4. Loads - Agnieszka Knoppik-Wróbel

haplessuseUrban and Civil

Nov 25, 2013 (3 years and 11 months ago)

128 views

AIRPORT TERMINAL BUILDING

FRP
-
REINFORCED GLULAM

ROOF STRUCTURE

Silesian University of Technology

Faculty of Civil Engineering

Department of Structural Engineering

ENGINEERING DIPLOMA

author:

Agnieszka KNOPPIK

supervisor:

PhD SE Marcin GÓRSKI

Aim of project

The aim of project
wa
s to design a
roof

structure
of
passenger terminal

building

for Katowice International
Airport made of FRP
-
reinforced g
lue
-
lam
inated timber
frame system taking into consideration operation of the
building under standard operation

conditions.

Range of project

1. Architectural concept of terminal building

2. Design models of roof structure


beam model (simplified)


surface model (detailed)

3. Composition of loads and combinations of loads under
standard operation conditions

4. Stength & stability analysis of roof structure


analytic method


finate element method

5. Spatial stiffening of roof structure

6. Constructional drawings of main structure and structural
elements

Requirements

1. Legal requirements


aviation law


building law

2. Technical requirements


complex development of apron and terminal

3. Architectural requirements


functional program

1. Project basis

Passenger terminals

1.
Terminal 3 at Beijing Capital International Airport,
China


986,000 m
2

of total floor area


structure


standard steel modules


2. Review of existing structures

2.
Teminal at Chek Lap Kok Airport, Hong Kong


515,000m
2

of total floor area


structure


RC frames, steel vaulted frames, waffle floor

3.
New Teminal 2 a Mexico City International Airport,
Mexico


350,000 m
2

of total floor area


RC with masonry filling


Glulam hall structures

arches

truss

solid

dom
es

ribbed

net

fram
es

c
olumn
-

beam

curved

2. Review

of existing structures

Architecture

ground floor

first floor

3. Structural solutions

My architectural concept

Structure

B x L = 42.9 x 174.9 m; H ≈ 20 m

Load
-
bearing structure

FRP
-
reinforced glulam

cable
-
stayed frames

every 6 / 9 m.



3. Structural solutions



Static model


beam model

arch elements
replaced with
sequence 0f
straight
segments

f
lexible supports
replacing cables

4. Loads

Rough assesment of internal

forces distribution.

Dead load

self load of roof covering


self load of structure


installations


roof bracing

c
ase A

-

max. dead load

4. Loads

case B

-

min. dead load

Wind load




PN
-
77
-
B
-
02011


q
k

= 550 Pa
(account for thrust)



C
e

= 1.2
(height
-
dependent)



β = 1.8
(initial assumption)


4. Loads



Wind load

case C

wind from the left

Case E


wind from the front

case D


wind from the right

4. Loads

Snow load





EN 1991
-
1
-
3


s
k

= 0.9 kN/m
(zone II)



C
e

= 0.8
(windswept topography)



C
t

= 0.77
(glass roof covering)


4. Loads



Snow load

case F

balanced situation

c
ase G

unbalanced situation 1

case H

unbalanced situation 2

4. Loads

Temperature





EN 1991
-
1
-
5


difference between FRP and glulam:
thermal expansion coefficients


heat transfer



changing cross
-
sections :


different uniform temperature



moisture

Temperature difference


case I

-

summer
Δ
T = 20
0
C


case J

-

winter
Δ
T =
-
20
0
C



4. Loads

Combinations of loads




EN 1990

Fundamental combination (ULS)

Characteristic combination (SLS)

5
. Combinations of loads

always

A / B
+
optionally

C /
D

/
E

+
F

/
G

/

H

+
I

/
J

dead load

wind load

snow load

temperature

Envelopes of internal forces

Bending moments

Shear forces

Normal forces

5. Combinations of loads

FRP

reinforced glulam

Moment curvature model


similar to reinforced concrete


linear
-
elastic
-
ideal
-
plastic relationship within cross
-
section


linear
-
elastic behaviour of FRP


Bernoulli hypothesis applied


shear strength of bond between FRP and timber greater than
shear strength of timber along fibres


ideally stiff bond, so
ε
w

=
ε
f


substitute section method for stiffness evaluation


influence of glue on stiffness neglected, E
glue

= E
timber





6. FRP
-
reinforced glulam

Mechanism of action. Modes of failure

7
. ULS analytic

Ultimate Limit States

7. ULS analytic


bending with axial tension


bending with axial compression
(horizontal elements)


bending with axial compression
(vertical elements)


strength condition at bent segments


shear

effective height
:
h = h
0

or h = h
0



h
p


modification factor:

k
M

= k
M
(h
n
, h
f
, h
c
, E
0
, E
f
)

