STATEMENT OF WORK INSTALL SMART METERS BASEWIDE PROJECT NUMBER: FJRP092020 1) OBJECTIVE: To install smart meters for water, gas and electric (as applicable) to the buildings listed within this Statement of Work. These meters shall be integrated and monitored to the existing base Direct Digital Controls system.

fatfallenleafElectronics - Devices

Nov 15, 2013 (3 years and 8 months ago)

257 views

W91242
-
11
-
R
-
0001


Page
1

of
23



Section 00800
-

Special Contract Requirements




STATEMENT OF WORK

STATEMENT OF WORK

INSTALL SMART METERS BASEWIDE

PROJECT NUMBER: FJRP092020


1) OBJECTIVE:

To install smart meters for water, gas and electric (as applicable) to the buildings listed

within

this

Statement of Work. These meters shall be integrated and monitored to the existing
base Direct

Digital Controls system.


2) GENERAL:

a) This project is broken into two distinct phases. Phase 1 is submittal coordination and final

point/data communicati
on coordination. This phase is to ensure meters and digital control

systems are compatible with existing base systems and meet the required performance

specifications desired. It also allows the Contractor and Government to work together to

develop
the app
ropriate installation schedule and assess/coordinate impact to building

occupants. Phase 2
is the installation phase.

SPECIAL NOTE: EFFORT MUST BE MADE BY THE CONTRACTOR TO DIVERT
MATERAIL

FROM DIRECT LANDFILLING AND IS REQUIRED TO TRACK MATERIALS
RECYCLED
,

REUSED AND RESOLD IN ORDER TO COMPLY WITH EXECUTIVE
ORDER.


3) SCOPE:

a) PROJECT PHASING: The scope of this project includes the following phases:


i) DESIGN COORDINATION PHASE: The Contractor shall engage a qualified

mechanical sub
-
contractor to prepare

submittals based upon the baseline of data, existing

building plans, control points and equipment identified for each facility in the plans and

Scope of Work Section of this SOW. During the design phase, the Government shall

provide the Contractor a list
of network ports and static IP addresses to be used on the base

DDC
private network and assigned to each control module/device requiring such, as

coordinated with the Contractor.

NOTE: For the purposes of pricing and evaluation; the Contractor shall assume

all existing

equipment and devices operate properly. Unless the work describes changing out equipment or

devices such as damper actuators, the Contractor is not required, under the base scope to fix

existing equipment. However, the Contracting Officer, ma
y choose to specify an allowance to be

included in the base pricing for minor equipment/device repairs. Such an allowance will be

standardized for all bidders.


ii) INSTALLATION AND TESTING PHASE: Once the Government and Contractor

approve and agree upon t
he points of control and monitoring, approved submitted

W91242
-
11
-
R
-
0001


Page
2

of
23



equipment and the sequence of operations; the Contractor shall order equipment and begin

installation. Once installation is complete the Contractor shall test equipment to

demonstrate performance para
meters meet the Statement of Work objectives.


b) LOCATION: The project is located at the 145th Airlift Wing, North Carolina Air National

Guard, Charlotte/Douglas International Airport, NC.


4) WORK TO BE ACCOMPLISHED: Furnish all materials, equipment, lab
or, and permitting

necessary to perform work as outlined in project specifications and drawings.

a) GLOBAL/EXISTING DIRECT DIGITAL CONTROL SYSTEM:


i) Existing System: The existing Direct Digital Control system is centered around a BACnet

compatible “Web T
alk 3.0” by Allerton. The central monitoring station is located in

Trailer 43C,
Base Civil Engineering and signals are transported across the base via the base

LAN network and
a private sub
-
network for DDC only. There is no external access to this

network.

Any system
provided by Contractors must fully integrate with the existing base

system at the IBEX/Web
Talk” server. The Contractor must provide equipment with

programmable IP addresses as the
Government shall specify network ports and a range of

IP addres
ses compatible with the DDC
private network.


ii) System Graphics: The Contractor shall ensure base graphics, building graphics and

equipment/control point graphics are updated in the base system, compatible with the latest

version of software. The Governm
ent shall work with the Contractor to provide base

drawings
and building floor plans in AutoCad or pdf format for the Contractor to develop

appropriate
system graphics.


iii) Network Connectivity: The Government is responsible for providing network accessi
bility

at
the point of building service (at the network switch). Appropriate network switch rooms

and
proposed DDC building controller locations are identified in the attachments for each

facility.


b) DESCRIPTION OF WORK IN FACILITIES

i) The attached tabl
e shows which buildings require building controllers and smart meters for

water, gas and/or electrical services. The Government has provided an estimated run

length for any data connection over 75 linear feet. All other runs, the Contractor shall be

respon
sible for connecting devices up to 75 linear feet.

Table 4B


Building Summary Work List

Smart Meters

BLDG

# TITLE DDC Bldg Module Water Gas Elect

Comm

Connection NOTES

1 Composite Deployment Center Required <75' <75' <75' 175'

3 Sqd Operations Required <7
5' <75' <75' 175'

7 A/C Maint Backshop Existing <75' <75' <75' Existing

45 Composite Support Facility Existing 200' <75' <75' Existing

W91242
-
11
-
R
-
0001


Page
3

of
23



63 Base Supply Warehouse Existing <75' <75' 275' Existing

67 Vehicle Maintenance Fac Existing (1) <75' <75' <75' Existing

69 Fitness Center Required <75' <75' <75’ <75'

2nd Elect Meter

see Sketch & SOW

Table 4B Notes


(1) Existing DDC Controller is a T.A.C system

ii) The Contractor is responsible for install not less than 1/2” conduit for single data cable runs

and ¾” condui
t for multi
-
data cable runs from the base controller module to the data points.


iii) GENERAL BUILDING WORK: Work includes installing DDC building control module,

gas, water and electric smart meters and running communication line to LAN connection.

Scope
of the Contractor’s responsibilities include coordinating with Piedmont Natural Gas

to supply
appropriate gas meter head upgrades, estimated at $1,500 for each gas meter.

The Government shall assist with this coordination to identify meter and account numb
ers.

iv) BLDG 69 ADDITIONAL WORK: Building 69 work will include installing a data line

between building 69 and the base point of power entry (see sketches). This work involves

the
Contractor installing a 1 1/5” conduit from the building, under the existing

running

track and to
the existing pad mounted reclosure. The Contractor is responsible for

coordinating with the
existing reclosure manufacturer and acquiring the necessary interface

cards and accessories to
ensure the reclosure outputs are compatible wit
h the data

collection/communications hardware
for this project.


5) MATERIALS:

a) SMART ELECTRIC METER: Equal to E
-
Mon Class 5000 Meter appropriately sized for the

main electrical panel feed. Meter shall include all necessary options and components to effe
ct

data transmission with DDC system. Coordinate required options with controls contractor.

b) SMART WATER METER: Equal to Hersey or Mueller residential or light industrial remote

reading water valves. Meter shall include all necessary options and componen
ts to effect data

transmission with DDC system. Coordinate required options with controls contractor.

c) SMART GAS METER: Contractor is responsible for funding and coordinating acquisition of

pulse
-
head counter meter head upgrades with the natural gas prov
ided (Piedmont Natural Gas).


6) DEFINITION OF NEW BLDG DDC BASIC SYSTEM: The Contractor shall supply all

building direct digital controls to make complete and usable a digital controls system capable of

the sequence of operations and utility monitoring to

include (but not limited to) base modules,

relays, batteries, connecting wires, power supplies, thermostats and network interface modules.

HVAC equipment such as actuators, fans, motors, etc are not included, unless noted separately
on

the equipment/point
s list.


