REFERENCES

kneewastefulAI and Robotics

Oct 29, 2013 (3 years and 9 months ago)

94 views






REFERENCES







291






References



[Abe01] Abelin, A.; Allwood, J.: Department of Linguistics, Göteborg University. In ICSA Workshop on
Speech and Emotion. Belfast, 2001.


[Aha91]
Aha , D. W.; Kibler, D.; Albert, M. K.:
Instance based learning algorithms
. Machine Learning,

6:37

66, 1991.


[Alm92]
Almuallim, H.; Dietterich, T.G.:
Learning with many irrelevant features
. In Proceedings of 9
th

National Conference on Artificial Intelligence, MIT Press, Cambridge, Massachusetts, 547

552,
1992.


[Alt99] Alter K.; Rank E.; Kotz S.
A.; Pfeifer E.; Besson M.; Friederici A.D.; Matiasek J.:
On the relations
of semantic and acoustic properties of emotions
. In
Proceedings of the 14
th

International
Conference of Phonetic Sciences (ICPhS
-
99)
,

San Francisco, California, p.2121, 1999.


[Alt0
0] Alter, K.; Rank, E.; Kotz, S.A.; Toepel, U.; Besson, M.; Schirmer, A.; Friederici, A.D.:
Accentuation and emotions


Two different systems?

In

ICSA Workshop on Speech and Emotion.
Belfast, 2000.


[Ami00] Amir, N.; Ron, S.; Laor, N.:
Analysis of an emot
ional speech corpus in Hebrew based on objective
criteria.
ICSA Workshop on Speech and Emotion. Belfast, 2000.


[Ami01] Amir, N.:
Classifying emotions in speech: a comparison of methods.
Holon Academic Institute of
technology, EUROSPEECH 2001, Escandinavia
.


[Ban96] Bance, R.; Scherer, K.:
Acoustic Profiles in Vocal Emotion expression,
in Journal of Personality
and Social Psychology, 1996.


[Bat00] Batliner, Anton; Fischer, Kerstin; Huber, Richard; Spilker, Jörg; Nöth, Elmar:
Desperately Seeking
Emotions: A
ctors, Wizards, and Human Beings
. In: Proceedings of the ISCA
-
Workshop on Speech
and Emotion. Belfast, 2000.


[Bob88]
Bobrowski, L.:
Feature selection based on some homogeneity coefficient.

In Proceedings of 9
th

International Conference on Pattern Recognit
ion, 544

546, 1988.


[Boe93] Boersma, Paul.:
Accurate short
-
term analysis of the fundamental frequency and the harmonics
-
to
-
noise ratio of a sampled sound
", Proceedings of the Institute of Phonetic Sciences of the
University of Amsterdam 17: 97
-
110. 1993.


[Bra65] Bracewell, R. N.:
The Fourier Transform and Its Applications
, New York: McGraw
-
Hill Book
Company, 1965.





REFERENCES




292

[Bre83] Brenner, M.; Shipp, T.; Doherty, E.; Morrisey, P.:
Voice Measures of Physiological Stress


Laboratory field data.
In Titze & Scherer
(Eds.): Vocal Fold Physiology: Biomechanics,
Acoustics, and Phonatory Control. Dencer, Colorado, USA. 1983.



[Bri96] Breiman, L.:
Machine Learning.
Bagging predictors 1996.


[Cah90]
Cahn, J. E.:
Generating expression in synthesized speech
. Technical Repor
t Boston: MIT Media
Lab. 1990.


[Cam00] Campbell, N.:
Databases of Emotional Speech.
In Cowie, R. Douglas
-
Cowie, E. & Schröder, M.
(Eds.) Proceedings of the ICSA Workshop on Speech and Emotion. Belfast, 2000.


[Cam01] Campbell, N.:
Building a corpus of nat
ural speech


and Tools for the Processing of Expressive
Speech


The JST CREST ESP Project.
In Proceedings of Eurospeech 2001, Aalborg, Denmark,
2001.


