania, Spain, Germany
and Slovakia. Other EU member countries encourage adherence to the ICNIRP recommendations,
although this is not compulsory, or they have less stringent threshold limit values or no regula-
tion. These include: Austria, Denmark, Latvia, the Netherlands, Sweden and the United Kingdom.
A third group of Member States has introduced more stringent limits than the ICNIRP’s recom-
mendations, including Belgium and Luxembourg. This is a result of political decisions to use the
precautionary principle, and/or public pressure. There are different practices about the choice of
the exposure levels and which sources of exposure should be regulated.
1.8 Regulations in Norway (Chapter 10)
Several government agencies are involved or have responsibility in the themes addressed in this
report. The Norwegian Radiation Protection Authority is the regulatory and supervisory authority
for electromagnetic fields and must be scientifically up-to-date on the health effects of electro-
magnetic fields. The Norwegian Post and Telecommunications Authority regulates and moni-
tors the postal and telecommunications sector. The health service is responsible for providing
treatment and follow up to patients, while the Norwegian Directorate of Health is responsible for
providing professional recommendations and regulations for the health service. The Norwegian
Institute of Public Health provides research-based advice in public health issues. In addition, other
governmental agencies, such as the Directorate for Civil Protection and Emergency Planning,
the Directorate for Emergency Communication, the County Governor and the Parliamentary
Ombudsman are all potential stakeholders with regards to electromagnetic fields.
Municipalities often encounter various issues related to electromagnetic fields, both in the role
of local community planning and as the local health authority with responsibility for the new
public health act that covers health education, preventive health measures and monitoring of
factors that affect health. Municipalities have some direct governmental and administrative
tasks relating to exposure to RF fields. With regards to establishing electromagnetic field-based
42

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
c o m m u n i c a t i o n, l a r g e r a n t e n n a s y s t e m s r e q u i r e p l a n n i n g p e r m i s s i o n a c c o r d i n g t o b u i l d i n g
r e g u l a t i o n s. F o r s m a l l e r a n t e n n a s y s t e m s w i t h h e i g h t s u p t o 2 m e t r e s, t h e r e i s n o o b l i g a t i o n t o
a p p l y f o r p l a n n i n g p e r m i s s i o n. C o n s i d e r a t i o n o f a p p l i c a t i o n s d o e s n o t n o r m a l l y i n c l u d e a s s e s s -
m e n t o f e m i s s i o n p o w e r; t h e o n l y c o n d i t i o n i s t h a t s e c t i o n 3 4 o f t h e R e g u l a t i o n s o n R a d i a t i o n
P r o t e c t i o n a n d U s e o f R a d i a t i o n ( F o r s k r i f t o m s t r å l e v e r n o g b r u k a v s t r å l i n g ), i n e ff e c t f r o m
0 1.0 1.2 0 1 1, s h o u l d b e m e t. T h e r e g u l a t i o n s a r e p r a c t i s e d a c c o r d i n g t o t h e r e g u l a t i o n ’ s d e fi n i -
t i o n s o f t h r e s h o l d l i m i t v a l u e s ( s e e 1.2 ) a n d t h e r e q u i r e m e n t t h a t ” a n y e x p o s u r e s h o u l d b e k e p t
a s l o w a s r e a s o n a b l y p r a c t i c a b l e ”.
A s b u i l d i n g o w n e r s, s o m e m u n i c i p a l i t i e s h a v e f o l l o w e d a m o r e s t r i n g e n t p r a c t i c e w h e n i t
c o m e s t o p o s i t i o n i n g b a s e s t a t i o n s t h a n t h a t i m p o s e d b y t h e r a d i a t i o n p r o t e c t i o n r e g u l a t i o n s.
S o m e m u n i c i p a l i t i e s m a y n o t a l l o w i n s t a l l a t i o n o f b a s e s t a t i o n s f o r m o b i l e p h o n e s o n, o r i n t h e
i m m e d i a t e v i c i n i t y o f, t h e m u n i c i p a l i t y ’ s o w n s c h o o l s a n d k i n d e r g a r t e n s. T h e m u n i c i p a l i t i e s ’
m o t i v e i n s u c h c a s e s i s t o r e d u c e t h e r i s k o f e x p o s u r e f r o m b a s e s t a t i o n s f o r m o b i l e t e l e p h o n y.
