Harnessing the Geospatial Semantic Web: Toward Place-Based Information Organization and Access Marcy Bidney, Pennsylvania State University

jumentousmanlyInternet and Web Development

Oct 21, 2013 (3 years and 10 months ago)

91 views

Harnessing the
Geospatial Semantic Web
: Toward
Place
-
Based

Information
Organization and Access



Marcy Bidney
, Pennsylvania State University

(
maplibrarian@psu.edu
)
1 Central Pattee

Library, University Park, PA 16802

Marcy is
Head of the Donald W. Hamer Maps Library at Penn State University and serves as
the Geospatial Information Librarian.
She was

the Chair of the Map and Geo
spatial
Information

Roundtable of ALA in 2010.
Her

resear
ch interests include alternative access
modes for map and data collections, geographic education/literacy, the history of
cartography and the spatial humanities.



Kevin Clair
, Pennsylvania State University

(
kmc35@psu.e
du
) 126 Paterno Library,
University Park, PA 16802.

Kevin is the
Metadata Librarian at the Penn State University Libraries, a position he has
held since 2007. His research interests include the uses of linked open data in libraries, the
economics of meta
data creation in a research library, and the uses of digital collections in
local and community history.



Abstract

T
he geospatial semantic web’s primary use to date has been the creation of map mashups,
collaborative mapping projects
, and other research
functions. T
he power of the geospatial
semantic web can also be harnessed for the development of place
-
based access points to
further the use of information collections


digital and print.

Creating

a geographic search
interface for information collections

allows users to search
by

location
.
The
basic principles
of linked data, describing

en
tities using unique identifiers

and provide links between
related objects
,
tie into the desire for libraries to link their own digital resources with
related mat
erials h
eld by other
cultural institutions publishing content on the Web.

This
paper will provide an overview of linked data principles, discuss the benefits and
challenges of providing geographic information in metadata records,
and
provide examples
of how locati
on based searches are valuable to users, and offer opportunities for future
research.




Introduction


As understanding and development
of Web

technology deepens, a variety of useful means
for information organization and access emerge. The development of

a geospatial semantic
web utilizing
linked data

has been most promising in changing how information is
organized, displayed and accessed. While the geospatial semantic web’s primary use to
date has been the creation of map mashups, collaborative mapping
projects, and other
research functions, the power of the geospatial semantic web can also be harnessed for the
development of
place
-
based

access points to

further the use of

information collections


digital and print.


2


Organizing information based on loca
tion is a powerful idea


it has the capacity to bring
together information from diverse communities of practice
that

a researcher may never
have considered.
While this is certainly not a new idea, the technology is now just getting to
a point where this i
dea can become a reality.

Place


is interdisciplinary and the creation of
geographic search interfaces utilizing linked data principles enables access across a variety
of information collections in
powerful

an
d

innovative
way
s
. The developers of new
generation library catalogs should be thinking outside of traditional text display methods
and look forward to the creation of more visual displays of search results. Developers have
much to learn from the rapid increase in the use
of geospatial information to generate
mashups of data and information on the web and the display of this data on maps. The
creation of a geographic search interface for information collections allows users to search
for an item

according to its location
;

s
imply by c
licking on a given location on a
map
users
can explore
library
collections
of all kinds of materials

related by place. The geospatial
semantic web makes this idea more realistic through the use of linked data to expose
connections between bits o
f information that otherwise may not have been revealed
through a simple text search in a traditional library catalog.
This method also exposes
relationships in a visual context that is inherently more meaningful than textual
connotations.


Tim Berners
-
Lee

and his co
-
authors
wrote in
Scientific American

(Berners
-
Lee e
t al. 2001)

about the Semantic Web describing it not as “a separate Web but an extension of the
current one, in which information is given well
-
defined meaning, better enabling
computers and people to work in cooperation.” In the same article the author
s say in order


for the Semantic Web

to function, computers must hav
e access to structured collections
of information and sets of inference rules that they can use to
conduct automated
reasoning.” It

would stand to reason then
,

that one of the most useful

places for Semantic
Web technologies, such
as
linked data, to take root would be in libraries where structured
collections of information have existed for centuries. Ten years later,
Gillian Byrne and Lisa
Goddard

(Byrne and

Goddard 2010)

refer to the promise of semantic w
eb capabilities as
“dazzling”
.
In making the case for linked data,
they
provide examples of how to implement
it successful
ly in the library environment. Writing about the uses of linked data for libraries
they can now make such statements that technology is “no longer the major obstacle to
linked data implementation.”


