Male Slings: Past, present, and Future.

fangscaryAI and Robotics

Nov 13, 2013 (3 years and 7 months ago)

66 views

Male Slings: Past, present
, and Future.

Issues in Incontinence: Spring/Summer 2008

By Edward Zoltan, MD and Alexis Te, MD


Incontinence following prostatectomy can be a devastating complication significantly impacting quality
of life. The prevalence of
post
-
prostatectomy urinary incontinence (PPI) varies from 2.5%

87%, with
2%

10% reported in more recent series.
1,2

Incontinence can also occur in 1% of patients undergoing
surgical treatment for benign prostatic hypertrophy.

1


Although the incidence of PP
I has decreased with better understanding of neurovascular anatomy and
the advent of the robotic prostatectomy with its novel techniques of urethral reconstruction,
3

it
continues to be one of the most feared complications after surgery. Part of the reason
for the wide
range in reported PPI lies in the use of different definitions of incontinence with accompanying
divergent methods of assessment.


Evaluation

The evaluation of patients with PPI should begin with a comprehensive history, including onset,
durat
ion, evolution, cause of the leakage, and the number of pads used. It is important to assess how
the incontinence affects daily activities and if the patient is bothered by it. The pad
-
weight test may be
used to objectively assess the severity of incontine
nce. Any history of surgery or radiation should be
noted. A voiding diary can be helpful to quantify fluid intake and functional bladder capacity. Physical
examination is performed with emphasis on neurological assessment of the S2
-
S4 spinal segments,
incl
uding anal sphincter tone, perineal sensation, and bulbocavernosus reflex. Abdominal palpation may
detect a distended bladder with overflow incontinence. Urodynamic evaluation may differentiate
between the various causes of PPI in addition to ruling out po
or bladder compliance,high
-
pressure
detrusor overactivity during filling, and bladder obstruction during the flow portion of the study. Bladder
capacity is also measured, as most patients with severe incontinence have low functional bladder
capacity becaus
e of poor storage ability.


Management

Male stress urinary incontinence (SUI) may be addressed by numerous established methods. These vary
from relatively noninvasive methods of pelvic floor stimulation or biofeedback to progressively more
invasive methods

involving the use of various injectable bulking materials, bulbourethral slings, and the
artificial urinary sphincter. Since spontaneous improvement of urinary incontinence may take up to 12
months, it has been recommended that surgical intervention be po
stponed in men with PPI until 12
months after the prostatectomy.
1


Other contraindications to surgical intervention include the inability to operate a device, and any
disorders jeopardizing the upper urinary tract, including diminished bladder compliance,
frequent high
-
pressure detrusor contractions, or vesicoureteral reflux at low intravesical pressures. Any urinary tract
abnormalities requiring future transurethral management may also be considered relative
contraindications to outlet surgery. Stress inco
ntinence surgery is not recommended in patients with
untreated low
-
volume detrusor overactivity that would not permit adequate symptomatic
improvement. Chronic infection of the urine or skin, anatomic abnormalities, immunosuppression, and
poor urethral tis
sue quality are also relative contraindications.
4


Artificial urinary sphincter

The artificial urinary sphincter (AUS) is the gold
-
standard treatment for postprostatectomy SUI. The AMS
800 device (American Medical Systems, Minnetonka, MN) provides acceptab
le social continence in
approximately 90% of patients. Introduced over 30 years ago, the device has continually evolved to its
current and sophisticated form. It is widely used in clinical practice, and over 100 000 devices have been
implanted worldwide.

S
everal complications may occur in AUS patients. Urethral erosion occurs in 1%

3% of patients and may
be precipitated by infection, excessive cuff pressure, decreased vascularity from prior radiation, an
undersized cuff, or traumatic catheterization through

an activated cuff. 5,6

Infection occurs in 1.8%

10% of patients.7 AUS revision rates currently hover around 9%, with an
expected 5
-
year survival of narrow
-
backed AUS of 75%.7 Persistent stress incontinence may occur in up
to 15% of patients after AUS inse
rtion.8

Urethral atrophy may cause residual incontinence despite AUS placement, with an incidence of 3%

9%;
management options include downsizing the cuff or placing a tandem cuff. 6


Post
-
AUS SUI may also be
due to an excessively loose cuff or low reservo
ir pressure.