H o w e v e r, t h e r e s u l t o f s u c h a p r a c t i c e m i g h t b e t h a t u s e r s o f m o b i l e p h o n e s n e a r t h e s e b u i l d -
i n g s a c t u a l l y e x p e r i e n c e i n c r e a s e d e x p o s u r e f r o m t h e i r o w n m o b i l e p h o n e u s a g e d u e t o t h e
l o w e r c o v e r a g e.
T h e N o r w e g i a n R a d i a t i o n P r o t e c t i o n A u t h o r i t y p r o v i d e s a d v i c e a n d i n f o r m a t i o n a c c o r d i n g t o
t h e c u r r e n t r e g u l a t i o n s a b o u t h o w e x p o s u r e c a n b e “ a s l o w a s r e a s o n a b l y p r a c t i c a b l e ”. F o r t h e
b a s e s t a t i o n s f o r m o b i l e t e l e p h o n y/e m e r g e n c y n e t w o r k, t h e N o r w e g i a n R a d i a t i o n P r o t e c t i o n
A u t h o r i t y r e c o m m e n d s t h a t t r a n s m i t t e r d i r e c t i o n, t r a n s m i t t e r p o w e r a n d p r o x i m i t y t o a r e a s
w h e r e i n d i v i d u a l s s t a y f o r l o n g p e r i o d s s h o u l d b e c o n s i d e r e d b e f o r e m o u n t i n g. T h e N o r w e g i a n
R a d i a t i o n P r o t e c t i o n A u t h o r i t y p r o v i d e s i n f o r m a t i o n t o t h o s e w h o w a n t t o r e d u c e e x p o s u r e
f r o m w i r e l e s s n e t w o r k s b y m o u n t i n g r o u t e r s a t s o m e d i s t a n c e f r o m w h e r e p e o p l e w i l l s p e n d
t i m e. T h e r e i s a l s o i n f o r m a t i o n a b o u t h o w e x p o s u r e f r o m p e r s o n a l m o b i l e p h o n e u s e c a n b e
r e d u c e d. T h e N o r w e g i a n R a d i a t i o n P r o t e c t i o n A u t h o r i t y d o e s n o t r e c o m m e n d t h a t w i r e l e s s
n e t w o r k s s h o u l d b e r e p l a c e d b y w i r e d n e t w o r k s.
1.9 E x p e r t C o m m i t t e e ’ s r e c o m m e n d a t i o n s f o r r e g u l a t i o n s
( C h a p t e r 1 1 )
T h e C o m m i t t e e ’ s r e c o m m e n d a t i o n s f o r r e g u l a t i o n s a r e b a s e d o n t h e c o n d i t i o n s s t a t e d i n p a r t
I - I V o f t h e r e p o r t. T h e a s s e s s m e n t c o n t a i n e d i n p a r t V i s p r i m a r i l y b a s e d o n t h e r e s u l t s o f r i s k
a s s e s s m e n t i n C h a p t e r 5, t h e m e d i c a l d i s c u s s i o n o f h e a l t h p r o b l e m s a t t r i b u t e d t o e l e c t r o m a g -
n e t i c fi e l d s ( e l e c t r o m a g n e t i c h y p e r s e n s i t i v i t y ) i n C h a p t e r 6, t h e d i s c u s s i o n o f r i s k m a n a g e m e n t
i n C h a p t e r 7, t h e d i s c u s s i o n o f p u b l i c c o n c e r n a n d r i s k c o m m u n i c a t i o n i n C h a p t e r 8, a n d t h e
d i s c u s s i o n o f i n t e r n a t i o n a l a n d n a t i o n a l p o l i c y i n c h a p t e r s 9 a n d 1 0. R e c o m m e n d a t i o n s f o r
r e g u l a t i o n s a r e d i s c u s s e d b a s e d o n t h r e e d i ff e r e n t i s s u e s:
1. H e a l t h r i s k s a r i s i n g f r o m t h e p h y s i c a l e x p o s u r e t o e l e c t r o m a g n e t i c fi e l d s/R F
2. H e a l t h p r o b l e m s a t t r i b u t e d t o e l e c t r o m a g n e t i c fi e l d s ( e l e c t r o m a g n e t i c h y p e r s e n s i t i v i t y )
3. C o n c e r n a b o u t t h e h a z a r d o u s e ff e c t s o f e l e c t r o m a g n e t i c fi e l d s
I n l i n e w i t h t h e m a n d a t e a n d t h e C o m m i t t e e ’ s i n t e r p r e t a t i o n o f i t, t h e d i s c u s s i o n o f s e c t i o n 1 i s
l i m i t e d t o t h e R F fi e l d, w h e r e a s p o i n t s 2 a n d 3 t o a l e s s e r e x t e n t d i ff e r e n t i a t e b e t w e e n f r e q u e n -
c i e s w i t h i n t h e e l e c t r o m a g n e t i c fi e l d s p e c t r u m.