Linked open data provides a powerful tool for
enhancing

access to library catalog records.
The purpose of linked data is to
provide connections between

related, but unconnected
data
on the Web,

in much the same way that Web pages are currently linked together.
In
recent years librarians have seized upon the
linked open data concept as a means of
sharing metadata about library collections and repurposing that content for n
ew audiences
and applications.
The basic principles of linked data

to describe entities using unique
identifiers, and provide links between
related objects using these identifiers in order to
enrich them both

tie into the desire for libraries to link their own digital resources with
related materials held by other libraries, cultural institutions, or other entities publishing
content on the We
b.




3

This paper will provide an overview of linked data principles, discuss the benefits and
challenges of providing geographic information in metadata records, the development of
standards for interface design, provide examples of how location based searches a
re
valuable to users, and offer opportunities for future research.


Linked Data in Practice


Linked open data is built on two

foundations. First is

the "technology stack" of transmission
protocols (such as HTTP) and data markup
and serialization
standards

(such as RDF and
OWL) that enc
ode the data.
Second are the controlled vocabularies governing the terms
that may be linked, provided through
commonly utilized linked data thesauri
such as
DBpedia
.

These provide

not only the terms for describing objects
,

bu
t also
the
ir associated

URI
s
,
so that
links to additional resources may be made
. Much of the early work done by
cultural institutions to integrate themselves into the linked open data space has been
focused on publishing authority data in a form that may b
e linked by themselves and by
other domains. Examples of this work include
the Library of Congress authority files, the
Virtual International Authority File, and the Rameau subject headings published by the
Biblioth
è
que Nationale de France.


For geospatial

applications, the key linked open data
hub
is the GeoNames

service
,

http://geonames.usgs.gov/
,
which provides persistent URIs and metadata about a variety
of geographic locations
.

One of the key features of GeoNa
mes is that each entity described
in its database includes an RDF serialization, allowing for direct links from other linked
data
-
enabled services. In this way GeoNames has positioned itself as an essential data
source for any developer working on a linked

data application with a geospatial component.


The
re are many

benefits
to
being able to ingest geospatial metadata from linked data
vocabularies using
existing

metadata in library catalog records.
By integrating links to
widely
-
used

linked data vocabular
ies into the catalog, libraries
can

take advantage of the
rich metadata encoded in those vocabularies and enrich their own metadata substantially.
By using

this
two
-
way
relationship
,
they may build additional interfaces and improve the
coverage of their re
cords, including support for temporal and spatial interfaces. From this
they may be able to provide
map
-
based access to library resources

of all kinds
, or allow
users to create their own research guides to resources

of interest
, or
a variety of other new
s
ervices or applications
.


Allowing for encoding of coordinate points in catalog records would not necessarily require
manual revisiting of all of the records in every catalog.
Many linked data services, including
DBpedia and
GeoNames
,

deliver data through
APIs, allowing for users to ingest substantial
amounts of new metadata with simple inputs of data they already have on hand. By
knowing the name of the location for which one requires coordinate points, the GeoNames
API will return a variety of data, inclu
ding the latitude and longitude points; from here it is
a matter of transforming the data from the web service's native export
format in
to
one
more

suitable for ingest into a library catalog.



4

Sustained collaboration among cultural institutions will greatl
y enable the effort to include
coordinate metadata in library catalogs. Collaborative cataloging
initiatives

already exist in
North America, through efforts such as the
Library of Congress’

Program for Cooperative
Cataloging (PCC) and its associated progra
ms. These can provide a framework for
developing linked open data programs in libraries, and for communicating the work in this
space to other libraries.
Just a
s
Library of Congress Subject Headings

(LCSH) thesaurus

serve
s

as a central hub for library metadata that may be linked to other linked open data
vocabularies to download coordinate points, LC may also play a key role in coordinating
the development of linked data initiatives and training of library cataloging staff
in these
efforts, as well as continuing to connect LCSH to other linked data vocabularies such as
GeoNames.