Bulking agents

Introduced in 1993, bovine glutaraldehyde cross
-
linked collagen (Contigen; CR Bard, Covington, GA) has
been used extensively as a bulking agent in the treatment of intrinsic sphincter deficiency in men.
Collagen implantation is

well tolerated and has a low complication rate. Although recommended for
mild to moderate male SUI, repeated injections are often necessary to establish and then maintain
continence; indeed, the longterm results of such injection therapy have been disappo
inting.

9,10

It has been reported
11

that the best results can be obtained in patients with mild degrees of
incontinence and a preoperative Valsalva leak
-
point pressure


> 60 cm H2O.


Previous male slings

Before the AUS was introduced, a variety of urethra
l compression procedures was attempted to control
urinary incontinence. One of the first prosthetic devices was described by Berry
12

in 1961. It was an
acrylic device placed beneath the bulbocavernosus muscle, designed to kink and compress the bulbous
ure
thra at a point just distal to the urogenital diaphragm. The procedure was then modified to include
the use of stainless steel sutures, passed through drill holes in the ischial and pubic rami.

13


However,
high rates of perineal pain and fistula formation

in the presence of only modest success led to the
abandonment of the Berry prosthesis.

14


In 1970, Kaufman

15

described a surgical method for compressing the urethra. In this Kaufman type
-
I
anti
-
incontinence procedure, the penile crura were crossed over
the bulbous urethra to produce
urethral compression, but success rates were low (30%). In the Kaufman type
-
II procedure,
16

the crura
were approximated in the midline using a polytetrafluoroethylene

mesh tape. The synthetic tape was
folded in such a manner as to compress the bulb of the urethra. Success rates increased to 50%. The
Kaufman type
-
III procedure

17

used a silicone
-
gel
-
filled hemispherical prosthesis, surrounded by external
velour of polyu
rethane and 2 polyurethane straps, leading to success rates approaching 70%. Kishev

18

next described a combined abdominoperineal approach utilizing a pliable prosthetic wad under the
bulbar urethra, with tension provided by nylon sutures that are passed t
hrough the retropubic space
and secured over small Marlex pledgets above the abdominal fascia. The Kaufman and Kishev
prostheses ultimately fell out of favor, however, because of high failure rates, infectious complications,
pelvic pain, and the introducti
on of the AUS.


Based on the Kaufman and Kishev techniques, Clemens et al.

19

described a bulbourethral sling
procedure in 64 men with severe PPI. A suture with a series of tetrafluoroethylene bolsters was passed
underneath the bulbar urethra with a Stamey

needle and brought through suprapubically lateral to the
urethra and bladder neck, thus compressing the bulbar urethra. At a mean followup of 18 months, 56%
of patients became dry, while 8% were significantly improved; this resulted in a 38% cure rate and

a 49%
pad
-
free rate. However, sling revision was required in 21% of patients, while bolster removal was
necessary secondary to infection or erosion in 6%.

Moreover, 52% of patients complained of chronic perineal numbness or pain, although this decreased
to
18% at 4
-
year followup.

20

This discomfort was most likely due to high
-
pressure entrapment of pudendal
nerve branches during blind suprapubic suture passage.