[Car92]
Carlson, R.; Granström, B.; Nord, L.:
Experiments with emotive speech
-

Acted utterances and
sy
nthesized replicas
. In Proceedings of the International Congress on Spoken Language
Processing. 1992.


[Car93]
Cardie, C.:
Using decision trees to improve case
-
based learning
. In: Proceedings of 10
th

International Conference on Machine Learning, 25

32, 199
3.


[Car94]
Caruana, R.; Freitag, D.:
Greedy attribute selection.
In Proceedings of 11
th

International
Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 28

36, 1994.


[Che98] Chen, L.S.; Tao, H.; Huang, T.S.; Miyasat, T.; Nakatsu,

R.:
Emotion Recognition From
Audiovisual Information
. In Proceedings IEEE Workshop on Multimedia Signal Processing, pp.
83
-
88. Los Angeles, CA, USA, 1998.


[Che01] Cheveigné Alain de; Kawahara, Hidaki :
Comparative evaluation of F0 estimation algorithms.
In
Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001.


[Cos83]
Cosmides L:
Invariances in the acoustic expression of emotion in speech,

in Journal of
Experimental Psychology: Human Perception and Performance, 9, 6, 864
-
881. 1983.


[Cow95] Cowie, R.; D
ouglas
-
Cowie, E.:
Speakers and hearers are people: Reflections on speech
deterioration as a consequence of acquired deafness
in “Profound Deafness and Speech
Communication”. London, 1995.


[Cow99a] Cowie, R.; Douglas
-
Cowie, E.; Romano, A.:
Changing Emotion
al Tone in Dialogue and its
Prosodic Correlates.
In Proc. ESCA Workshop on Dialogue and prosody, Eindhoven, The
Netherlands, 1999.


[Cow99b] Cowie, R.; Douglas
-
Cowie, E.; Apolloni, B.; Taylor, J.; Fellenz, W.:
What a neural net needs to
know about emotion
words

in Proc. 3
rd

World Multiconf. On Circuits, Systems, Comms. And
Computers. Athens, Greece, July 1999.


[Cow00] Cowie, R.; Douglas
-
Cowie, E.; Savvidou, S.; McMahon, E.; Sawey, M.; Schröder, M.:
FEELTRACE’: An Instrument for Recording Perceived Emotion
in Real Time.

In, ISCA Workshop
on Speech and Emotion, Belfast 2000.


[Cow01] Cowie, R.; Douglas
-
Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; G. Taylor, J.:
Emotion recognition in human
-
computer interaction
in “IEEE signal processing

magazine”, pp.
32
-
80.
January 2001.






REFERENCES







293


[Dav75] Davis, M.; College, H.:
Recognition of facial expresions.
New York: Amo Press, 1975.


[Dat64] Davitz, J.R:
Auditory correlates of vocal expression of emotional feeling.
In The communication of
emotional meaning
, ed J.R. Davitz, 101
-
112. New York: McGraw
-
Hill, 1964.


[Dar65] Darwin, C.:
The Expresion of Emotions in Man and Animals,
John Murray, Ed.1872. Reprinted by
univ. Chicago Press, 1965.


[Das97] Dash, M.; Liu, H.:
Feature Selection for Classification.
Intel
ligent Data Analysis
-

An International
Journal, Elsevier, Vol. 1, No. 3, 1997



[Del96] Dellaert, F.; Polzin, T.; Waibel, A.:
Recognizing Emotion in Speech

ICSLP’96 Conference
Proceedings, Delaware. 1996.


[Dev82]
Devijver, P.A.; Kittler, J.:
Pattern Rec
ognition: A Statistical Approach
. Prentice Hall, 1982.


[Doa92]
Doak, J.:
An evaluation of feature selection methods and their application to computer security.

Technical report, Davis, CA: University of California, Department of Computer Science, 1992.


[
Dom96]
Domingos, P.:
Context
-
sensitive feature selection for lazy learners
. Artificial Intelligence Review,
1996.