Working within the linked open dat
a network will allow

connecting library metadata with
metadata created by other domains. This will enhance disco
very layers, especially
geospatial ones, by allowing users to click on a location or point of interest and view
external metadata drawn from a linked data hub that goes well beyond that which libraries
have created (and vice
-
versa; other domains may take a
dvantage of our data by the same
turn). Taking advantage of the linked open data cloud allows our metadata to be more
broadly accessed by a wider community of users. Additionally, because linked open data
operates at the network level by design,
the catalo
ging work may be shared with
other
metadata specialists in other communities. This network
-
level cooperative cataloging will
allow libraries to focus on "hidden collections,"
i.e.
,

those
special collections and unique
local holdings t
hat are currently unde
r
-
exposed.

Connecting library metadata describing
these resources
to the linked open data cloud,
whether through producing our own linked
data or consuming that produced by others, improve access to library collections and
discovery layers and enrich the l
inked open data cloud on the Web even further
(Hannemann and Kett 2010).


User Experience Design


Because most of the early work on building a linked data ecosystem has been focused on
publishing and exposing vocabularies, end
-
user services are not as matu
re.
Recently
however, a

handful of examples of user
-
facing services using linked data have emerged.
One of these is DBpedia Mobile, a mobile device application developed by Becker and Bizer
at the Freie Universität Berlin,
that

is an example of an innovati
ve user
interface

driven

by
linked open data, from which users may discover digital resources of which they were
previously unaware. This application takes as input the location of a mobile device as
communicated through its GPS coordinates, and returns a
map with links to nearby points
of interest encoded within the DBpedia database, based on the latitude and longitude
points contained in the corresponding RDF
-
encoded metadata. From this interface, users
may follow these links and discover additional infor
mation about those points of interest.


In an article in
Computers in Libraries
, Anne
-
Lena Westrum

(Westrum 2011)

descr
ibed the
challenges in developing an open library catalog for the Oslo Public Library, and how they
utilized linked data concepts to address these challenges in a way that made sense to end
users. By connecting the data in their local catalog to linked ope
n data vocabularies, they

5

were able to enhance access to the items in their collection by providing contextual
information about authors derived from DBpedia and VIAF. Using linked open data
improved the OPL's discovery services in two ways. By
consuming

linked data, they were
able to allow for additional access points and advanced queries of their catalog data; by
producing

it (
i.e.,

by exposing it openly as RDF), they allowed third
-
party access to their
metadata, providing even more visualizations of th
eir metadata that were not considered
during the project's implementation.


These examples demonstrate the power of using linked open data to improve access to
library catalogs, as well as making that linked library data open so that end users can
develop
applications that sit atop that data
,

and

take advantage of it to enhance access even
further. By applying these principles to geospatial access, libraries can provide vastly
improved service through their catalogs and discovery layers to users whose queri
es have
a geographic focus
,
whether they know it or not
. Vocabularies such as GeoNames and
DBpedia, which provide coordinate metadata for place names, historical events, and so
forth, provide the back
-
end support for these services. Many popular websites,
well known
to most users of online library catalogs, provide guideposts for the front
-
end services.
Included in these services is Google Maps itself, as well as sites such as Flickr

which use
free online map

services to provide geospatial access points to
cultural heritage resources.
They allow for contributors to place photographs submitted to the sites on a map, and for
users to browse or search for resources that interest them based on geographic entry
points.

To connect
these two threads of cultural ins
titutional practice, the benefits of both
increasing coordinate access to library metadata

and
utilizing
linked open data as a means
to this end are apparent. The challenge, then, becomes getting there through a method that
scales upward
.


The
Future of

Ge
ographic Search Interface


The current state of search and discovery in libraries is bland at best, even with the
integration of second
-
generation discovery systems. Libraries have not worked to find
dynamic, creative, interactive means for accessing
their collections and we are stuck with
the same old, text driven search and results screen when searching in an online catalog.
While providing a geographic search interface for cartographic collections makes sense,
one can argue that it also makes sense
to do so for all library collections as well as an
alternate v
ersion of the traditional OPAC.
Integrating geographic linked data vocabularies
into existing library metadata would allow libraries to create such search interfaces, not
only for their digital
collections, but also possibly more importantly, for their print
collections. Users would be able to explore entire library collections based on where an
item was written, or where a story takes place or from where an author lived. Based on this
idea, the
user would then be able to explore other m
aterial from that same area, as
these

would
also
appear in the search results.