Current male slings

More recently, bone
-
anchored perineal male slings were introduced by Franco

and Baum
21

and Madjar
et al.
22

These were later popularized by Comiter

23

and Rajpurkar et al.
24

The use of bone anchors
obviates the need for blind suprapubic transfer of sutures to achieve bulbourethral compression and
eliminates the need for abdomin
al incisions. Such slings utilize 6 titanium 5
-
mm screws drilled into the
anteromedial aspects of each descending pubic ramus using the InVance bone drill (InVance, American
Medical Systems) (see Figure 1). These screws are preloaded with a pair of number
-
1 polypropylene
sutures. The topmost bone screws are placed just beneath the junction of the descending ramus and
pubic symphysis; the remaining sutures are placed 1 cm apart on each side. A rectangle (4 x 7 cm) of
polypropylene mesh alone or in combinatio
n with the dermis as a composite graft is used as sling
material. After 1 side of the sling is anchored to the pubic ramus, sling tension is adjusted, guided either
by the retrograde leak
-
point pressure method or, if the patient is awake, by the simple cou
gh method.
The sling is then tied down to the opposite pubic ramus.


Persistent scrotal/perineal pain is a relatively unusual occurrence (10%); however, small pudendal nerve
branches do travel along the medial aspect of the descending pubic rami and may b
e injured during
dissection or screw insertion. Complaints of pain without evidence of infection should be managed
conservatively with narcotics and anti
-
inflammatory medication. If pain persists after 6

8 weeks of
conservative management, consideration sh
ould be given to sling removal. One must always consider
the risk of osteomyelitis or osteitis pubis in these cases. As is the case with pubic symphyseal bone
anchors in women, bone anchor removal is a difficult procedure and usually recommended only in ca
ses
of bony infections.

Unlike the AUS, which circumferentially compresses the urethra

thereby interfering with venous blood
flow and thus predisposing the urethra to atrophy and even erosion

the male sling compresses only
the ventral aspect of the bulbar
urethra, leaving the dorsal and lateral blood flow intact. Moreover, the
bulbospongiosus muscle and other tissue are left intact over the urethra, serving as a cushion between
the urethra and the sling and further minimizing the risk of erosion. The infect
ion and erosion rate for
perineal slings is low (2.1%), with an accompanying low rate of revision caused by bone anchor
dislodgement (4.2%).

25

Another advantage of the male sling over the artificial urinary sphincter is that voiding occurs sans
device man
ipulation. There is no postoperative activation necessary: as soon as the urinary catheter is
removed, normal voiding may occur. In addition, without the hydraulic system as found in the AUS, the
risk of mechanical malfunction is minimized. Sling implantat
ion also does not preclude later AUS use.

26

In this study where an AUS was placed after male sling failure, 72.7% of patients were dry following AUS
implantation, while another 9.1% reported improved continence. No complications were reported
during ureth
ral dissection in patients with prior male sling procedures.

Excellent cure rates have been reported with the bone
-
anchored perineal sling, ranging between 70%
and 90%.

21
-
24

Comiter recently reported

25

intermediate
-
term results with a median followup of
48 months: mean pad
usage decreased from 4.6 ± 2.1 to 1.0 ± 1.7 pads per day (p < .01); 65% were considered cured of
leakage while another 15% were significantly improved.

Similar results were obtained by Rajpurkar et al.
24
who reported

a success rate of
74% in patients with a
mean follow
-
up of 24 months.

Onur et al. compared the use of synthetic with absorbable graft material in perineal slings. In a study

27

of 46 men, success rates were significantly higher in patients receiving synthetic mesh, either a
lone or as
composite graft, compared with patients receiving absorbable material alone (75% vs. 97% vs. 0%
respectively, p < .05). All patients with failed procedures had absorbable graft
-
type slings. Patients with
mild to moderate incontinence (< 5 pads/
day) had a significantly better outcome compared to those
with severe incontinence (≥ 5 pads/day).