7) ELECTRICAL REQUIREMENTS: The Contractor is responsible for connecting system

components to electrical power supplies in the facility. In all locations designated for the building

main control module, there is available power. The Contractor sha
ll be responsible for running

W91242
-
11
-
R
-
0001


Page
4

of
23



power in EMT conduit a maximum of 75 feet for each location, unless otherwise specified within

this SOW. The Contractor will engage a licensed electrician to complete this work. Electrical

work shall conform to North Carolina
and International Building Code; as well as necessary Air

Force Instructions or mil
-
spec.


8) DDC SIGNAL WIRE CABLING REQUIREMENTS:

a) Signal, Low Voltage Wiring: The Contractor may run plenum rated cable above suspended

ceilings or exposed deck in order t
o connect control points/devices to the main controller. To

the
greatest extent possible, cables shall be run in a bundle and tied off to the wall with j
-
hooks

or
strapping, presenting a neat and professional appearance. Cable supports will be spaced no

mo
re
than 6 ft apart. Similarly, signal cable (typically Cat 6 cable) shall be yellow jacketed to

distinguish it from other cabling in the building. The cable bundle shall be clearly labeled with

a
tag or stencil every 20 feet (maximum) identifying the cable

as “DDC Cabling.” Signal cable

shall be labeled at both ends to identify source and input points. The method and nomenclature

for cable termination identification shall be submitted to the Government for approval prior to

commencement of work.

b) Electric
al Wiring: The Contractor is responsible for extending electrical power to building

base modules and/or other devices requiring line voltage. In all instances, base building

controllers will be located in an area with existing power. Contractor is responsi
ble for

running
electrical power from a Government directed location a distance of no more than 75

feet.
Electrical wiring shall be encased in EMT conduit, unless room conditions dictate an

NEC
hazardous condition.

c) Network Connection Access & Wiring: Th
e Contractor is responsible for extending network

Cat 6E cabling from the installed building controller module to the nearest base network access

point. The Contractor is responsible for an average run of 50 feet for this work. In most

instances, there is
network access within the space identified for the building controller or in a

nearby room. A listing of suggested building controller locations and network access points is

provided in the attachments to this SOW.


9) SPECIFICATIONS:

a) Base Specification
s: Base Specifications for Direct Digital Controls are attached to this SOW.

Specifications for associated work such as electrical and telecommunications; shall follow

Unified Facilities Criteria requirements and US Facilities Guide Specifications and/or o
ther

required supporting technical documents.


10)PREFORMANCE:

a. Submission of a bid by a contractor shall be accepted as prima fascia evidence that they

have
examined the job and specifications and is satisfied as to the nature, location, and

scope of th
e
work and all other matters which can in any way affect the work or cost

thereof under this contract. Any failure of the contractor to acquaint himself with all

available information including a physical survey of the construction site of the proposed

wor
k, will not relieve him/her from successfully performing all the required work in the

plans and specifications to a complete, finished, acceptable job.

W91242
-
11
-
R
-
0001


Page
5

of
23



b. The above outline of principle features of the work in no way limits the responsibility of

the
contra
ctor to perform all work and furnish all tools, labor, and equipment required by

the
specifications referred to herein.

11)SUBMITTALS: The Contractor shall provide submittals on equipment and materials to be

installed, to include a replay of I/O points. Su
bmittals shall include wiring shop drawings for the

DDC system. A final as
-
built submittal package and warranty information shall be provided at
the

end of the project. Also required for submittals is a listing of sub
-
contractors and contractor

personnel t
o ensure review, approval and base access can be obtained.

12) OTHER REQUIREMENTS AND PROCEDURES: Standard procedures and requirements

apply for working on the ANG installation. The Contractor is required to adhere to ANG, Air

Force and base regulations an
d Operating Instructions to include, but not limited to, security, fire,

safety and environmental.

ATTACHMENT 1

BASE SPECIFICATION FOR BUILDING AUTOMATION SYSTEMS

BUILDING AUTOMATION SYSTEM (BACnet)

PART 1
-
GENERAL

1.01 WORK INCLUDED:

A. Direct Digital Con
trols (DDC)


BACnet compliant

B. Programming and Graphics

C. Controllers (Global, Standalone, Application Specific)

D. Communications

E. Sensors

F. Valves, Dampers and actuators

G. Electrical appurtenances and wiring systems

H. Sequence of Operation

1.02
RELATED WORK:

A. Section 15010
-
Mechanical General Requirements

B. Section 15050

C. Division 16
-
Electrical

1.03 SHOP DRAWINGS:

A. System Architecture (BACnet LAN scheme)

B. Wiring diagrams

C. Valves and actuators

D. Dampers and actuators

E. System schemat
ics for all mechanical systems

F. Material lists with part numbers and quantities, as appropriate

G. Technical/Product data sheets for each piece of equipment

H. Sequence of Operation for each system

I. As
-
built drawings of installed system

1.04 SUBMITTALS
:

A. Submit Shop Drawings of the complete Building Automation System (DDC System) for
review and approval.

B. Drawings shall be submitted on standard sheet size format (8
-
1/2” x 11”, 11” x 17”, or 24” x
36”).

W91242
-
11
-
R
-
0001


Page
6

of
23



C. Drawings shall be bound within a standard 3
-
ring binder, cover, or other suitable permanent
binder. For

projects in which the controls submittals will be less than one
-
half inch thick, the
submittal documents may

be securely stapled in the upper left hand corner provided the cover
sheet and back she
et are printed on card

stock (heavy bond paper).

D. Submit eight (8) copies of submittal drawings for review by the Contracting Officer.

E. At completion, furnish as
-
built drawings in bound form and on floppy diskette.

F. Submit documentation for all DDC p
rogramming in graphical form (AutoCAD or Visio
format, or equal) as a

part of the as
-
built documentation.

G. Submit manufacturer’s operating instruction manual for the DDC control system for use in
owner training.

H. Submit Certificate of Training upon com
pletion of all scheduled training of the owner’s
operating personnel.

1.05 CODES AND REFERENCE STANDARDS: The latest edition of the following standards
and codes in effect and

amended as of the date of the supplier’s proposal, and any subsections
thereof a
s applicable, shall govern the

design and selection of equipment and material supplied.

A. NFPA 70
-

National Electrical Code (NEC)

B. ASHRAE
-

American Society of Heating, Refrigerating and Air Conditioning Engineers
(Handbooks)

C. ANSI/ASHRAE Standard 13
5 (1995)


BACnet: A Data Communication Protocol for
Building Automation

and Control Networks

D. UL 916
-

Standard for Energy Management Equipment

E. FCC


Part 15, Subpart J

F. City, County, State and Federal regulations and codes in effect as of the date

of the Contract

1.06 PERMITS: Except as otherwise indicated, the system supplier shall secure and pay for all
permits, inspections,

and certifications required for his work and arrange for all necessary
approvals by the governing authorities.

1.07 QUALITY

ASSURANCE:

A. Responsibility: The supplier of the HVAC digital logic control system shall be responsible for
inspection and

Quality Assurance (QA) for all materials and workmanship furnished by him.

B. Component Testing: Maximum reliability shall be achie
ved through extensive use of high
quality, pre
-
tested

components. The manufacturer prior to shipment shall individually test each
and every controller, sensor, and

all other DDC components.

C. Tools, Testing and Calibration Equipment: The control system su
pplier shall provide all tools,
testing, and

calibration equipment necessary to ensure reliability and accuracy of the control
system.

D. Authorized Representative: The systems control contractor shall have been in business a
minimum of three

years and be
the authorized representative for the manufacturer of the BACnet
components.