ULS control

Control sections: bending + compression

Control sections: shear

7. ULS analytic

Static model


surface model

8. ULS FEM

Static model


surface model

8. ULS FEM

Dynamic wind action. Modal analysis

8. ULS FEM

n = 0.45

β

= 1.51

n = 1.28

β

= 1.41

n = 1.34

β

= 1.41

n = 1.90

β

= 1.41

n = 2.94

β

= 1.42

n = 4.07

β

= 1.41

assumption



β

= 1.8


satisfactory!

Ultimate stress

8. ULS FEM

Model 1:
High concetration of stresses at the internal support

Model 2.
Increased stiffness of cables. Little change in stress
distribution

Model 3.
No cables. Little change in stress distribution

Model 4.
Second column introduced. Satisfactory stress
distribution

Ultimate stress

8. ULS FEM

Model 5.

Scheme

Reinforcement applied:



support area
-

3 FRP strips along top fibres



sag area


1 FRP strip along bottom fibres

3 strips


σ
t

> 90% f
t,0,g,d

2 strips


σ
t

> 80% f
t,0,g,d

1 strip



σ
t

> 70% f
t,0,g,d

Serviceability Limit States

instanteneous deflection

final deflection

stiffness increase k
EI

∙ EI

k
EI

= k
EI
(h
f
, h
p
)


negligible effects of FRP creep


u
fin

= u
inst

(1 + k
def
)


u
fin

≤ u
fin,net

9. SLS

Serviceability Limit States

9. SLS

Deformation of girder under characteristic combination of loads

Horizontal displacements

Vertical displacements

Serviceability Limit States

9. SLS

Control sections

section I
-
I



u
ins

= 4.1cm


k
EI

= 1.0


u
fin

= 6.2cm > u
net

= 5.0cm

section II
-
II



u
ins

= 12.0cm


k
EI

= 1.1


u
fin

= 16.0cm > u
net

= 10.0cm

+ reinforcement in sag area (3 FRP strips h = 1.8mm, E
f

= 300GPa)

Serviceability Limit States

9. SLS

Horizontal displacements

Vertical displacements

Serviceability Limit States

9. SLS

Control sections

section I
-
I


u
ins

= 3.1cm


k
EI

= 1.0


u
fin

= 4.6cm < u
net

= 5.0cm

section II
-
II


u
ins

= 8.4cm


k
EI

= 1.25


u
fin

= 9.9cm < u
net

= 10.0cm

most unfavourable case A+H


1 strip



k
EI

= 1.10

u
1s
= 6.2cm

2 strips

k
EI

= 1.19

u
2s
= 6.7cm

3 strips

k
EI

= 1.26

u
3s
= 7.1cm

Wind trusses



transverse wind truss every 30m



longitudinal wind truss along outer edge of roof



wall truss

10. Spatial stiffening

Wind trusses

Wind truss designed for uniformly distributed load
q


(wind load and load from stiffened frames)

10. Spatial stiffening

Wall truss being a component of roof truss designed for
internal forces under
q

load

Wall truss between external columns designed for
reaction from girder on columns

Vertical bracing

10. Spatial stiffening

Designed for concentrated load

Q


Q = q ∙ a

Bolted joints (steel
-
to
-
timber joint)

10. Spatial stiffening

Thickness of steel plate

Required number of screws in joint per element

Number of connectors influences minimum width of connected element!

t = t(d, f
uk
)

R = R(f
h,1,d
, t
1
, d, M
yd
)

Supports

10. Spatial stiffening

Support of girder on RC deck


pivot support

Support of girder on RC deck


column support



clamp

strength

to

reaction


from

girder




min
.

required

area

of


support




min
.

required

dimensions


of

steel

bearing




min
.