The future of male slings


A new transobturator male sling system (AdVance, American Medical Systems) (see Figure 2) has
recently been approved for use in th
e United States. With this system, a midline perineal incision is
made, exposing the bulbospongiosus muscle, which is then split centrally and retracted laterally. The
dissection is extended to the perineal body. After exposure of the urethral bulb, blunt
-
finger dissection
is used to identify the space between the corpora cavernosa laterally and the corpus spongiosum
medially. A small skin incision is made in the leg fold on the lateral side of the scrotum, 1 cm below and
lateral to the insertion of the add
uctor longus tendon at the medial border of the obturator foramen.
The index finger of the surgeon is then placed between the urethral bulb medially and the proximal
corpus cavernosum laterally, just inside the bulbospongiosus muscle. The helical curved in
troducer
needle is placed over the skin incision and mild force is used to perforate the subcutaneous tissue and
obturator fascia, maintaining a constant axis of rotation at 45°. The needle is passed towards the tip of
the finger and the tape is then posit
ioned through both obturator fossae. With 2 absorbable sutures the
middle part of the polypropylene tape is then fixed distally onto the bulb and proximally onto the
perineal body. The tape is then pulled at both ends to its final position, and the ends ar
e cut at skin
level. Short
-
term results of this technique have shown it be effective in 70% of patients.

28




Recently, various adjustable male slings such as ProACT (Uromedica, Plymouth, MN),
29
Remeex
(Neomedic, Barcelona, Spain),
30

and Argus (Promedon

SA, Cordoba, Argentina)
31

have been introduced
in Europe; these slings can be variably tensioned according to patient needs and the degree of recurrent
urinary incontinence.

The ProACT device (see Figure 3) is constructed from silicone elastomer
, similar to the materials used in
the AMS 800 AUS. Two ProACT balloons are attached to a reinjectable titanium port with a short length
of tubing and are then implanted periurethrally, on either side of the bladder neck, just proximal to the
remnant exter
nal sphincter. The ports are sited subcutaneously under the scrotal dartos fascia to allow
for future percutaneous adjustments of the balloon volume.


A recent paper comparing the last 50 patients to the first 50 patients using ProACT

showed a significant
improvement in results.
31

Pad usage was reduced significantly in both groups (p < .001). Overall, late
-
group patients obtained more consistent outcomes than early
-
group patients (80% vs. 60% dry). I
-
QOL
(incontinence quality of life s
cale) scores improved in both groups although more significantly in the late
group (p = .005).






Operative time and range of complications decreased with evolution of technique. The Argus sling (see
Figure 4) possesses 3 components: a silicone foam c
ushion (4.2 x 2.6 x 0.9 cm) designed to provide
bulbourethral compression, silicone columns attached to both ends of the pad for fixation against the
abdominal rectus fascia, and silicone washers. All components are radio
-
opaque to allow sling
repositionin
g after implantation. The device can be regulated by moving the washers up and down to
create the desired tension. The Argus device is inserted through both a suprapubic and a perineal
incision, in the same fashion as that described by Schaeffer et al.

32


A European multi
-
center trial enrolling 48 patients found the device to be very effective. At a mean
followup of 7.5 months, 35 (73%) of the patients were dry, and 5 (10%) were improved, although 8
(17%) were incontinent, including 4 (8%) who needed sling

adjustment.
32

There were 3 (6%) urethral
perforations during surgery that were resolved by re
-
passing the needle. The sling was removed from 3
men (6%) due to erosion and from 2 (4%) due to infection. This compares favorably to the complication
rate assoc
iated with artificial urinary sphincters.


The male Remeex system is composed of a monofilament suburethral sling connected to a suprapubic
mechanical regulator with 2 monofilament traction threads (see Figure 5). The mechanical regulator, or
varitensor, i
s a subcutaneous permanent implant, placed over the abdominal rectum fascia 2 cm above
the pubis, used to wind and tighten the traction threads. The suburethral sling is also placed in a fashion
similar to that for the Schaeffer sling.