1.08 WARRANTY: The DDC control system installed under this Specification shall be free from
defects in material

and workmanship under normal use and service for a period of twelve

(12)
months after final acceptance by the

Owner. For projects with multiple startup and acceptance
dates due to construction scheduling, the system

warranty will be staggered in accordance with
the actual equipment startup dates. If within the twelve (12)

month

warranty period, any
equipment, software, or labor is found to be defective in workmanship or materials, it shall

be
W91242
-
11
-
R
-
0001


Page
7

of
23



replaced free of charge by the Controls system installer. Warranty service shall be available to the
job site

during normal working
hours.

1.09 DEFINITIONS:

A. Binary Input (BI): two state dry contacts used for alarm or status monitoring or pulse counting
(ex: filter

status, fan status)

B. Binary Output (BO): normally closed or open dry contacts, used for two
-
state commands to
loads (e
x: fan

start/stop commands, enable/disable commands)

C. Analog Input (AI): applies to sensor inputs to the controller for variable inputs (ex:
temperature sensors,

humidity sensors, pressure sensors, actuator positions)

D. Analog Output (AO): applies to el
ectrical variable control outputs for proportional control of
actuators (ex:

control valves or dampers)

E. BACnet: a data communication protocol for building automation and control networks

PART 2


PRODUCTS


2.01 ACCEPTABLE MANUFACTURERS:

A. The DDC contr
ol system shall be manufactured by or installed by the following companies:
Alerton

Technologies, Inc. (Hoffman Building Technologies). Other manufacturers may bid
based upon meeting all

requirements of this specification and receiving approval from the
Co
ntracting Officer at least seven (7) days

prior to bid date. However, all manufacturers are
responsible for maintaining system and communications

integrity and seamlessness of the existing system.

B. Installation of the system shall be by qualified employe
es of the temperature control system
manufacturer or

its exclusive authorized representative and qualified subcontractor. Indirect
temperature control work by nonqualified

installing contractors performing work without direct
supervision from the authorize
d representative

will not be accepted.

C. The installing contractor shall provide all tools, testing and calibration equipment necessary to
ensure

reliability and accuracy of the control system.

2.02 SYSTEM REQUIREMENTS:

A. Furnish a totally native BACnet
-
based system for distributed logic control in accordance with
this

specification. The system operator’s terminal, all global controllers, and all input/output
devices shall

communicate using the protocols and local area network (LAN) standards as
defined b
y ANSI/ASHRAE

Standard 135


1995 (BACnet). No gateways shall be used.

B. The owner desires to have one building automation system on the base. As a result, the
proposed system must

be completely compatible with the owner’s existing web
-
based Alerton
DDC c
ontrol system. The controls

contractor shall include in his proposal any and all hardware,
software, engineering or graphics development

required to integrate the new controls system into
the existing graphical user interface. A separate front
-
end

computer

is not acceptable. A software link on the existing server to a separate web server or
application is

not acceptable. All programming shall be accomplished using Alerton’s Envision
software. If an alternative

system and/or software are proposed it is the c
ontractor’s responsibility
to replace all of the existing Alerton

DDC controllers on the base and the server and associated
software. The contractor is also responsible for

providing factory training for up to (6) technicians on the proposal alternative sy
stem’s hardware
and

software.

W91242
-
11
-
R
-
0001


Page
8

of
23



C. The system shall be a complete system of automatic temperature controls of the Direct Digital
Control (DDC)type with electric and electronic accessories and components as indicated and as
required.

D. All control items, ex
cept thermostats, sensors and transmitters located in rooms shall be
properly identified

with engraved plastic nameplates permanently attached. Nameplates shall
have white letters on a black

background.

E. Room thermostat, sensor and transmitter locations
shall be coordinated to align vertically or
horizontally with

adjacent light switches or other control devices. Room thermostats and sensors
shall be mounted with the

bottom 5’
-
0” above the floor.

F. Owner’s Representative shall furnish disk file copies of

the building floor plan(s) in AutoCAD
(or other

compatible drafting package format) for use by the DDC system Contractor in creating
custom system

graphics for displays.

2.03 SENSORS, TRANSMITTERS AND THERMOSTATS:

A. Temperature Sensors: Thermistor type w
ith an accuracy of plus or minus 0.40 degree F over
the entire control

range. Sensors for pipe installations shall be immersion type, brass well, and
thermistor with integral lead

wire. Sensors for duct application shall be insertion probe type,
stainless
steel probe, integral handibox, and

thermistor with integral lead wire. Space temperature
sensors shall be compatible with the unit controller and

shall be provided in a decorative metal or plastic enclosure. Space temperature sensors shall be
provided wit
h

setpoint adjustment (lever or slide type), and override pushbutton, and connection
port for field service tool.

Outdoor temperature sensors shall be mounted inside a protective weather and sun shield.

B. Space Temperature Sensor: Wall mounted room contro
ller with integral digital display and
user function

keys to control room temperature setpoints, select fan speeds (where appropriate),
view room and outside air

temperatures, view room setpoints or discharge temperature, or initiate
after
-
hours operation
of the associated

terminal unit or system. The controller shall also be
capable of functioning as a field service tool to allow

maintenance personnel to observe and adjust all control parameters resident in the terminal unit
controller.

These control param
eters shall also be adjustable from the global controller. Sensor
shall be standard twowire

connection and have a thermistor, housed in a decorative plastic
enclosure.

C. Humidity Sensors: Thin
-
film capacitive type sensor with on
-
board nonvolatile memory,
accuracy to plus or

minus two percent (2%) at 0 to 90% RH, 12
-

30 VDC input voltage, analog
output (0
-

10 VDC or 4
-

20Ma

output). Operating range shall be 0 to 100% RH and 32 to 140
degree F. Duct mounted type sensors shall

have a stainless steel insert
ion element, sealed to
prohibit corrosion. Sensors shall be selected for wall, duct

or outdoor type installation as appropriate.

D. Differential Air Pressure Switch: Differential pressure switches for proving fan operation or
sense dirty air

filters shall
be SPDT type, UL approved, and selected for the appropriate operating
range of the equipment to

which it is applied. Sensor shall have ¼” compression type fittings and
shall have an adjustable setpoint.

Furnish with ¼” barbed type static pressure tips.

E.
Insertion Type Flow Meters: For measurement of system hydronic flow rates, provide a flow
meter with

double turbine blade design, stainless steel wetted metal parts, impedance sensing
W91242
-
11
-
R
-
0001


Page
9

of
23



type operation, accuracy to

plus or minus 2% of reading over the entire
operating range, less than
1.0 psi pressure loss, maximum 400 psi

operating pressure, rated to 200 degree F continuous temperature exposure, 24 VDC supply
voltage, and 4
-

20mA analog output. Select flow meter to correspond to the pipe size for the
intende
d application. Flow

meter shall be Onicon F
-
1210, or approved equal.

F. Current Switches (Type 1): For proving fan or pump operational status, provide split
-
core type
current status

switches with adjustable setpoint and solid state internal circuitry. Curr
ent switch
shall have induced power,

trip point set adjustment to plus or minus 1% over a range of 1 to 135
amps, trip and power LED, and field

adjustable to indicate both On
-
Off conditions and loss of
load (broken belt, etc.). Units shall have a five
-
year

manufacturer’s warranty. Current switches shall be Hawkeye Series H
-
908 by Veris Industries, or
approved

equal.

G. Low Temperature Sensors: For sensing low temperatures in air handling units, provide SPST
type switch, 35

to 45 degree F range, manual reset
, vapor charged twenty foot long sensing
element, and 120 volt electrical

power connection.

H. Pressure Transmitters: For sensing static pressure in a duct system (usually for VAV systems),
provide a

pressure transmitter with integral capacitance type sens
ing action, solid state circuitry,
accuracy of plus or

minus 1% of range, zero and span adjustments, 10 to 35 VDC operating
voltage, 4 to 20mA output, and

integral inlet port connections. Select pressure range suitable for
the application.