In
2010 Marcy Bidney

(Bidney 2010)

made the case for inclusion of geographic coordinates
in the catalog records of cartographic material
to enhance the capabilities of providing
alternate
access points for print and digital map collections
,

and called for continued
research on how the Semantic Web and linked data could further efforts to provide visual

6

geographic interface access points for library collections. Almost simultaneously Klokan

Technologies
,

based in Switzerland
,

was hard at work developing a new ranking algorithm,
which they named MapRank

(Oehrli et al. 2011)
.
The development of this algorithm
resulted in a successf
ul geographic
search
interface for digital cartographic collections.
Implementation of this interface can be seen at the David Rumsey Map Collection site and
also at
the Swiss Electronic Library. In both cases the user is exploring the digital
collections
by zooming in and out of the map interface and seeing relevant search results
appear on the
right
-
hand

side

of the screen.
This searching function of these sites

is

along
the

more traditional

lines as it

utilizes existing metadata records for digital objec
ts that
include bounding box coordinate data
,

allowing the compu
ter to search within a
boxed area
on the map. Though it serves to search a specific set of metadata records and does not
utilize linked data
technologies,
it is the first successful implementa
tion of this type of
search interface for d
igital cartographic collections and provid
es much promise for the
future of geospatial search interface development.


The Finnish Culture Sampo site is
a rare

example of how
cultural institutions such as
museums,

historical societies and libraries can begin to harness
Semantic Web

technologies

to create dynamic, interactive, visual search interfaces based on geography
.
This project

pull
ed

information together from approximately
twenty
Finnish cultural
institutions
and
,

among other means of access
,

provide
s

access via geography using a
Google Maps interface.
The Culture Sampo site brings together a variety of digital objects
such as maps, poems, books,
and

folk songs, along with tagged images from Panoramio

and
Wikipedia
,

allowing a user to analyze Finnish culture in a way that creates a more complete
pi
cture by combining
information objects spread across the Web.


Both of these projects provide a glimpse at what is technologically possible in the
developme
nt of alternate search interface design. While neither is optimal, a combination
of the two


the clean, smooth functioning interface of MapRank search along with the
Semantic Web technology use of the Finnish Culture Sampo
,

would result in an amazing
geog
raphic search and discovery experience

as represented in the Finnish Culture Sampo
site.



Conclusion


There are many challenges to the creation of these interfaces, but as noted earlier, it is not
technology t
hat stands in the way anymore.

According to

By
rne

and Goddard
(Byrne &
Goddard 2010)

o
ne of the biggest challenges is
the
change

that will have to occur in
libraries to bring the
se projects to reality
. Utilizing linked data vocabularies and integrating
these into the traditional controlled vocabularies

to which

librarians are
accustomed
,

represents a major shift in thinking
for many cataloging librarians and would represent a
majo
r shift in cataloging policies across the board.

Another challenge mentioned by
Westrum is the need for “a modern metadata format that is open and flexible”. MARC does
not fit this description, and while RDA allows more flexibility and openness to library

metadata records, library metadata records have a long way to go before they can be
considered truly open and flexible.
Some other challenges exist in dissemination of the
knowledge about linke
d data and the Semantic Web. Byr
ne and Goddard note this by

7

re
viewing library conference proceedings and commenting on the lack of published articles
on linked data but with a sense that the seas are starting to shift toward an increased
awareness.

Despite these, and other, challenges
,

libraries shoul
d begin to shif
t their
thinking

toward

utilizing linked data and the Semantic Web as these technologies are
proving to be a powerful tool in the future of information search and discovery.


The future of alternate user interface design for accessing library collections is bright.
There is a lot of work still ahead to bring features such as a geographic search interface to
our users but we are finally in a time where the technology exists for
this to happen, now
we just need to begin to change the way we
think about
,
create and work with metadata.






































8

References


Becker, C. & Bizer
, C., DBpedia Mobile

: A Location
-
Enabled Linked Data Browser.
World
,
pp.6

7.

Berners
-
Lee, T., Hendler, J. & Lassila, O., 2001. The Semantic Web.
Scientific American
,
284(5), pp.34

43.