Rapport 2012:3 • Folkehelseinstituttet
43
Summary
The Committee’s recommendations for risk management do not include occupational exposure to RF
fields beyond that of occupational exposure in conjunction with mobile telephony, wireless networks,
etc, and applies as for the general public. Hence, the Expert Committee considers it unnecessary to
introduce specific recommendations on the use of wireless communication in a professional context.
Moreover, the report does not include exposure to RF fields in connection with medical
dia gnostics (MRI-scans), treatment (surgical use of diathermy), or medical implants that may be
sensitive to RF fields.
1.9.1 General recommendations
The current regulations are based on the ICNIRP reference values for maximum exposure. The
Expert Committee does not recommend special measures to reduce exposure, e.g., by chan-
ging the threshold limit values. The knowledge base in this health risk assessment provides no
reason to assert that adverse health effects will occur from the typical public exposure. This also
applies to the use of wireless communications in the office environment.
The mandate also asks the Committee to consider whether uncertainties are revealed that
require the application of the precautionary principle when managing the risk and, if so, how
the precautionary principle should be applied.
The Committee has therefore thoroughly discussed whether there are grounds to apply the
precautionary principle for weak RF fields. The Committee considers that the conditions for
applying the principle have not been met. Furthermore, the Committee considers that the
administrative authorities can select a precautionary strategy according to the lowest level, i.e.
“any exposure should not be higher than needed for the intended purpose to be achieved”.
1.9.2 Recommendations for health problems attributed to electromagnetic
fields (electromagnetic hypersensitivity)
A large number of scientific studies agree that it is probable that the physical characteristics of
electromagnetic fields are not the direct or contributory cause of health problems attributed to
electromagnetic fields (electromagnetic hypersensitivity). The Committee believes that there
is no need to revise radiation protection legislation for individuals who attribute their health
problems to electromagnetic field exposure.
It is scientifically improbable that the reduction of exposure to electromagnetic fields is
significant for health problems attributed to electromagnetic fields. The Committee therefore
believes that there is no basis to recommend measures aiming to reduce exposure to elec-
tromagnetic fields for individuals with health problems attributed to electromagnetic fields.
The health service and other parties should instead encourage the reduction of avoidance
behaviour and discourage implementation of measures for which there is no scientific basis.
However, it is always important to respect individuals and their choices.
The Committee does not recommend the building of “electronic-free” treatment rooms in hospi-
tals, but that affected patients should be given appropriate medical assistance with support and
practical measures.
The Expert Committee believes that patients with these types of health problems can mainly
be taken care of within the primary and specialist health services. The health problems that
44

R a p p o r t 2 0 1 2:3 • F o l k e h e l s e i n s t i t u t t e t
Summary
t h e s e i n d i v i d u a l s e x p e r i e n c e a r e g e n u i n e a n d m u s t b e t a k e n s e r i o u s l y. H o w e v e r, t h e c o m p e-
t e n c e o f t h e h e a l t h s e r v i c e a n d h e a l t h a d m i n i s t r a t i o n r e g a r d i n g p a t i e n t s w i t h h e a l t h p r o b l e m s
a t t r i b u t e d t o e l e c t r o m a g n e t i c fi e l d s a n d o t h e r e n v i r o n m e n t a l f a c t o r s i s l o w. T h e r e i s a n e e d
f o r e x p e r t i s e i n e n v i r o n m e n t a l h e a l t h ( e.g., i n t h e r e g i o n a l o c c u p a t i o n a l - a n d e n v i r o n m e n t a l
h e a l t h h o s p i t a l d e p a r t m e n t s ) t h a t a r e r e s p o n s i b l e f o r p r o v i d i n g k n o w l e d g e a n d g u i d e l i n e s t o
t h e h e a l t h s e r v i c e. T h e N o r w e g i a n D i r e c t o r a t e o f H e a l t h s h o u l d e n s u r e t h a t t h e r e i s i n f o r m a t i o n
s p e c i fi c a l l y p r e p a r e d f o r t h e h e a l t h s e r v i c e a n d t h o s e w h o a r e a ff e c t e d. T h e C o m m i t t e e f u r t h e r
p r o p o s e s t h e e s t a b l i s h m e n t o f a n e w e x p e r t c o m m i t t e e t o r e v i e w t h e l i t e r a t u r e a n d t o p r o v i d e
a d v i c e o n m a n a g e m e n t p r a c t i c e s a n d t h e h e a l t h s e r v i c e ’ s t r e a t m e n t f o r p a t i e n t s w i t h h e a l t h
p r o b l e m s a t t r i b u t e d t o e l e c t r o m a g n e t i c fi e l d s a n d o t h e r e n v i r o n m e n t a l f a c t o r s.