I. Electrical De
mand Meters: Electrical demand monitoring shall be available from pulsing dry
contacts

provided by the Owner and installed by the Utility Company at the power meter.

2.04 CONTROL VALVES AND ACTUATORS: Valves shall be sized by the Controls
Contractor for al
l

applications. Valves 2” and smaller shall have threaded connections and all
valves larger than 2” shall have

flanged connections. Maximum pressure drop shall be five
pounds per square inch (5 psi) of water column for

water valves.

A. Ball Valves (Hydroni
c Systems): Bronze (to 2” size) body, brass stem, chromium plated brass
ball, reinforced

Teflon packing and seat material, blow
-
out proof stem design, maximum
working temperature of 450 degree F at

100 psi. Valve shall be two
-
way or three
-
way as shown
on t
he Drawings. Valve close
-
off pressure shall be

maximum 150 psi.

B. Globe Valves (Hydronic Systems): Cast iron body (2
-
1/2” to 6”),flanged, bronze plug with
EPT seal, spring

loaded EP V
-
Ring packing, stainless steel stem, maximum working temperature
of 250
degree F, maximum

working pressure of 250 psi. Valves shall be two
-
way or three
-
way as
shown on the Drawings.

C. Globe Valves (Steam to 15 psi): Three
-
piece bronze body (to 2” size), bronze plug with EPT
seal, spring loaded

EP V
-
Ring packing, stainless ste
el stem, maximum working temperature of
250 degree F for low pressure steam

(to 15 psi). Valve shall be two
-
way as shown on the
Drawings.

D. Globe Valves (Steam: 16 to 50 psi): Three
-
piece bronze body (to 2” size), stainless steel plug,
TFE V
-
Ring

packing,

stainless steel stem, maximum working temperature of 360 degree F for
medium pressure steam (to 50

psi). Valve shall be two
-
way as shown on the Drawings.

E. Globe Valves (Steam: 0 to 50 psi): Three
-
piece cast iron body (2
-
1/2” to 6”), flanged
connections,

stainless steel

plug, Teflon V
-
Rings and EPDM O
-
Ring, stainless steel stem,
W91242
-
11
-
R
-
0001


Page
10

of
23



maximum working temperature of 330 degree F.

Valve shall be two
-
way as shown on the
Drawings.

F. Valves for heating water service shall be Normally Open type. Valves for chilled w
ater service
shall be Normally

Closed type. Valves for steam service shall be Normally Open type.

G. Valves for all applications shall have valve body pressure ratings that match or exceed the
pressure ratings of the

system in which the valve is applied an
d shall be suitable for the system
design pressures and temperatures

indicated.

H. Valve actuators for VAV boxes, fan coil units, and the like shall be drive
-
open, drive
-
closed
type.

I. Valve Actuators: Actuators for valves in DDC systems shall be electron
ic type with low
voltage operators (24

volt standard). Actuators shall be modulating, or two
-
position as required
to accommodate the sequence of

operation. Provide with spring return when required for fail safe
operation. Modulating valves shall be positiv
e

positioning in response to a 2
-

10 VDC or 4
-

20mA control signal, floating point (tri
-
state), or pulse width

signal. Actuator shall include a
visual valve position indicator and an actuator generated 2
-

10 VDC valve

position output signal
for electron
ic feedback to the controller, or control additional actuators. Actuator shall also

include the capability of adding auxiliary switches for position indication. Actuator design shall
include inherent

current limiting motor protection. Furnish actuators oth
er than spring return type with a release
button (clutch) or

handle on the actuator to allow for manual override. Power supply to the valve
actuator shall be by 120 VAC, 24VAC, or 24 VDC and the valve shall be furnished with a
factory installed cable for f
ield connection. All

actuators shall be UL Listed by the manufacturer.

2.05 CONTROL DAMPERS AND ACTUATORS: Damper actuators shall be sized by the
Controls Contractor for

the intended application. Unless noted otherwise, dampers will be
furnished by the Con
trols Contractor for all

field installed dampers that are not included as part
of the equipment. In general, provide opposed blade type

dampers for modulating control and
parallel type dampers for two
-
position control applications.

A. Control Dampers: When

indicated to be furnished by the Controls Contractor, control
dampers shall be equal

to Ruskin Model CD36. Frames shall be constructed of galvanized steel,
formed into channels and riveted.

Blade edge seals shall be EPDM, axle shall be hex shaped plated s
teel, synthetic type bearings,
and exposed

linkage. Damper leakage shall not exceed 10
-
cfm/sq. ft. at 4” wg static pressure
when tested in accordance

with AMCA Standard 500. Maximum blade width shall be 8”.
Damper frames shall permit installing

multiple da
mper sections together when required for large
dampered sections. Multi
-
sectioned dampers shall

be provided with sufficient interconnecting hardware and jackshafts to provide uniform operation
of all

blades within the damper assembly.

B. Damper Actuators:
Damper actuators shall be provided for all automatic dampers. Damper
actuators

controlled through the DDC system shall be low voltage electronic type, either
modulating or two
-
position, as

required to achieve the intended sequence of operation. Provide
wit
h spring return when required for fail safe

operation. Modulating dampers shall be positive
positioning in response to a 2
-

10 VDC or 4
-

20mA control

W91242
-
11
-
R
-
0001


Page
11

of
23



signal. Actuator shall include the capability of adding auxiliary switches for position indication.
Furn
ish

actuators other than spring return type with a release button (clutch) or handle on the actuator to
allow for

manual override. Power supply to the actuator shall be by 120 VAC, 24 VAC, or 24 VDC and
the actuator

shall be furnished with a factory instal
led 3
-
foot cable with end fitting for field
connection. All actuators

shall be UL Listed by the manufacturer.

2.06 MISCELLANEOUS MATERIALS:

A. Panels: All enclosures for DDC controllers and devices shall be fabricated in accordance with
UL Standards

from c
ode gauge steel. Enclosures shall be provided with a continuous hinge on
the door and a flush latching

mechanism. Enclosures shall be shop painted with standard grade
enamel coating. Back panels shall be

furnished when required to facilitate installation o
f boards
or accessories. All enclosures installed outdoors

shall be constructed to NEMA 3R standards. All
controllers shall be installed within an approved enclosure

unless the controller will be installed
within the control cabinet section of the equipmen
t that it is intended to

control. Enclosures shall
facilitate the mounting of gauges, switches, pilot lights, and the like, on the face

panel when
required. Control devices that are mounted on the face of the panel shall be identified with

engraved namepla
tes.

B. Power Transformers: Step
-
down power transformers shall be provided for all DDC controllers
and associated

accessory devices as required. Transformers shall be sized and selected to
accommodate all connected

accessory items. Transformers shall be UL

Listed Class 2 type with
120 VAC primary, 24 VAC secondary.

C. Relays: Miscellaneous control relays shall be provided as required to energize or control
equipment and

devices within the control system. Relays shall be located as close as practical to
the
controlled device

(motor, motor starter, etc.). Where approved by NEC, relays may be
installed within starters and equipment

control panels where space is available. Relays installed
outside of the controlled device shall be provided

with a NEMA enclosure
suitable for the location where installed.

D. Wiring: All wiring devices and accessories shall comply with the requirements of Division 16
and the NEC.

All wiring shall be installed in a neat and professional manner. Control wiring shall not be
installed i
n power

circuit conduits or raceways unless specifically approved for that purpose. All
wiring shall be run in EMT

conduits when exposed. Plenum rated cable is allowed above ceilings
and when concealed in walls but all

cabling must be strapped and installe
d in a neat fashion as
determined by the owner.

