Lattice Dynamics

hardtofindcurtainUrban and Civil

Nov 16, 2013 (3 years and 11 months ago)

81 views

Physical properties of solids

determined by electronic structure

related to movement of atoms

about their equilibrium positions


Sound velocity


Thermal properties:
-
specific heat


-
thermal expansion


-
thermal conductivity


(for semiconductors)


Hardness of perfect single crystals
(without defects)






Lattice Dynamics



Reminder to the physics of oscillations and waves:

Harmonic oscillator in classical mechanics:

Example: spring pendulum

Hooke’s law

2
2
1
x
D
E
pot

x

spring
F
x
m



Equation of motion:

0


x
D
x
m


or

0


x
~
m
D
x
~


where

))
t
(
x
~
Re(
)
t
(
x

Solution with

t
i
e
A
~
)
t
(
x
~


)
t
cos(
A
)
t
(
x




where

m
D


X=A sin
ω
t



X

Dx

m
D


Traveling plane waves:

)
kx
t
(
cos
A
)
t
(
y





X

0

Y

X=0:

t
cos
A
)
t
(
y


t=0:

kx
cos
A
)
x
(
y

Particular state of oscillation Y=const

0


in particular

or

)
kx
t
(
i
e
A
~
)
t
(
y
~



)
kx
t
(
cos
A
)
t
(
y



travels according



0




.
const
dt
d
kx
t
dt
d
k
v
x








/
2
2
v



)
kx
t
(
i
e
A
~
)
t
(
y
~



2
2
2
2
2
1
x
y
t
y
v





solves wave equation

Transverse wave

Longitudinal wave

Standing wave

)
t
kx
(
i
e
A
~
y
~



1
)
t
kx
(
i
e
A
~
y
~



2


)
t
kx
(
i
)
t
kx
(
i
s
e
e
A
~
y
~
y
~
y
~








2
1


t
i
t
i
ikx
e
e
e
A
~





t
cos
e
A
~
ikx


2
Re( ) 2 cos cos
s s
y y A kx t
 

Large wavelength
λ


0
2




k
Crystal can be viewed as a continuous medium:

good for

m
8
10



λ
>10
-
8
m

10
-
10
m

Speed of longitudinal wave:





s
B
v
where B
s
:

bulk modulus

with

compressibility

B
s

determines elastic deformation energy density

2
2
1


s
B
U
dilation

V
V



(ignoring anisotropy of the crystal)

s
B
1




s
B
v
E.g.: Steel

B
s
=160 10
9
N/m
2

ρ
=7860kg/m
3

s
m
m
/
kg
m
/
N
v
4512
7860
10
160
3
2
9


(
click for details in thermodynamic context
)


>>

interatomic spacing


continuum approach fails

In addition:

phonons

vibrational modes quantized

Linear chain:

Remember: two coupled harmonic oscillators

Superposition of normal modes

Symmetric mode

Anti
-
symmetric mode

Vibrational Modes of a Monatomic Lattice

generalization

Infinite linear chain

How to derive the equation of motion in the harmonic approximation

?

n

n+1

n+2

n
-
1

n
-
2

u
n

u
n+1

u
n+2


u
n
-
1

u
n
-
2

u
n

u
n+1

u
n+2


u
n
-
1

u
n
-
2

fixed


D



1




n
n
l
n
u
u
D
F


1




n
n
r
n
u
u
D
F
a

Total force driving atom n back to equilibrium





1
1







n
n
n
n
n
u
u
D
u
u
D
F
n

n



n
n
n
u
u
u
D
2
1
1





equation of motion

n
n
F
u
m





n
n
n
n
u
u
u
m
D
u
2
1
1







Solution of continuous wave equation

)
t
kx
(
i
e
A
u



approach for linear chain

)
t
kna
(
i
n
e
A
u



)
t
kna
(
i
n
e
A
u





2


ika
)
t
kna
(
i
n
e
e
A
u




1
ika
)
t
kna
(
i
n
e
e
A
u





1
,

,

?

Let us try!



2
2






ika
ika
e
e
m
D


ka
cos
m
D



1
2
2
)
/
ka
sin(
m
D
2
2












2 2
2
1 1
1 1
1 1
1
2 2
0
2 2 0
2
2 0
n n n n n
n n
n n n n n
n n n n
D
L mu u u u u
d L L
dt u u
D
mu u u u u
D
u u u u
m
 
 
 
 
    
 
 
 
 
    
 
 
   