[Dov97]
Doval, B.; d'Alessandro, C.:
Spectral correlates of glottal waveform models: an analytic study

in
Proc. ICASSP 97, Munich, pp 446
-
452
.


[Duc97]
Duch, W.; Adamczak, R.; Jankowski, N.:
Initialization and optimization of multilayered
perceptrons
. Third Conference on Neural Networks and Their Applications, Kule, Oct
ober 1997,
pp. 105
-
110


[Duc01]
Duch, W.; Jankowski, N.:
Transfer functions: hidden possibilities for better neural networks
. 9th
European Symposium on Artificial Neural Networ
ks (ESANN), Brugge 2001. De
-
facto
publications, pp. 81
-
94.


[Ekm73] Ekman, P.: Darwin and Facial Esxpresions. New York: Academic, 1973.


[Fer01]
Fernández
-
Redondo, M; Hernández
-
Espinosa, C.: Weight Initialization Methods for Multilayer
Feedforward. ESANN'
2001 proceedings
-

European Symposium on Artificial Neural Networks
Bruges (Belgium), 25
-
27 April 2001,


[Fri62]
Friedhoff, A. J.; Alpert, M.; Kurtzberg, R. L.:
An effect of emotion on voice.

Nature, 193.Hansen, J.
(1999): Speech Under Simulated and Actual

Stress (SUSAS). LDC 99S78. 1962.


[Gam97]
Gamberger, D; Lavrac, N
.: Conditions for Occam’s Razor applicability and noise elimination.

In
Proccedings of the Ninth European Conference on Machine Learning, 1997.


[Gen89]
Gennari, J.H.; Langley, P.; Fisher,
D.:
Models of incremental concept formation.

Artificial
Intelligence, (40):11

61, 1989.


[Gil01] McGilloway, S.; Cowie, R.; Doulas
-
Cowie, E.; Gielen, S.; Westerdijk, M.; Stroeve S.:
Approaching
Automatic Recognition of Emotion from Voice: A Rough Benchmark
.





REFERENCES




294

[Gra96] Graf, H.; Cossato, D.; Gibbon, D.; Kocheisen, Petajan, E.;
Multi
-
modal system for locating heads
and faces,
in Proc. Int. Conf. On automatic Face and Gesture recognition. Vermont, Oct, 1996,
pp.88
-
93.


[Gre95] Greasley, P.; Setter, J.; Watterman
, M. Sherrard, C.; Roach, P.; Arnfield, S.; Horton, D.:
Representation of prosodic and emotional features in a spoken language database.
Proceedings of
the 13
th

International Congress of Phonetic Sciences. Stockholm. 244
-
245. 1995.


[Gui64]
Ghiselli, E. E
.:
Theory of Psychological Measurement
. McGrawHill, New York, 1964.


[Gus01] Gustafson
-
Capková, S.:
Emotions in Speech: Tagset and Acoustic Correlates.
Speech technology,
term paper. Autumn 2001.


[Hag95] Hagen, A.:
Analyse verschiedenerGrundfrequenzenver
fahren an unterschiedlichen
Sprachmaterial
, Studentwork, Lehrstuhl fuer Mustererkennung (informatics 5), Erlangen
-
Nuernberg University.


[Hal99] Hall, M. A.; Smith, L. A.:
Feature Selection for Machine Learning: Comparing a Correlation
-
based Filter Approac
h to the Wrapper.
In
Proceedings of the Florida Artificial Intelligence
Symposium, FLAIRS
-
99.


[Har94] Harbeck, S.:
Entwicklung eines robusten Systemszum periodensynchronen Analyse der
Grundfrequenz von Sprachsignalen,
Diploma Thesis, Lehrstuhl fuer Must
ererkennung (Informatics
5), Erlangen
-
Nuernberg University.


[Hec68]
Hecker M.; Stevens, K.; von Bismarck, G.; Williams, C. E.:
Manifestations of task
-
induced stress
in the acoustic speech signal
. Journal of the Acoustical Society of America. 1968.