1. Provide all interlock and control wiring. Provide wiring as required by functions as specified
and as

recommended by equipment and device manufacturers to achieve the specified control
functions.

2. Low vo
ltage conductors shall be stranded bare or tinned
-
copper with premium grade polymer
alloy

insulation. For shielded cable, furnish multi
-
conductor of overall polyester supported
aluminum foil with

stranded tinned copper drain wire to facilitate grounding. C
oaxial shield shall
be copper braided type.

Provide shielded cable where recommended by the equipment or device manufacturer, grounded
in strict

accordance with the manufacture’s recommendations.

W91242
-
11
-
R
-
0001


Page
12

of
23



3. Low voltage wiring shall be UL Listed type for the intend
ed application. Non
-
plenum type
cable shall be

UL Type CM and /or CMR. Plenum type cable shall be UL type CMP and /or
CL3P for approved

plenum installations.

Direct Digital Control System

2.07 GENERAL: The Direct Digital Control (DDC) System shall consist
of native BACnet type
global controller(s)

and standalone or application specific unitary controller(s) configured as a
distributed communications network

composed of one or more levels of BACnet compliant local
area networks (LAN). No gateways shall be us
ed

except when required to interface with specific equipment furnished by another manufacturer
(e.g.: chiller

controllers, packaged equipment controllers, etc.) . The intent of the distributed
control strategy is to install the

controllers in close proximi
ty to the equipment being controlled,
and to distribute the processing to each

standalone DDC panel. In the event of a communications
failure of the BACnet LAN, the controllers shall be

capable of operating in standalone mode. All
devices (global controlle
rs, standalone controllers, programmable

controllers, etc.) shall be UL
Listed, FCC approved, and BACnet compliant.


2.08 WORK INCLUDED:

A. Furnish a totally native BACnet
-
based system, including Windows XP Pro or Windows2007
operator’s

terminal (if not ex
isting), based on a distributed logic control system in accordance
with this specification

section. The operator’s terminal, all global controllers, logic controllers,
and all input/output devices shall

communicate using the protocols and local area networ
k (LAN)
standards as defined by ANSI/ASHRAE

Standard 135
-
1995, BACnet. All DDC controllers, including unitary controllers, shall be native
BACnet

devices. In general, no gateways shall be used except when required to interface with
specific equipment

furni
shed by another manufacturer. Scope of work will include, but not be
limited to, the following:

1. Provide all necessary BACnet compliant hardware and software to meet the system’s
functional

specifications and I/O Schedule. All direct digital logic hardwa
re is to comply with
BACnet.

2. Prepare individual hardware layouts, interconnection drawings, and software configuration
from project

design data.

3. Implement the detailed design for all system
-
standard analog and binary objects, distributed
control and

system databases, graphic displays, logs, and management reports based on control
descriptions, logic

drawings, configuration data, and bid documents.

4. Design, provide, and install all equipment enclosures, panels, data communication network
cables

neede
d, and all associated hardware.

5. Provide and install all interconnecting cables between supplied enclosures, logic controllers,
and

input/output devices.

6. Provide and install all interconnecting cables between all operator’s terminals and peripheral
de
vices

(such as printers, etc.) supplied under this contract.

7. Provide and install all smart meters

8. Provide complete manufacturer’s product data for all items that are supplied. Include vendor
name of

every item supplied.

W91242
-
11
-
R
-
0001


Page
13

of
23



9. Provide qualified superviso
ry personnel and technicians at the job site to assist in all phases of
system

installation, startup, and commissioning.

10. Provide for operator training as described in this Section.

11. Provide “as
-
built” documentation, operator’s terminal software, dia
grams, and all other
associated

project operational documentation (such as technical manuals) on approved media, the
sum total of

which accurately represents the final system.

12. Provide new dampers, valves, actuators, sensors, controllers, and the like.
No used
components shall be

provided as any part or piece of the installed system.

2.09 SYSTEM DESCRIPTION:

A. General Requirements

1. A distributed logic control system complete with Direct Digital Control (DDC) and Direct
Analog Control

(DAC) software sh
all be provided. System shall be totally based on
ANSI/ASHRAE Standard 135


1995,

BACnet. This system is to control all mechanical
equipment, including all unitary equipment such as VAV

boxes, heat pumps, fan coils, packaged
air conditioning units, and th
e like, and all air handling units, boilers,

chillers, and any other listed equipment on this project using native BACnet
-
compliant
components.


2. The entire processing system shall be in complete compliance with the BACnet standard. The
system shall

use

BACnet protocols and LAN types throughout and exclusively. Non
-
BACnet
compliant or proprietary

equipment or systems (including gateways, except as specified
previously) shall not e acceptable and are

specifically prohibited.

3. All logic controllers for t
erminal units, air handlers, central mechanical equipment, and
Microsoft Windowsbased

operator’s terminal(s) shall communicate and share data, utilizing only
BACnet communication

protocols.

4. All logic controllers shall be fully programmable. Programmable

controllers for every terminal
unit, air

handler, all central plant equipment, and any other piece of controlled equipment shall be
provided.

Programming tools shall be provided as part of the operator workstation for every controller
supplied for the

pro
ject.

5. The Controls Contractor shall assume complete responsibility for the entire controls system as
a single

source. He shall certify that he has factory
-
trained personnel on staff under his direct
employ on a daily

basis. These employees shall be qual
ified to engineer, program, debug, and
service all portions of the

BACnet based logic control system. This shall include operator’s
terminal, global controllers, routers,

programmable controllers, terminal unit controllers, sensors
and all other components

of the system.


B. Basic System Features

1. Zone
-
by
-
zone direct digital logic control of space temperature, scheduling, optimum start,
equipment alarm

reporting, and override timers for after
-
hours usage. A zone is the area served
by one HVAC logic

contro
ller unit, such as a heat pump, VAV box, or multi
-
zone unit.

2. Operator’s terminal software shall be Microsoft Windows XP Pro or Windows 2007 based.
The Building

Automation System application program shall be written to communicate
specifically utilizing
BACnet

protocols. Software shall be multi
-
tasking, capable of executing
W91242
-
11
-
R
-
0001


Page
14

of
23



and displaying multiple instances in

individual windows while running concurrently with other
Windows programs such as word processors or

database programs. Software shall support Wind
ows Dynamic Data Exchange (DDE) interfaces.
Software

shall strictly follow Microsoft Windows API guidelines. Systems using proprietary
software or operating

systems other than that described above are strictly prohibited. Operation
of the terminal software

shall be

simple and intuitive.

3. Operator’s terminal software shall contain an easy
-
to
-
operate system allowing configuration of
system
-
wideBACnet controllers, including management and display of the controller
programming. This system shall

provide the c
apability to configure controller binary and analog
inputs and outputs.

4. Operator’s terminal operating system shall be capable of utilizing third
-
party Windows
-
based
programs for

such things as spreadsheet analysis, graphing, charting, custom report gene
ration,
and graphics design

packages. Graphics generation shall be done using standard Windows
packages. No proprietary graphics

generation software shall be required.

5. One operator’s terminal shall be equipped to act as a system server. This system serv
er shall
store custom

copies of loadable software for all field components and shall be capable of
automatic or manual reloading

of such software into the field components as required. The
system server shall also gather and archive

system operating data,
such as trendlogs, energy logs,
and other historical operating data.

6. Complete energy management firmware, including self
-
adjusting optimum start, demand
limiting, global

control strategies and logging routines for use with total control systems shall be

supplied. All energy

management firmware shall be resident in field hardware and shall not be
dependent on the operator’s

terminal for operation. Operator’s terminal software is to be used for
access to field
-
based energy

management control firmware only.

7. Priority password security systems shall prevent unauthorized use. Each user shall have an
individual

password. The user shall only be given access to the system functions required for
individual job

performance.