required

dimensions


of

pivot

roller

Glued joints

10. Spatial stiffening

shear stress

tensile stress across fibres

Articles

Books


9 Polish works


21 foreign works

1.
Ajdukiewicz A., Mames J.:
Konstrukcje z betonu sprężonego. Polski Cement Sp. z o.o.,
Kraków (2004)

2.
Flaga A.:
Inżynieria wiatrowa. Podstawy i zastosowania. Wydawnictwo “Arkady”,
Warszawa
(2008)

3.
Jasieńko J.:
Połączenia klejowe i inżynierskie w naprawie, konserwacji i wzmacnianiu
zabytkowych kontrukcji drewnianych. Dolnośląskie Wydawnictwo Edukacyjne
, Wrocław (2003)

4.
Łubiński M., Filipowicz A., Żółtowski W.:
Konstrukcje metalowe. Część I: Podstawy
projektowania, wydanie 2zm. Wydawnictwo ``Arkady'',
Warszawa (2000)

5.
Masłowski E., Spiżewska D.:
Wzmacnianie konstrukcji budowlanych. Wydawnictwo
``Arkady'',
Warszawa (2000)

6.
Michniewicz Z.:
Konstrukcje drewniane. Wydawnictwo “Arkady”, Warszawa (1958)

7.
Mielczarek Z.:
Nowoczesne konstrukcje w budownictwie ogólnym. Wydawnictwo
“Arkady”,
Warszawa (2001)

8.
Neufert E., Neufert P.:
Architect’s data. 3rd edition

9.
Nożyński W.:
Przykłady obliczeń konstrukcji budowlanych z drewna. Wydanie 2 zm.,
Wydawnictwa Szkolne i Pedagogiczne S.A., Warszawa (1994)

10.
Świątecki A., Nita P., Świątecki P.:
Lotniska. Wydawnictwo Instytutu Wojsk Lotniczych,
Warszawa (1999)

Bibliography

Standards

1.
PN
-
77
-
B
-
02011


Obciążenia w obliczeniach statycznych. Obciążenie wiatrem.

2.
PN
-
81/B
-
03020. Grunty budowlane. Posadowienie bezpośrednie budowli


Obliczenia statyczne i projektowanie.

3.
PN
-
82/B
-
02402. Ogrzewnictwo


Temperatury ogrzewanych pomieszczeń w
budynkach.

4.
PN
-
90
-
B
-
03200. Konstrukcje stalowe. Obliczenia statyczne i projektowanie.

5.
PN
-
B
-
03150:2000. Konstrukcje drewniane


obliczenia statyczne i projektowanie.

6.
PN
-
B
-
03264:2002. Konstrukcje betonowe, żelbetowe i sprężone


obliczenia
statyczne i projektowanie.

7.
prEN

1990


Eurocode

0: Basis of structural design
.

8.
prEN

1991
-
1
-
1


Eurocode

1: Actions on structures
-

Part 1
-
1: General actions
-
Densities, self
-
weight, imposed loads for buildings
.

9.
prEN 1991
-
1
-
3


Eurocode 1: Actions on structures
-

Part 1
-
3: General actions


Snow loads.

10.
prEN 1991
-
1
-
5


Eurocode 1: Actions on structures
-

Part 1
-
5: General actions


Thermal actions.



Bibliography

Legal papers

1.
Convention on International Civil Aviation. 9th edition (2006)

2.
Konwencja o miedzynaroodowym lotnictwie cywilnym (2002)

3.
Prawo budowlane. Ustawa z dnia 7 lipca 1994 r.

4.
Prawo lotnicze. Ustawa z dnia 3 lipca 2002 r.

5.
Rozporzadzenie Ministra Infrastruktury z dnia 31 sierpnia 1998 r. w sprawie
przepisów techniczno
-
budowlanych dla lotnisk cywilnych.

6.
Rozporzadzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie
warunków technicznych, jakim powinny odpowiadac budynki i ich usytuowanie.

7.
Rozporzadzenie Ministra Infrastruktury z dnia 25 czerwca 2003 r. w sprawie
warunków, jakie powinny spełniac obiekty budowlane oraz naturalne w otoczeniu
lotniska.

8.
Rozporzadzenie Ministra Infrastruktury z dnia 30 kwietnia 2004 r. w sprawie
klasyfikacji lotnisk i rejestru lotnisk cywilnych.


Bibliography

Web pages