[Hen01
] Henrich, N.; d'Alessandro, C.; Doval, B.:
Spectral correlates of voice open quotient and glottal
flow asymmetry: theory, limits and experimental data.
In EUROSPEECH 2001, Denmark,
Sept.2001.


[Hes83 ] Hess, W.:
Pitch Determination of Speech Signals,
Bd.3

from
Springer Series of Information
Sciences,
Springer
-
Verlag, Berlin, 1983.



[Hog77] Hogarth, R. M.:
Methods for aggregating opinions.

In H. Jungermann and G. de Zeeuw, editors,
Decision Making and Change in Human Affairs. D. Reidel Publishing, Dordrech
t
-
Holland, 1977.


[Hub98] Huber, R:
Prosodische Linguistische Klassifikation von Emotionen.
PhD Thesis.


[Hub98] Huber, R.; Nöth, E.; Batliner, A.; Buckow, J.; Warnke, V.; Niemann, H.:
You BEEP Machine


Emotion in Automatic Speech Understanding Systems”.

TSD’98, Brno, Masaryc University.


[Ichi84]
Ichino, M.; Sklansky, J.:
Feature selection for linear classifier.

In: Proceedings of the Seventh
International Conference on Pattern Recognition, volume 1, 124

127, July

Aug 1984.


[Ichi84b] Ichino, M.; Sklansk
y, J.:
Optimum feature selection by zero
-
one programming.
IEEE Trans. on
Systems, Man and Cybernetics, SMC
-
14(5):737

746, September/October 1984.


[Jan01] Jankowski, N.; Duch, W.:
O
ptimal transfer function neural networks
.

In 9th European Symposium
on Artificial Neural Networks (ESANN), Brugge 2001. De
-
facto publications, pp. 101
-
106.


[Iid98]
Iida, A.; Campbell, N.; Yasamura, M.:
Design and Evaluation of Synthesised Speech with Emo
tion
.
Journal of Information Processing Society of Japan, 40 (2). 1998.







REFERENCES







295

[Iwa95] Iwano, Y.:
Extraction of Speaker’s Feeling using Facial Image and Speech

in Proceedings IEEE
International Workshop on Robot an Human. Tokio, Japan, 1995.

[Joh99] Johnstone,

T.; Scherer, K.:
The effects of emotions on voice quality.
University of Geneva.
Proceedings of the XIVth Internationl Congress of Phonetic Sciences, 1999, San Francisco.


[Kap01] Kappas, A.:
What is emotion?
Department of Psychology, University of Hull.

United Kingdom,
2001.


[Kie96] Kiessling, A.; Kompe, R.; Batliner, A.; Niemman, H,; Nöth, E:
Classification of Boundaries an
accents in Spontaneous Speech
in proceedings of the CRIM/FORWISS Workshop, Montreal, Oct
1996.


[Kie97] Kiessling, A.:
Extraktion
und Klassifikation prosodischer Merkmale in der automatischen
Sprachverarbeitung,
Berichte aus der Informatik, Shaker, Aachen, 1997.


[Kie00] Kienast, M.: Sendlmeier, W.F.:
Acoustical analyisis of spectral and temporal changes in emotional
speech.

Queen’s
University.

In Proceedings of ISCA Workshop on Speech and Emotion. Belfast,
2000.


[Kir92] Kira, K.; Rendell, L.A.:
The feature selection problem: Traditional methods and a new algorithm.

In: Proceedings of Ninth National Conference on Artificial Intellig
ence, 129

134, 1992.


[Kla97] Klasmeyer, G.:
The Perceptual Importance of Selected Voice Quality Parameters

in Proceedings
of ICASSP'97, Munich, Germany, 1997.


[Kla00] Klasmeyer, G.; Sendlmeier, W.F.:
Voice and emotional states.
In Kent, R.D. & Ball, M.J
. (eds.):
Voice quality measurement. San Diego, 2000.


[Kle81]
Kleinginna, P.R.; Kleinginna, A.M.:
A categorized list of emotion definitions with suggestions for a
consensual definition.