8. Equipment monitoring and alarm funct
ions, including information for diagnosing equipment
problems shall

be included with the system.

9. The complete system, including, but not limited to terminal unit controllers, global controllers
and operator’s

terminals shall auto
-
restart, without operat
or intervention, on resumption of power
after a power failure.

Database stored in global controller memory shall be battery
-
backed up for a minimum of one (1)
year.

Logic controllers for all air handlers and all unitary equipment shall utilize EEPROM for a
ll
variable data

storage. Batteries on unitary controllers shall not be allowed.

10. System design shall be modular and have proven reliability.

11. All software and /or firmware interface equipment for connection to remote monitoring
station from field

ha
rdware or the operator’s terminal shall be provided.

12. System shall be capable of equipment runtime totalization of fans, heaters, boilers, pumps
and the like and

capable of alarm generation and alarm dial
-
out to remote sites.

13. Room sensors shall be p
rovided with digital readout that allows the user to view room
temperature, view

outside air temperature, adjust the room setpoint within preset limits and set
W91242
-
11
-
R
-
0001


Page
15

of
23



desired override time. Inconjunction with unitary logic controller, the user shall also be able
to
start and stop unit from the digital

sensor.

14. Communication wiring from field controllers shall NOT be run in star patterns.

15. All controllers shall communicate using protocols and LAN types contained in the
ANSI/ASHRAE Standard

135


1995, BACnet.

16. All DDC hardware and software shall be designed and manufactured by U.S. corporations.
All hardware

shall be Listed Underwriters Laboratories (UL) for Open Energy management
Equipment (PAZX) under the

UL Standard for Safety (UL 916) in both the U.S. a
nd Canada,
with integral labels showing the rating.

17. All hardware shall be in compliance with FCC Part 15, Subpart J, Class A.


2.10 OPERATOR’S TERMINAL:

A. Operating System

1. The existing GUI is WEBtalk by Alerton Technologies. All controls provided o
n this project
shall be

accessible from the existing GUI. All necessary programming and engineering required
to incorporate the new

controllers into the WEBtalk system shall be included. The intent is to
have seemless access to the entire basewide

building

automation for scheduling, trending, alarm management, and database management
through the

WEBtalk appliance.

a. The GUI shall employ browser
-
like functionality for ease of navigation. It shall include a

tree
view (similar to Windows Explorer) for quick v
iewing of, and access to, the hierarchical
structure of the

database. In addition, menu
-
pull downs, and toolbars shall employ buttons,
commands and navigation to permit

the operator to perform tasks with a minimum knowledge of
the HVAC Control System and b
asic computing

skills. These shall include, but are not limited to, forward/backward buttons, home button, and a
context

sensitive locator line (similar to a URL line), that displays the location and the selected
object identification.

b. Real
-
Time Display
s. The GUI, shall at a minimum, support the following graphical features
and

functions:

i. Graphic screens shall be developed using any drawing package capable of generating a GIF,

BMP, or JPG file format. Use of proprietary graphic file formats shall not
be acceptable. In

addition to, or in lieu of a graphic background, the GUI shall support the use of scanned

pictures.

ii. Graphic screens shall have the capability to contain objects for text, real
-
time values,
animation,

color spectrum objects, logs, grap
hs, HTML or XML document links, schedule
objects,

hyperlinks to other URL’s, and links to other graphic screens.

iii. Graphics shall support layering and each graphic object shall be configurable for assignment
to

one a layer. A minimum of six layers shall

be supported.

iv. Modifying common application objects, such as schedules, calendars, and set points shall be

accomplished in a graphical manner.

v. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry

from the op
erator.

vi. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from

the operator.

W91242
-
11
-
R
-
0001


Page
16

of
23



vii. Commands to start and stop binary objects shall be done by right
-
clicking the selected object

and selecting the appropriate comman
d from the pop
-
up menu. No entry of text shall be

required.

viii. Adjustments to analog objects, such as set points, shall be done by right
-
clicking the selected

object and using a graphical slider to adjust the value. No entry of text shall be required.

c
. System Configuration. At a minimum, the GUI shall permit the operator to perform the
following tasks,

with proper password access:

i. Create, delete or modify control strategies.

ii. Add/delete objects to the system.

iii. Tune control loops through the a
djustment of control loop parameters.

iv. Enable or disable control strategies.

v. Generate hard copy records or control strategies on a printer.

vi. Select points to be alarmable and define the alarm state.

vii. Select points to be trended over a period o
f time and initiate the recording of values

automatically.

d. On
-
Line Help. Provide a context sensitive, on
-
line help system to assist the operator in
operation and

editing of the system. On
-
line help shall be available for all applications and shall
provi
de the relevant

data for that particular screen. Additional help information shall be available
through the use of

hypertext. All system documentation and help files shall be in HTML format.

e. Security. Each operator shall be required to log on to that sy
stem with a user name and
password in

order to view, edit, add, or delete data. System security shall be selectable for each
operator. The system

administrator shall have the ability to set passwords and security levels for
all other operators. Each

operat
or password shall be able to restrict the operators’ access for
viewing and/or changing each system

application, full screen editor, and object. Each operator
shall automatically be logged off of the system

if no keyboard or mouse activity is detected. Thi
s auto log
-
off time shall be set per operator
password.

All system security data shall be stored in an encrypted format.

f. System Diagnostics. The system shall automatically monitor the operation of all workstations,
printers,

modems, network connections
, building management panels, and controllers. The
failure of any device

shall be annunciated to the operator.

g. Alarm Console

i. The system will be provided with a dedicated alarm window or console. This window will

notify the operator of an alarm condit
ion, and allow the operator to view details of the alarm and

acknowledge the alarm. The use of the Alarm Console can be enabled or disabled by the system

administrator.

ii. When the Alarm Console is enabled, a separate alarm notification window will superc
ede all

other windows on the desktop and shall not be capable of being minimized or closed by the

operator. This window will notify the operator of new alarms and un
-
acknowledged alarms.

Alarm notification windows or banners that can be minimized or close
d by the operator shall not

be acceptable.


2. WEB BROWSER CLIENTS

a. The system shall be capable of supporting an unlimited number of clients using a standard
Web browser

such as Internet Explorer™ or Netscape Navigator™. Systems requiring additional
W91242
-
11
-
R
-
0001


Page
17

of
23



soft
ware (to enable a

standard Web browser) to be resident on the client machine, or
manufacture
-
specific browsers shall not

be acceptable.

b. The Web browser software shall run on any operating system and system configuration that is
supported

by the Web brow
ser. Systems that require specific machine requirements in terms of
processor speed,

memory, etc., in order to allow the Web browser to function with the DDC
system, shall not be

acceptable.

c. The Web browser shall provide the same view of the system, in
terms of graphics, schedules,
calendars,

logs, etc., and provide the same interface methodology as is provided by the Graphical
User Interface.

Systems that require different views or that require different means of interacting
with objects such as

schedul
es, or logs, shall not be permitted.

d. The Web browser client shall support at a minimum, the following functions:

i. User log
-
on identification and password shall be required. If an unauthorized user attempts

access, a blank web page shall be displayed.

Security using Java authentication and encryption

techniques to prevent unauthorized access shall be implemented.

ii. Graphical screens developed for the GUI shall be the same screens used for the Web browser

client. Any animated graphical objects support
ed by the GUI shall be supported by the Web

browser interface.

iii. HTML programming shall not be required to display system graphics or data on a Web page.