E m p l o y e r s s h o u l d e n s u r e t h a t t h e r e i s i n f o r m a t i o n a b o u t t h e r i s k t o e m p l o y e e s w h o a r e
c o n c e r n e d a b o u t e l e c t r o m a g n e t i c fi e l d e x p o s u r e i n t h e i r w o r k i n g e n v i r o n m e n t. I f t h e i n f o r m a -
t i o n d o e s n o t h e l p r e d u c e c o n c e r n s, i n s p e c i a l c a s e s t h e e m p l o y e r s h o u l d c o n s i d e r i m p l e m e n -
t i n g s i m p l e f a c i l i t a t i o n m e a s u r e s. I t i s i m p o r t a n t t o c l a r i f y t h a t t h e s e m e a s u r e s a r e i m p l e m e n t e d
t o a l l e v i a t e c o n c e r n s a n d t o fi n d p r a c t i c a l s o l u t i o n s i n a d i ffi c u l t s i t u a t i o n, a n d n o t b e c a u s e t h e
e x p o s u r e i t s e l f i s d e e m e d t o p o s e a h e a l t h r i s k.
1.9.3 R e c o m m e n d a t i o n s f o r i n f o r m a t i o n r e q u i r e m e n t s a n d c o n c e r n s
T h e r e i s n o r e a s o n t o r e c o m m e n d r e d u c e d e x p o s u r e t o R F fi e l d s a s a t o o l t o r e d u c e g e n e r a l
c o n c e r n s a b o u t t h e h a z a r d o u s e ff e c t s o f e l e c t r o m a g n e t i c fi e l d s.
T h e r e i s a n e e d f o r g o o d i n f o r m a t i o n a n d c o m m u n i c a t i o n a b o u t t h e w e a k R F fi e l d s a n d
p o s s i b l e h e a l t h r i s k s, t h r o u g h a d e l i b e r a t e s t r a t e g y t h a t i n c l u d e s i n f o r m a t i o n, c o m m u n i c a t i o n
a n d u s e o f t h e m e d i a. I n f o r m a t i o n s h o u l d b e p r o v i d e d b y, a m o n g s t o t h e r s, t h e N o r w e g i a n
R a d i a t i o n P r o t e c t i o n A u t h o r i t y a n d t h e N o r w e g i a n P o s t a n d T e l e c o m m u n i c a t i o n s A u t h o r i t y.
T h e s e a u t h o r i t i e s a r e r e s p o n s i b l e f o r e n s u r i n g t h a t r e l e v a n t i n f o r m a t i o n i s t a i l o r e d t o d i ff e r e n t
t a r g e t g r o u p s, i n c l u d i n g l o c a l a u t h o r i t i e s, e m p l o y e r s a n d t h e g e n e r a l p u b l i c.
1.9.3.1 R e c o m m e n d a t i o n s f o r e s t a b l i s h i n g n e t w o r k s f o r m o b i l e t e l e p h o n y a n d
m o b i l e b r o a d b a n d
T h e e s t a b l i s h m e n t o f n e w n e t w o r k o p e r a t o r a n t e n n a s s h o u l d p o i n t t o l o c a t i o n s t h a t m e e t
t h e g e n e r a l p r i n c i p l e t h a t “ a n y e x p o s u r e s h o u l d n o t b e h i g h e r t h a n n e e d e d f o r t h e i n t e n d e d
p u r p o s e t o b e a c h i e v e d ”. T h i s m e a n s t h a t g o o d c o v e r a g e f o r m o b i l e p h o n e s s h o u l d b e e s t a b-
l i s h e d a s i t w i l l g i v e t h e l o w e s t p o s s i b l e e x p o s u r e t o t h e m o b i l e p h o n e u s e r. A l s o, i f i t d o e s n o t
c a u s e s i g n i fi c a n t i n c o n v e n i e n c e a n d c o s t, a n a n t e n n a l o c a t i o n s h o u l d b e s e l e c t e d t h a t p r o v i d e s
t h e l o w e s t e x p o s u r e l e v e l s i n a r e a s w h e r e i n d i v i d u a l s s p e n d l o n g p e r i o d s.