Motivation and Emotion, 5, 345
-
379. 1981.


[Koh95] Kohavi, R.:
Wrappe
rs for Performance Enhancement and Oblivious Decision Graphs
. PhD thesis,
Stanford University, 1995.


[Koh96] Kohavi, R.; John, G.:
Wrappers for feature subset selection
. Artificial Intelligence, special issue on
relevance, 97(1

2): 273

324, 1996.


[Kol96]

Koller, D.; Sahami, M.:
Toward optimal feature selection
. In: Proceedings of International
Conference on Machine Learning, 1996.


[Kom89] Kompe, R.:
Ein Mehrkanal verfahren zur Berechnung der Grungfrequenzkontour unter Einsatz
der Dinamischen Programmieru
ng
, Diploma Thesis, The Chair for Pattern Recognition
(Informatics 5), Erlangen
-
Nuernberg University, 1989.


[Kon94] Kononenko, Igor:
Estimating Attributes: Analysis and Extensions of RELIEF.
In
Proceedings of
European Conference on Machine Learning, 171

1
82, 1994.


[Lan94a]
Langley, P.; Sage, S.:
Oblivious decision trees and abstract cases.

In Working Notes of the
AAAI
-
94 Workshop on Case
-
Based Reasoning, Seattle, W.A, 1994. AAAI Press.


[Lan94b] Langley, P.; Sage, S.:
Scaling to domains with irrelevant fe
atures
. In R. Greiner, editor,
Computational Learning Theory and Natural Learning Systems, volume 4. MIT Press, 1994.


[Lan94c] Langley, P.; Sage, S.:
Induction of selective Bayesian classifiers.

In Proceedings of the Tenth
Conference on Uncertainty in Art
ificial Intelligence, Seattle, W.A, 1994. Morgan Kaufmann.




REFERENCES




296


[Lat92] Lathi, B. P.:
Linear Systems and Signals
. Carmichael, Calif: Berkeley
-
Cambridge Press, 1992.


[Lee01]
Lee, C.M.; Narayanan, S.; Pieraccini, R.:
Recognition of

Negative Emotion in the Human

Speech
Signals
, Workshop on Auto. Speech Recognition and Understanding, Dec 2001.


[Liu96]
Liu, H.; Setiono, R.:
A probabilistic approach to feature selection

a filter solution.
In:
Proceedings of International Conference on Machine Learning, 319

327, 19
96.


[Liu96b]
Liu, H.; Setiono, R.:
Feature selection and classification

a probabilistic wrapper approach.

In:
Proceedings of Ninth International Conference on Industrial and Engineering Applications of AI
and ES, 284

292, 1996.


[Mar97] Marasek, K.:
Elect
roglottographic Description of Voice Quality.
Phonetic AIMS, 1997.


[Meh74] Mehrabian, A.; Russel, J.:
An approach to environmental psychology.
Cambridge: MIT Press.
1974.


[Mil90] Miller, A. J.:
Subset Selection in Regression
. Chapman and Hall, New York,
1990.


[Mja01] Mjahed, M.:
Classification of Multi
-
jet Topologies in e+ e
-

collisions using Multivariate Analysis
Methods and Morphological Variables.
2001.


[Mod93]
Modrzejewski, M.:
Feature selection using rough sets theory.

In: Proceedings of the Europ
ean
Conference on Machine Learning (P. B. Brazdil, ed.), 213

226, 1993.


[Mon02] Montero, J.M.; Gutiérrez
-
Arriola, J.; de Córdoba, R.; Enríquez, E.; Pardo, J.M.:
The Role of Pitch
and Tempo in Spanish Emotional Speech.

E. Keller, G. Bailly, A. Monaghan, J.

Terken, M.
Huckvale (eds) pp 246
-
251, John Wiley and Sons, ISBN 0471
-
49985
-
4, 2002


[Moo94]
Moore, A.W.; Lee, M.S.:
Efficient algorithms for minimizing cross validation error.