HTML editing of the Web page shall be allowed if the user desires a specific look or format.

iv. S
torage of the graphical screens shall be in the Network Area Controller (NAC), without

requiring any graphics to be stored on the client machine. Systems that require graphics storage

on each client are not acceptable.

v. Real
-
time values displayed on a We
b page shall update automatically without requiring a

manual “refresh” of the Web page.

vi. User’s shall have administrator
-
defined access privileges. Depending on the access privileges

assigned, the user shall be able to perform the following:

vii. Modify

common application objects, such as schedules, calendars, and set points in a
graphical

manner.

1. Schedule times will be adjusted using a graphical slider, without requiring any

keyboard entry from the operator.

2. Holidays shall be set by using a graphi
cal calendar, without requiring any keyboard

entry from the operator.

viii. Commands to start and stop binary objects shall be done by right
-
clicking the selected object

and selecting the appropriate command from the pop
-
up menu. No entry of text shall be

required.

ix. View logs and charts

x. View and acknowledge alarms

xi. Setup and execute SQL queries on log and archive information

xii. The system shall provide the capability to specify a user’s (as determined by the log
-
on user

identification) home page.

Provide the ability to limit a specific user to just their defined home

page. From the home page, links to other views, or pages in the system shall be possible, if

allowed by the system administrator.

xiii. Graphic screens on the Web Browser client shall

support hypertext links to other locations

on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL)

for the
desired link.

W91242
-
11
-
R
-
0001


Page
18

of
23



C. Display of Scheduling Object Information

1. Operator’s terminal display of weekly schedules shall sh
ow all information in convenient 7
-
day (weekly)

format for each schedule. This includes all On/Off times (accurate to the minute) for each day’s
events.

2. BACnet exception schedules (non
-
normal schedules, such as holidays or special events) shall
display
all

dates that are an exception to the normal weekly schedules. These specialty schedules
shall be displayed at

the operator’s terminal in a format similar to the weekly schedules, with
input requirements similar to

weekly schedules. Holiday and event sche
dules shall be entered as either single day entries, date
-
to
-
date

entries (covering a range of days), or by weekday (for example, a specific day of a given
week each month).

The operator shall be able to scroll through the months for each year as a minimum
.

3. At the Operator’s Terminal, the system user shall be capable of changing all information for a
given weekly

or specialty schedule if logged on with the appropriate security access.

D. Alarm Indication

1. Operator’s Terminal shall provide audible, visu
al and printed means of alarm indication. The
alarm dialog

box shall always become the top dialog box regardless of the application(s) being
run at the time (such as a

word processor). Printout of alarms shall be sent to the assigned
terminal and port.

2.
Alarm messages shall be logged. Alarm log shall be archived to the hard disk of the system
terminal. Each

entry shall include a description of the event which generated the alarm, time and
date of alarm occurrence,

time and date of status return to normal,

and time and date of alarm
acknowledgment.

3. Alarm messages shall be provided in user definable text (English or other user defined
language) and shall

be accessible either at the Operator’s Terminal or via remote (modem)
communication. When specified,

d
esignated alarms shall be available for dial out to pager alarms
for ‘on call’ personnel.

E. Trendlog Information

1. DDC system shall be capable of periodically monitoring the values or status of selected
feedback or control

data from the system global con
troller(s) or field controllers, and archiving
this information on the

operator’s terminal. Archived files shall be appended with new sample
data, allowing samples to be

accumulated over a user defined period. Systems that overwrite
previously archived dat
a samples shall not

be allowed, unless limited file size is specified.
Samples in a trendlog shall be available for viewing at the

operator’s terminal. Displays of
trendlog data shall be in spreadsheet format. Operator shall be capable of

scrolling through

all
trendlog data. System shall automatically open archive files as needed to display

archived data
when the operator scrolls through the data vertically. All trendlog information displays shall

be
shown in standard engineering units.

2. Software shall be

included that is capable of graphing the trend logged object data. Software
shall be

capable of creating two
-
axis (x, y) graphs that display up to six object types at the same
time in different

colors. Graphs shall show object type values relative to time
.

3. Operator shall be able to change trendlog setup information. This shall include the data points
and status

information being trendlogged as well as the interval at which the information is to be
W91242
-
11
-
R
-
0001


Page
19

of
23



logged. All trendlog

functions shall be password protect
ed. The operator shall be capable of
viewing or setting up a trendlog for

any prompted or read
-
only item.

4. The system shall provide a means for the operator to directly export data to a comma
-
delimited
file format

for use in third
-
party software spreadsh
eets or other database programs. The system
operation shall not be

affected in any way by this data exchange.

F. Energy Log Information

1. DDC system shall periodically gather energy log data stored in field terminal controllers and
archive this

informatio
n on the operator terminal’s hard disk. Archive data shall be appended
with the new data and

allow data to be accumulated over several years. Systems that overwrite
archived data shall not be allowed

unless limited file size is specified. System shall
aut
omatically open archive files as needed to display

archived data when the operator scrolls through the data. All energy log information shall be
displayed in

standard engineering units.

2. System software shall be capable of graphing the Energy Log data.
Software shall be capable
of creating

graphs in two
-
axis (x, y) format that shows recorded data relative to time. All data
shall be stored in

comma
-
delimited file format for direct use by third party software spreadsheets
or other database programs.

System

operation shall not be affected by on
-
line access to the energy information.

3. Operator shall be able to modify the energy log setup information. This shall include which
meters are to

be logged, meter pulse value, and what types of energy units are bein
g logged. All
energy meters

monitored by the system shall be capable of being logged. All energy logging
operations shall be password

protected.

4. Provide capability for the operator to export to a comma
-
delimited file format all energy
-
logged data for

u
se by third party software spreadsheets or other database programs. System
operation shall not be affected

by on
-
line access to the energy information.

G. Configuration/Setup

1. Provide means for the operator to display and change the system configuration.

This shall
include, but not

be limited to: system time, day of the week, date of daylight savings time set
forward/back, printer

termination, port addresses, modem port and speed, and the like. Items
shall be modified utilizing easily

understood terminolo
gy by means of simple mouse/cursor key
movements.

H. Programming Tools

1. Operator’s Terminal shall include programming tools for all controllers supplied. All
controllers shall be

programmed using graphical tools that allow the user to connect function
bl
ocks on screen that provide

sequencing of all control logic. Function blocks shall be
represented by graphical displays that are easily

identified and distinct from different types of
blocks. Graphical programming that uses simple rectangles

and squares is

not acceptable.

2. User shall be able to pick graphical function block from the menu and place on screen.
Programming tools

shall place lines connecting appropriate function blocks together
automatically. Provide zoom in and zoom

out capabilities. Functio
n blocks shall be downloaded
to controller without any reentry of data.

3. Programming tools shall include a teat mode. Test mode shall show user the real
-
time data on
top of

graphical display of selected function blocks. Data shall be updated real
-
time wi
th no
W91242
-
11
-
R
-
0001


Page
20

of
23



interaction by the

user. Function blocks shall be animated to show status of data inputs and
outputs. Animation shall show

change of status on logic devices and countdown of timer devices
in graphical format.

I. Computer Hardware Equipment (Existing)

1. Provide a Network Server (if not existing) in the CE building. This server shall include the
following as a

minimum:

a. Intel Xeon E5530 processor, minimum 2.4 GHz clock speed

b. Minimum 8 GB RAM on motherboard (expandable)

c. Minimum 250 GB RAID hard
disk

d. Minimum DVD
-
R/W drive

e. Super VGA 20 inch color monitor (800 x 600 x 256 minimum resolution; 0.28 dpi)

f. Windows Server 2008 R2 software

g. DDC manufacturer’s software and license (DDC and graphics)

h. All associated power and connector cables

i.

One (1) minimum six outlet type power strip with surge protection and circuit breaker

j. Applications software (on disk, as appropriate) and software manuals provided

2.11 GLOBAL BUILDING CONTROLLERS (GBCs)

A. The controls contractor shall supply one or m
ore global controller as part of this contract.
Number of global

controllers required is dependent on the type and quantity of DDC devices.