Bibliotheque electronique Suisse, Kartenportal.CH: Geographical Search
(beta). Available
at: http://kartenportal.mapranksearch.com/en/ [Accessed February 6, 2012].

Bibliotheque National de France, RAMEAU

: Accueil. Available at: http://rameau.bnf.fr/
[Accessed February 6, 2012].

Bidney, M.M., 2010. Can Geographic Coordinates in the Catalog Record Be Useful?
Journal of
Map & Geography Libraries
, 6(2), pp.140

150. Available at:
http://www.tandfonline.com/doi/abs/10.1080/15420353.2010.492304.

Bizer, C. & Berlin, F.U., Linked Data
-

T
he Story So Far.
International Journal on Semantic
Web and Information Systems
.

Byrne, G. & Goddard, L., 2010. The Strongest Link: Libraries and Linked Data.
D
-
Lib
.

Chen, H., 2007. Geospatial Semantic Web.
Image (Rochester, N.Y.)
, pp.272

275.

Congress, L.
of, Home
-

Authorities & Vocabularies (Library of Congress). Available at:
http://id.loc.gov/ [Accessed February 6, 2012].

CultureSampo, Kulttuurisampo
-

suomalainen kulttuuri semanttisessa web 2.0:ssa.
Available at: http://www.kulttuurisampo.fi/index.shtm
l [Accessed February 6,
2012].

Egenhofer, M.J., 2009. Toward the Semantic Geospatial Web *.
Society
, pp.5

8.

Flickr, Welcome to Flickr
-

Photo Sharing. Available at: http://www.flickr.com/ [Accessed
February 6, 2012].

Goddard, Lisa, B., Gillian, 2010. Link
ed Data tools: Semantic Web for the Masses.
First
Monday
, 15(1). Available at:
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3120/
2633.

Hannemann, J., 2010. Linked Data for Libraries and J
ü
rgen Kett German National Library ,.
Knowl
edge Management
, pp.1

12.

Keller, M.A., 2001. Linked Data

: A Way out.
Director
, pp.10

11.


9

Kuhn, W., Geospatial Semantics

: Why , of What , and How

? Introduction

: Why Semantics

?
Information Systems
.

OCLC, The Virtual International Authority File (VIAF).

Available at: http://viaf.org/
[Accessed February 6, 2012].

Oehrli, M. et al., 2011. MapRank: Geographical Search for Cartographic Materials in
Libraries.
D
-
Lib
, 17(9/10). Available at:
http://www.dlib.org/dlib/september11/oehrli/09oehrli.html.

Rumsey, D.
, David Rumsey Historical Map Collection | The Collection. Available at:
http://www.davidrumsey.com/ [Accessed February 6, 2012].

Scharl, A., 2007. Towards the Geospatial Web

: Media Platforms for Managing Geotagged
Knowledge Repositories.
Knowledge Creati
on Diffusion Utilization
, pp.3

14.

Science, G.I., The University Consortium for.
Scientific American
.

Seikel, M. & Steele, T., 2011. How MARC Has Changed: The History of the Format and Its
Forthcoming Relationship to RDA.
Technical Services Quarterly
, 28(3
), pp.322

334.
Available at:
http://www.tandfonline.com/doi/abs/10.1080/07317131.2011.574519.

Shadbolt, N., Berners
-
Lee, T. & Hall, W., 2006. The Semantic Web Revisited.
IEEE Intelligent
Systems
, 21(3), pp.96

101. Available at:
http://ieeexplore.ieee.org/l
pdocs/epic03/wrapper.htm?arnumber=1637364.

Smits, J., 2011. Libraries Mapped: A Question of Research!
Journal of Map & Geography
Libraries
, 7(2), pp.220

244. Available at:
http://www.tandfonline.com/doi/abs/10.1080/15420353.2011.566844.

S
ö
derb
ä
ck, A., Why
libraries should embrace Linked Data Why LIBRIS likes Linked Data.

Westrum, A.
-
L., 2011. The Key to the Future of the Library Catalog is Openness.
Computers
in Libraries
, 31(3), pp.10
-
14.

Wick, M., GeoNames. Available at: http://www.geonames.org/ [Accessed

February 6, 2012].