In:
Proceedings of Eleventh International Conference on Machine Learning, Morg
an Kaufmann, New
Brunswick, New Jersey, 190

198, 1994.


[Moz00] Mozziconacci, S. J. L.:
The expression of emotion considered in the framework of an intonational
model.

Keynote paper for
ITRW ‘Speech and Emotion: A

conceptual framework for research
’,
Newcastle, Northern Ireland, 2000.


[Mrp94]
Murphy, P. M.; Aha, D. W.:
UCI Repository of Machine Learning Databases.

Irvine, CA:
University of California, Department of Information and Computer Science. 1994.


[Muc71]
Mucciardi, A.N.; Gose, E.E.:
A comparison of seven techniques for choosing subsets of pattern
recognition.

IEEE Transactions on Computers, C
-
20:1023

1031, September 1971.


[Mur93] Murray, I.; Arnott, J.L.:
Towards the Simulation of emotion in Synthetic Spe
ech: A review of the
Literature on Human Vocal Emotion,.i
n Journal of the Acoustic Society of America, 1993, pp.
1097
-
1108.


[Nar77]
Narendra, P.M.; Fukunaga, K.:
A branch and bound algorithm for feature selection
. IEEE
Transactions on Computers, C
-
26(9):9
17

922, September 1977.


[Nie83] Niemann, H.:
Klassification von Mustern,
Springer
-
Verlag, Berlin, 1983.


[Not91] Noeth, E,:
Prosodische Information in der automatischen Spracherkennung


Berechung und
Anwendung,
Niemeyer, Tubingen, 1991.







REFERENCES







297

[Oli92]
Oliveir
a, A. L.; Vincentelli, A.S.:
Constructive induction using a non
-
greedy strategy for feature
selection.

In: Proceedings of Ninth International Conference on Machine Learning, 355

360,
Morgan Kaufmann, Aberdeen, Scotland, 1992.


[Osg57] Osgood, C.E.; Suci J.
G.; Tannenbaum P.H.:
The measurement of meaning.
University of Illinois
Press: Urbana. 1957.


[Pae00] Paeschke, A.; Sendlmeier, W.F.:
Prosodic Characteristics of Emotional Speech: Measurements of
Fundamental Frequency Movements.
Technical University Berli
n, Germany. In Proceedings ICSA
Workshop on Speech and Emotion. Belfast, 2000.



[Par86] Parsons, T.:
Voice and Speech Processing.
McGraw
-
Hill. 1986.


[Pen93] Penkiaitis, W.:
Ein integriertes, sequentielles, robustes Verfahren zur Ermittlung der der
Spach
grundfrequenz in Sprachsinalen,
Studentwork, The Chair for Pattern Recognition
(Informatics 5), Erlangen
-
Nuernberg, 1993.


[Per00] Pereira, C.:
Dimensions of Emotional Meaning in Speech.
ISCA workshop on Speech and Emotion,
Belfast 2000.



[Pet99] Petrushi
n, V.A.:
Emotion in speech: Recognition and Application to Call Centers”.
Artificial Neu.
Net. In Engr. (ANNIE’99), pp. 7
-
10, Nov. 1999.


[Pet00] Petrushin, V.A.:
Emotion Recognition in Speech Signal: Experimental Study, Development and
Application.
ICSLP
2000, Beijing.


[Pin90] Pinto, N. B.:
Unification of perturbation measures in speech signals.
JASA, vol.87, nr.3, pp.1278
-
1289. 1990.


[Pit93] Pittam, J.; Scherer, K. R.:
Vocal expression and communication of

emotion
. In M. Lewis & J. M. Haviland (Eds.),

Handbook of emotions (pp. 185
-
198).

New York: Guilford Press. 1993.


[Pre92] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.:
Numerical Recipes in C: the art
of scientific computing
, Second Edition, Cambridge University Press. 1992.


[
Prm96] Parmanto, B.; Munro, P.W.; Doyle, H.R.:

Improving committee diagnosis with resampling
techniques
In D.S. Touretzky, M.C. Mozer, and M. Hesselmo
(eds.) Advances in Neural
Information Processing Systems 8
, Cmbridge, Mass: MIT Press, 882
-
888. 1996.