Alternative without thinking

Lagrange formalism

)
/
ka
sin(
m
D
2
2


Continuum limit of acoustic waves:

m
D
2
k

0
2




k
...
/
ka
/
ka
sin


2
2
k
a
m
D


a
m
D
v
k



Note: here pictures of transversal waves

although calculation for the longitudinal case

k

)
t
)
k
(
na
k
(
i
e
A
n
u





a
h
k
k




2
)
k
(
)
k
(




)
t
na
k
(
i
e
A




, here h=1

)
t
na
)
a
h
k
((
i
e
A





2
n
h
i
e
)
t
na
k
(
i
e
A




2
)
t
na
k
(
i
e
A



1
2


n
h
i
e
))
k
(
,
k
(
n
u
))
k
(
,
k
(
n
u





a
h
k
k




2
1
-
dim. reciprocal

lattice vector

G
h

a
k
a





Region

is called

first Brillouin zone

We saw: all required information contained in a particular volume in reciprocal space

first Brillouin zone

1d:

a

x
e
a
n
n
r

x
e
a
h
h
G


2
m
n
r
h
G



2
where m=hn integer

a

2
1st Brillouin zone

In general: first Brillouin zone

Wigner
-
Seitz cell of the reciprocal lattice

Brillouin

zones


Vibrational Spectrum for structures with 2 or more atoms/primitive basis

Linear diatomic chain:

2n

2n+1

2n+2

2n
-
1

2n
-
2

u
2n

u
2n+1

u
2n+2


u
2n
-
1

u
2n
-
2


D

a

2a



n
u
n
u
n
u
m
D
n
u
2
2
1
2
1
2
2







Equation of motion for atoms on even positions
:

Equation of motion for atoms on even positions
:



1
2
2
2
2
2
1
2






n
u
n
u
n
u
M
D
n
u


)
t
kna
(
i
e
A
n
u



2
2
Solution with:

)
t
ka
)
n
((
i
e
B
n
u





1
2
1
2
and













A
)
ika
e
ika
e
(
B
m
D
A
2
2












B
)
ika
e
ika
e
(
A
M
D
B
2
2
ka
cos
B
m
D
m
D
A
2
2
2









ka
cos
A
M
D
M
D
B
2
2
2


















2
2
2
m
D
ka
cos
B
m
D
A
ka
cos
Mm
D
M
D
m
D
2
2
4
2
2
2
2

















ka
cos
Mm
D
m
D
M
D
Mm
D
2
2
4
4
2
2
2
2
2
4







0
2
1
2
4
2
2
4

























ka
cos
Mm
D
M
D
m
D
ka
sin
2
Mm
ka
sin
M
m
D
M
m
D
2
4
2
1
1
1
1
2


















1 1
2D
m M
 
 
 
 
2
2
M
1
m
1
D
M
1
m
1
D

















m
D
2


,

M
D
2


m
D
2


M
D
2


2

2


Click on the picture to start the animation M
-
>m


note wrong axis in the movie

:
a
k
2


Atomic Displacement

Optic Mode

M
m
k
A
B



0
Atomic Displacement

Acoustic Mode

1
0


k
A
B
Click for animations

Dispersion curves of 3D crystals


Every additional atom of the primitive basis


3D crystal: clear separation into longitudinal and transverse mode only possible in


particular symmetry directions


Every crystal has 3 acoustic branches

sound waves

of elastic theory

1 longitudinal

2 transverse

acoustic

further 3 optical branches

again 2 transvers


1 longitudinal

p

atoms/primitive unit cell ( primitive basis of p atoms):

3 acoustic branches

+ 3(p
-
1) optical branches

= 3p branches

1LA +2TA

(p
-
1)LO +2(p
-
1)TO

Intuitive picture:

1atom

3 translational degrees of freedom

3+3=6 degrees of freedom=3 translations+
2rotations

+1vibraton

Solid:
p
N atoms

no translations, no rotations

3p

N vibrations

x

y

z

# of primitive

unit cells

# atoms

in primitive

basis

diamond lattice: fcc lattice with basis

(0,0,0)

)
,
,
(
4
1
4
1
4
1
L
ongitudinal
A
coustic

L
ongitudinal
O
ptical

T
ransversal
A
coustic

degenerated

Part of the phonon dispersion relation of diamond

T
ransversal
O
ptical

degenerated

P=2

2x3=6 branches expected

2
fcc

sublattices

vibrate against one another

However, identical atoms

no dipole moment

Calculated phonon
dispersion
relation

of
Ge

(diamond structure)

Calculated phonon
dispersion
relation

of
GaAs

(
zincblende

structure)

Adapted from:

H. Montgomery, “
The symmetry of lattice vibrations in
zincblende

and diamond structures
”,
Proc
. Roy. Soc. A. 309, 521
-
549 (1969)

Inelastic interaction of light and particle waves with phonons

Constrains: conservation law of

momentum

energy

Condition for

elastic

scattering

hkl
G
k
k


0
in

±

q

incoming wave

phonon

wave

vector

hkl
G
q
k
k







0
0
0






)
q
(



elastic

sattering

in

“quasimomentum”

0
2
2
0
2
2
2
2




)
q
(
n
M
k
n
M
k



for neutrons

for photon

scattering

Phonon spectroscopy



0


)
q
(


0
k

k

q

Triple axis neutron spectrometer

@ ILL in Grenoble, France

Lonely scientist in the reactor hall

Very expensive and involved experiments


Table top alternatives

?

Yes, infra
-
red absorption and


inelastic light scattering (Raman and Brillouin)

However only

0

q
accessible

see homework #8