In a recent multi
-
center European study,

33

51 patients with mild to severe stress urinary incontinence
were treated with the Remeex system. Of these, 44 (86%) patients required a single adjustment of
tension between 1 and 4 months after surgery, while 17 (33%) other patien
ts required more than 1
delayed tension adjustment. Overall, 33 (65%) patients were considered cured, another 10 (20%)
showed improvement, while 8 (16%) were unchanged. The average follow
-
up time was 32 months. The
mesh was removed in 1 (2%) case due to ur
ethral erosion, and the varitensor in 2 (4%) cases was
removed due to infection. There were 5 (10%) uneventful intraoperative bladder perforations and 3
(6%) mild perineal hematomas reported.


Conclusion

Male stress urinary incontinence may be treated with

multiple modalities. Current surgical options for
post
-
prostatectomy incontinence include bulking agents such as collagen and devices such as the AUS.
Low success rates with bulking agents and high revision rates with the AUS have prompted a resurgence
of

interest in fixed urethral compression procedures. The modern male sling is an exciting development
in fixed urethral compression. Patients with mild to moderate SUI may benefit greatly from use of this
technology.


References

1. Haab F, Yamaguchi R, Leac
h GE. Postprostatectomy incontinence. Urol Clin North Am.
1996;23:447
-
57.

2. Majoros A, Bach D, Keszthelyi A, Hamvas A, Romics I. Urinary incontinence and voiding
dysfunction after radical retropubic prostatectomy (prospective urodynamic study). Neurourol

Urodyn. 2006;25:2
-
7.

3. Tewari A, Jhaveri J, Rao S, Yadav R, Bartsch G, Te A, et al. Total reconstruction of the
vesico
-
urethral junction. BJU Int. 2008;101:871
-
7.

4. Staskin DR, Comiter CV. Surgical treatment of male sphincteric urinary incontinence: th
e
male perineal sling and artificial urinary sphincter. In: Wein AJ, Kavoussi LR, Novick AC,
Partin AW, Peters CA, eds. Campbell
-
Walsh Urology. 9th ed. Philadelphia, PA: Saunders
-
Elsevier; 2007:2391
-
404.

5. Elliott DS, Barrett DM. Mayo Clinic long
-
term ana
lysis of the functional durability of the
AMS 800 artificial urinary sphincter: a review of 323 cases. J Urol. 1998;159:1206
-
8.

6. Litwiller SE, Kim KB, Fone PD, White RW, Stone AR. Post
-
prostatectomy incontinence and
the artificial urinary sphincter: a lo
ng
-
term study of patient satisfaction and criteria for success.
J Urol. 1996;156:1975
-
80.

7. Tse V, Stone AR. Incontinence after prostatectomy: the artificial urinary sphincter. BJU Int.
2003;92:886
-
9.

8. Hübner WA, Schlarp OM. Treatment of incontinence af
ter prostatectomy using a new
minimally invasive device: adjustable continence therapy. BJU Int. 2005;96:587
-
94.

9. Schneider T, Sperling H, Rossi R, Schmidt S, Rübben H. Do early injections of bulking agents
following radical prostatectomy improve early c
ontinence? World J Urol. 2005;23:338

42.
Epub 2005 Nov 1.

10. Westney OL, Bevan
-
Thomas R, Palmer JL, Cespedes RD, McGuire EJ. Transurethral
collagen injections for male intrinsic sphincter deficiency: the University of TexasHouston
experience. J Urol. 2005
;174:994

7.

11. Sánchez
-
Ortiz RF, Broderick GA, Chaikin DC, Malkowicz SB, Van Arsdalen K, Blander DS,
et al. Collagen injection therapy for post
-
radical retropubic prostatectomy incontinence: role of
Valsalva leak point pressure. J Urol. 1997;158:2132
-
6.

1
2. Berry JL. New procedure for correction of urinary incontinence: a preliminary report. J
Urol. 1961:771
-
5.

13. Kishev SV. Surgery for male urinary incontinence. In: Glenn JF, ed. Urologic Surgery. 2nd
ed. Philadelphia, PA: JB Lippincott; 1975:596
-
611.

14
. Engel RM, Wade JC. Experience with the Berry prosthesis. J Urol. 1969;102:78
-
80.