[Q
ue84]
Queiros, C.E.; Gelsema, E.S.:
On feature selection.

In: Proceedings of Seventh International
Conference on Pattern Recognition, 1:128

130, July
-
Aug 1984.


[Qui86] Quinlan, J.R.:
Induction of decision trees.

Machine Learning, 1:81

106, 1986.


[Qui93]
Quinlan, J.R.:
C4.5: Programs for machine learning
. Morgan Kaufmann, Los Altos, California,
1993.


[Rab78] Rabiner, L.; Schafer, R.:
Dogital Processing of Speech Signals
, prentice Hall Inc., Englewood
Cliffs, New Jersey, 1978.


[Ros74] Ross, M.: Shaffer, H
.: Cohen, A.: Freudberg, R.; Manley, H.:
Average magnitude difference
function pitch extractor, IEEE Trans. on Acoustics, Speech and Signal Processing,
Bd. ASSP
-
22,
Nr.5, 1974, S.353
-
362.





REFERENCES




298

[Roy96] Roy, D.; Pentland, A.:
Automatic Spoken Affect Analysis an
d Classification
in Proceedings of the
International Conference of Automatic Face and Gesture Recognition, Killington, VT. 1996.


[Rum86]
Rumelhart, D.E.; McClelland, J. L.:
Parallel Distributed Processing
, volume 1.
MIT Press, 1986.


[Rus94] Russell, A.:
Is there universal recognition of emotion from facial expression? A review of cross
-
cultural studies.

Psychol. Bull. 1994.


[Sca97] Scalaidhe, O.S.P; Wilson, F.A.W.; Goldman Rakic, P.D.:
Science
, vol.278, pp. 1135
-
1
108, 1997.


[Sch93]
Schlimmer, J.C.:
Efficiently inducing determinations: A complete and systematic search algorithm
that uses optimal pruning.
In: Proceedings of Tenth International Conference on Machine
Learning, 284

290, (1993).


[Seg84] Segen, J.:
Feat
ure selection and constructive inference.

In: Proceedings of Seventh International
Conference on Pattern Recognition, 1344

1346, 1984.


[Sen78] Sennef, S.:
Real
-
Time harmonic pitch detector, IEEE Trans. on Acoustics,Speech and signal
Processing,
Bd. ASSP
-
2
6, Nr.4, 1978, S. 358
-
365.



[Seh90] Sheinvald, J.; Dom, B.; Niblack, W.:
A modelling approach to feature selection
. In: Proceedings of
Tenth International Conference on Pattern Recognition, 1:535

539, June 1990.


[Ski35]
Skinner, E. R.:
A calibrated recor
ding and analysis of the pitch, force and quality of vocal tones
expressing happiness and sadness
. Speech Monographs. 1935.


[Slu95] Sluijter, A.:
Phonetic Correlates os Stress and Accent.
Holland institute of Generative Linguistics.
1995.


[Sch84] Scherer
, K.; Ekman, P.:
Approaches to Emotion
. Mahwah, NJ: Lawrence Erlbaum associates,
1984.


[Sch94] Scherer, K. R.: Affect Bursts in
Emotions
(S.H.M. van Goozen, N. E van de Poll, & J. A. Sergeant,
eds.) . hillsdale, NJ: Lawrence Erlbaum..


[Sch00] Scherer, K.
:
A Cross
-
Cultural Investigation of Emotion Inferences from Voice and Speech:
Implications for Speech Technology.
In ICSLP 2000, Beijing, China, Oct. 2000.


[Sci94]
Schiffmann, W.; Joost, M.; Werner, R.:
Optimization of the Backpropagation Algorithm for
T
raining Multilayer Perceptrons.

September 29, 1994


[Scö00] Schröder, M.:
Experimental Study of Affect Bursts
in ISCA Workshop on Speech and Emotion,
Northern Ireland, 2000.