B. The Global Building Controller shall provide the interface between the LAN and the field
control devices, and

pro
vide global supervisory control functions over the control devices
connected to the GBC. It shall be

capable of executing application control programs to provide:

a. Calendar functions

b. Scheduling

c. Trending

d. Alarm monitoring and routing

e. Time synch
ronization

f. The GBC must provide the following hardware features as a minimum:

1. One Ethernet Port
-

10 Mbps

2. One RS
-
232 port

3. One BACnet MS/TP Port

4. Battery Backup

5. Flash memory for long term data backup (If battery backup or flash memory is no
t supplied,
the

controller must contain a hard disk with at least 1 gigabyte storage capacity)

6. The GBC must be capable of operation over a temperature range of 0 to 55°C

7. The GBC must be capable of withstanding storage temperatures of between 0 and 70
°C.

8. The GBC must be capable of operation over a humidity range of 5 to 95% RH, non
-
condensing.

9. The GBC shall provide multiple user access to the system and support for ODBC or SQL. A

database resident on the GBC shall be an ODBC
-
compliant database or

must provide an ODBC
data

access mechanism to read and write data stored within it.

10. The GBC shall support standard Web browser access via the Intranet/Internet. It shall support
a

minimum of 16 simultaneous users.

11. Event Alarm Notification and acti
ons

W91242
-
11
-
R
-
0001


Page
21

of
23



12. The GBC shall provide alarm recognition, storage; routing, management, and analysis to
supplement

distributed capabilities of equipment or application specific controllers.

13. The GBC shall be able to route any alarm condition to any defined user
location whether
connected

to a local network or remote via dial
-
up telephone connection, or wide
-
area network.

14. Alarm generation shall be selectable for annunciation type and acknowledgement
requirements.


g. Provide for the creation of a minimum of ei
ght alarm classes for the purpose of routing types
and or

classes of alarms, i.e.: security, HVAC, Fire, etc.

h. Provide timed (schedule) routing of alarms by class, object, group, or node.

i. Provide alarm generation from binary object “runtime” and /or e
vent counts for equipment
maintenance.

The user shall be able to reset runtime or event count values with appropriate
password control.

j. Control equipment and network failures shall be treated as alarms and annunciated.

k. Alarms shall be annunciated in

any of the following manners as defined by the user:

l. Screen message text

m. Email of the complete alarm message to multiple recipients. Provide the ability to route and
email

alarms based on:

i. Day of week

ii. Time of day

iii. Recipient

n. Pagers via
paging services that initiate a page on receipt of email message

o. Graphic with flashing alarm object(s)

p. Printed message, routed directly to a dedicated alarm printer

q. Audio messages

r. The following shall be recorded by the NAC for each alarm (at a
minimum):

i. Time and date

ii. Location (building, floor, zone, office number, etc.)

iii. Equipment (air handler #, accessway, etc.)

iv. Acknowledge time, date, and user who issued acknowledgement.

v. Number of occurrences since last acknowledgement.

s. Al
arm actions may be initiated by user defined programmable objects created for that purpose.

t. Defined users shall be given proper access to acknowledge any alarm, or specific types or
classes of

alarms defined by the user.

u. A log of all alarms shall be
maintained by the GBC and/or a server (if configured in the
system) and shall

be available for review by the user.

v. Provide a “query” feature to allow review of specific alarms by user defined parameters.

w. A separate log for system alerts (controller f
ailures, network failures, etc.) shall be provided
and

available for review by the user.

x. An Error Log to record invalid property changes or commands shall be provided and available
for review

by the user.

C. Data Collection and Storage

a. The GBC shall
have the ability to collect data for any property of any object and store this data
for future

use.

W91242
-
11
-
R
-
0001


Page
22

of
23



b. The data collection shall be performed by log objects, resident in the GBC that shall have, at a
minimum,

he following configurable properties:

c. Design
ating the log as interval or deviation.

d. For interval logs, the object shall be configured for time of day, day of week and the sample
collection

interval.

e. For deviation logs, the object shall be configured for the deviation of a variable to a fixed
v
alue. This

value, when reached, will initiate logging of the object.

f. For all logs, provide the ability to set the maximum number of data stores for the log and to set
whether

the log will stop collecting when full, or rollover the data on a first
-
in, fi
rst
-
out basis.

g. Each log shall have the ability to have its data cleared on a time
-
based event or by a user
-
defined event or

action.

h. All log data shall be stored in a relational database in the NAC and the data shall be accessed
from a

server (if the
system is so configured) or a standard Web Browser.

i. All log data, when accessed from a server, shall be capable of being manipulated using
standard SQL

statements.

j. All log data shall be available to the user in the following data formats:

k. HTML

l.
XML

m. Plain Text

n. Comma or tab separated values

o. Systems that do not provide log data in HTML and XML formats at a minimum shall not be
acceptable.

p. The GBC shall have the ability to archive it’s log data either locally (to itself), or remotely to a

server or

other GBC on the network. Provide the ability to configure the following archiving
properties, at a

minimum:

q. Archive on time of day

r. Archive on user
-
defined number of data stores in the log (buffer size)

s. Archive when log has reached it’s

user
-
defined capacity of data stores

t. Provide ability to clear logs once archived

D. AUDIT LOG

a. Provide and maintain an Audit Log that tracks all activities performed on the NAC. Provide
the ability to

specify a buffer size for the log and the ability

to archive log based on time or when
the log has reached

it’s user
-
defined buffer size. Provide the ability to archive the log locally (to
the NAC), to another NAC

on the network, or to a server. For each log entry, provide the
following data:

b. Time and

date

c. User ID

d. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.

E. DATABASE BACKUP AND STORAGE

a. The NAC shall have the ability to automatically backup its database. The database shall be
backed up

based on a user
-
defi
ned time interval.

b. Copies of the current database and, at the most recently saved database shall be stored in the
NAC. The

age of the most recently saved database is dependent on the user
-
defined database
save interval.

W91242
-
11
-
R
-
0001


Page
23

of
23



c. The NAC database shall be stor
ed, at a minimum, in XML format to allow for user viewing
and editing,

if desired. Other formats are acceptable as well, as long as XMLformat is supported.

PART 3
-

EXECUTION

3.01 COORDINATION WITH OTHER TRADES

A. The controls contractor is responsible for

hiring a mechanical contractor who shall be
responsible for installing

all temperature wells, control valves, control dampers, flow meters,
pressure taps, and the like.

B. The owner will be responsible for providing a network connection at the nearest glo
bal
controller in each

building.

3.02 TRAINING

A. The Controls Contractor shall provide complete on
-
site training for the Owner’s designated
operating personnel.

Training shall include all functional aspects of the control system and all
modes of system op
eration. System

modes include occupied/unoccupied, heating/cooling,
economizer, startup/shutdown, energy management, and

alarm event operations. Training of
Owner’s operating personnel shall include a minimum of eight (8) hours of

system instruction,
cond
ucted during one or two site visits for a combined total of eight hours of instruction.

Additional instruction time may be requested by the Owner for an additional fee if needed for
training additional

personnel or if more instruction is requested. Trainin
g is not intended to include in
-
depth
instruction in system

programming.

B. Training shall be conducted during normal working hours, Monday through Friday, at the
project site. When

applicable, the training may be conducted at the Owner’s central energy
ma
nagement office in addition to

training on site.

C. Contractor shall furnish one (1) copy of the system Operator’s Manual to the Owner. This
manual should be

delivered to the Owner at the time of training. This manual is in addition to the
system As
-
built
documents

which are intended to show wiring configurations and sensor
locations.

END OF SECTION