15. Kaufman JJ. A new operation for male incontinence. Surg Gynecol Obstet. 1970;131:295
-
9.

16. Kaufman JJ. Surgical treatment of post
-
prostatectomy incontinence: use of the penile crura
to compress the bulbous urethra. J Urol. 1972;107:293
-
7.

17. Kishev S, Blakely G, Sanford E. Experience with Kaufman’s operation for correction of
postprostatect
omy urinary incontinence (sagging urogenital diaphragm

a theory for the cause
of incontinence). J Urol. 1972;108:772
-
7.

18. Kishev SV. Surgery for male urinary incontinence. In: Glenn JF, ed. Urologic Surgery. 2nd
ed. Philadelphia, PA: JB Lippincott; 1975:
596
-
611.

19. Clemens JQ, Bushman W, Schaeffer AJ. Questionnaire based results of the bulbourethral
sling procedure. J Urol. 1999;162:1972
-
6.

20. Stern JA, Clemens JQ, Tiplitsky SI, Matschke HM, Jain PM, Schaeffer AJ. Long
-
term results
of the bulbourethral
sling procedure. J Urol. 2005;173:1654
-
6.

21. Franco N, Baum N. Suburethral sling for male urinary incontinence. Infect Urol.
2001;14:10
-
8.

22. Madjar S, Jacoby K, Giberti C, Wald M, Halachmi S, Issaq E, et al. Bone anchored sling for
the treatment of post
-
prostatectomy incontinence. J Urol. 2001;165:72
-
6.

23. Comiter CV. The male sling for stress urinary incontinence: a prospective study. J Urol.
2002;167(2 Pt 1):597
-
601.

24. Rajpurkar AD, Onur R, Singla A. Patient satisfaction and clinical efficacy of th
e new
perineal bone
-
anchored male sling. Eur Urol. 2005;47:237
-
42.

25. Comiter CV. The male perineal sling: intermediate
-
term results. Neurourol Urodyn.
2005;24:648
-
53.

26. Broghammer J, Singla A, et al. Feasibility of artificial urinary sphincter after ma
le sling
failure. Paper presented at: Society for Urodynamics and Female Urology Annual Meeting;
2006; Bahamas.

27. Onur R, Rajpurkar A, Singla A. New perineal bone
-
anchored male sling: lessons learned.
Urology. 2004;64:58
-
61.

28. Rehder P, Gozzi C. Transo
bturator sling suspension for male urinary incontinence including
post
-
radical prostatectomy. Eur Urol. 2007;52:860
-
6. Epub 2007 Feb 12.

29. Hübner WA, Schlarp OM. Treatment of incontinence after prostatectomy using a new
minimally invasive device: adjusta
ble continence therapy. BJU Int. 2005;96:587
-
94.

30. Sousa
-
Escandén A, Rodríguez Gómez JI, Uribarri González C, Marqués
-
Queimadelos A.
Externally readjustable sling for treatment of male stress urinary incontinence: points of
technique and preliminary resu
lts. J Endourol. 2004;18:113
-
8.

31. Moreno Sierra J, Victor Romano S, Galante Romo I, Barrera Ortega J, Salinas Casado J,
Silmi Moyano A. New male sling “Argus” for the treatment of stress urinary incontinence. [In
Spanish]Arch Esp Urol. 2006;59:607
-
13.

32
. Schaeffer AJ, Clemens JQ, Ferrari M, Stamey TA. The male bulbourethral sling procedure
for post
-
radical prostatectomy incontinence. J Urol . 1998;159:1510

5. Erratum in: J Urol
1998;160:136.

33. Sousa
-
Escandón A, Cabrera J, Mantovani F, Moretti M, Ioanid
is E, Kondelidis N, et al.
Adjustable suburethral sling (male remeex system) in the treatment of male stress urinary
incontinence: a multicentric European study. Eur Urol. 2007;52:1473
-
9. Epub 2007 Jun 4.