[Scö01] Schröder, M.; Cowie, R.; Douglas
-
Cowie, E.; Westerdijk, M.; Gielen, S.:
Acoustic Correlates of
Emotion Dimensions in View of Speech Synthesis.


[Ska94]
Skalak, D.B.:
Prototype and feature selection by sampling and random mutation hill
-
climbing
algorithms.

In: Proceedings of Eleventh International Conference on Machine Learnin
g, Morgan
Kaufmann, New Brunswick, 293

301, 1994.


[Sti01] Stibbard, R. M.:

Vocal Expression of Emotions in Non
-
laboratory Speech: An Investigation of the
Reading/Leeds Emotion in Speech Project Annotation Data.
Unpublished PhD thesis. University
of Readin
g, UK. 2001.









REFERENCES







299

[Tat02] Tato, R.; Santos, R.; Kompe, R.; Pardo, J.M.:
Emotional Space Improves emotion Recognition.
To
appear.


[Tar80] Tartter, V.C.:
Happy talk: Perceptual and acoustic effects of smiling on speech.
Perception and
Psychophysics. 1980.


[
Tic00] Tickle, A.:
English and Japanese Speakers’ Emotion Vocalisation and Recognition: A Comparison
Highlighting Vowel Quality
in ICSA Workshop on Speech and Emotion, Northern Ireland 2000,
p104
-
109.


[Tol90] Tollenaere, T.:
SuperSAB: Fast Adaptive Backp
ropagation with Good Scaling Properties
, Neural
Networks
3
, 561 (1990).



[Tra96] Trask, R. L.:
A Dictionary of phonetics and Phonology
. Routledge, London, 1996.


[Vaf94]
Vafaie, H.; Imam, I.F
.: Feature selection methods: genetic algorithms vs. greedy
-
li
ke search
. In:
Proceedings of International Conference on Fuzzy and Intelligent Control Systems, 1994.


[Wea89] Weaver, H. J.:
Theory of Discrete and Continuous Fourier Analysis.
WILEY
-
Europe, 1989.



[Wil69]
Williams, C. E.; Stevens, K. N.:

On determining

the emotional state of pilots during flight: An
exploratory study.
Aerospace Medicine, 40. 1969.


[Wil72]
Williams, C. E.; Stevens, K. N.:

Emotions and speech: Some acoustical factors

in Journal of the
Acoustical Society of America, 52, 1238
-
1250. 1972.


[Wit82] Witten, I.:
Principles of Computer Speech
, Academic Press Inc. 1982.


[XuL88]
Xu, L.; Yan, P.; Chang, T.:
Best first strategy for feature selection.

In: Proceedings of Ninth
International Conference on Pattern Recognition, 706

708, 1988.


[Yan01] Y
ang, L.:
Linking Form to Meaning: The Expression and Recognition of Emotions Through
Prosody
in Proceedings on fourth ISCA Workshop on Speech Synthesis, 2001.


[Zaj62] Zajonic, R. B.:
A note on group judgements and group size.

Human Relations, 15:177

180,

1962.


[Zel95] Andreas Zell, Günter Mamier, Michael Vogt, Niels Mache, Ralf Hübner, Sven Döring, Kai
-
Uwe
Herrmann, Tobias Soyez, Michael Schmalzl, Tilman Sommer, Artemis Hatzigeorgiou, Dietmar
Posselt, Tobias Schreiner, Bernward Kett, Gianfranco Clemente,

Jens Wieland:
(SNNS Stuttgart
Neural Network Simulator, User Manual Version 4.1.
University of Stuttgart
, 1995.


[Zet01] Zetterholm, E.:
Prosody and voice quality in the expression of emotions.
Lund University. In SST
Proceedings of the 7
th

Australian In
ternational conference on SPEECH SCIENCE AND
TECHNOLOGY. Sydney, 1998.


[Zwi67] Zwicker, E.; Feldtkeller, R.:
Das Ohr als Nachrichtenempfaenger,
Hirzel Velag, Stuttgart, 1967.











REFERENCES




300