T h e N o r w e g i a n P o s t a n d T e l e c o m m u n i c a t i o n s A u t h o r i t y s h o u l d e v a l u a t e p r o c e d u r e s t o i n c l u d e
p l a n n e d n e w i n s t a l l a t i o n s i n t h e c u r r e n t l i s t o f b a s e s t a t i o n s w h i c h c a n b e f o u n d o n t h e w e b s i t e
w w w.fi n n s e n d e r e n.n o. T h i s w i l l m a k e i n f o r m a t i o n a v a i l a b l e t o s t a k e h o l d e r s i n a d e v e l o p m e n t
a n d g i v e t h e o p p o r t u n i t y t o p r o v i d e i n p u t o n t h e p l a n n e d l o c a t i o n. T h e r e s h o u l d b e n o i m p l e-
m e n t a t i o n o f n e w t h r e s h o l d l i m i t v a l u e s f o r e x p o s u r e, o r o f r e g u l a t i o n s t h a t r e q u i r e a p p l i c a t i o n
h a n d l i n g a t a m u n i c i p a l i t y l e v e l.
Rapport 2012:3 • Folkehelseinstituttet
45
Summary
The Norwegian Post and Telecommunications Authority should take the initiative for a working
group to establish common guidelines for safe distances to base stations for mobile telephony.
Safe distances would ensure that nobody is exposed to levels above the ICNIRP reference values;
essentially, this would apply when working close to antennas (e.g., clearing snow from a roof).
1.9.4 Recommendations for measurement of exposure
Individuals sometimes request measurements of exposure from RF fields for health-related
purposes. Before such measurements are taken, it should be considered how the results will
be interpreted and communicated. Based on the type of exposure situation, in many cases it
is possible to use prior experiences about exposure levels. If the current situation is extraordi-
nary in that previous measurements and theoretical calculations cannot be applied, or when
other circumstances give reason to believe that the exposure is high, it may be appropriate
to take measurements. Concern by itself is rarely a reason to take measurements. Instead, it is
important to provide good information about exposure and communicate with the concerned
individuals. Measurements should always be performed by qualified personnel.
Relevant government agencies, such as the Norwegian Radiation Protection Authority and the
Norwegian Post and Telecommunications Authority should monitor typical RF exposure levels
and more specific exposure situations where relevant. In accordance with the intention of the
radiation protection regulations, it may also be appropriate for the authorities to take measu-
rements to assess whether exposure sources meet the general principle that “any exposure
should not be higher than needed for the intended purpose to be achieved”.
1.9.5 Recommendations for the industry’s obligations
Personal mobile phone use accounts for the relatively highest exposure to the general public.
Individuals can choose to easily reduce exposure. Mobile providers could equip all phones with
hands-free kits and provide information about the SAR value for exposure and the importance
of using hands-free. Dealers should have information about the SAR value for all new mobile
phones available to the customer.
Consumer goods with low emission power (< 100 mW) represent such a low exposure that
measures are unnecessary. The industry should supply information about exposure, and that
increased distance gives lower exposure.
It is important that suitable information is made available to retailers and subcontractors who
are responsible for sales of supplies and installation of base stations and antennas so that infor-
mation can be used in contact with the public.
1.9.6 Recommendations for research and professional follow-up
The Norwegian research environments should contribute to and monitor international research
about possible health effects of exposure to electromagnetic fields. The authorities should take
into account the need for research funding in this area. The development of cancer incidence
over time should be followed in cancer registries. WHO has presented recommendations on
priority research areas in the field.
www.fhi.no
report 2012:3
Published by the Norwegian Institute of Public Health
PO Box 4404 Nydalen
N-0403 Oslo, Norway
Tel: +47-21 07 70 00
E-mail: folkehelseinstituttet@fhi.no
www.fhi.no
Order:
E-mail: publikasjon@fhi.no
Tel: +47-21 07 82 00
Fax: +47-21 07 81 05
ISSN: 1503-1403
ISBN: 978-82-8082-509-4 printed version
ISBN: 978-82-8082-510-0 electronic version
Low-level radiofrequency
electromagnetic fields – an
assessment of health risks and
evaluation of regulatory practice
Report from the Expert Committee appointed by
the Norwegian Institute of Health, commissioned
by the Ministry of Health and Care Services and
the Ministry of Transport and Communications
English summary