1
ChEN 307
–
Fluid Mechanics
Course Description
–
Fall Semester 2000
Instructor
:
Ron Miller
AH 441
(303) 273

3892
rlmiller@mines.edu
Office hours
:
MWF 1

2 pm; MW 2

3 pm
Text
:
Fluid Mechanics for Chemical Eng
ineers
, Wilkes, Prentice

Hall, 1999.
(Please bring your text to each class
–
we will often use figures and charts in class.)
Course Goal
:
The goal of this course is to introduce you to the fundamental concepts of engineering fluid
mechanics by s
tudying both empirical and theoretical approaches to analysis of momentum
transport systems. We will concentrate on learning
concepts
and
applications
of fluid mechanics
which will be valuable to you as an engineer. Note that ChEN 201 and MACS 315 are
pr
erequisites for this course.
Teaching and Learning Philosophy
:
As juniors, you need to become less dependent upon the instructor for your learning (after all,
you’ll be graduating in a couple of years and I can’t go with you!). Therefore, you are
respon
sible for completing all reading assignments
prior
to class attendance so that you are ready
to participate in class activities. My job is to promote your learning, not repeat exactly what the
text says (i.e. I will not be lecturing much in this class nor
will I cover all the topics you will be
responsible for). In class, we will work on exercises and problems and will discuss questions
and sort out points of confusion. Be prepared for an active, working class session each day.
Learning Objectives
:
Upo
n successful completion of this course, you should be able to:
Define shear stress, shear rate, and absolute viscosity and identify common classes of fluids
(e.g. newtonian, bingham plastic, pseudoplastic, dilatant).
Write and apply macroscopic mass, energy, and momentum balances on chemical
engineering flow processes and systems.
Compute average velocity in a conduit given an analytical velocity profile or experimental
veloci
ty profile point values.
2
Use the extended Bernoulli equation and macroscopic energy balance to evaluate frictional
losses and size common fluid flow devices (e.g. pumps, piping, valves).
Describe the concept of choking in compressible flow and estimate pressure drop for
compressible pipe flow of an ideal gas under isothermal and adiabatic expansion.
Apply the concept of drag coefficients
to evaluate the drag force and settling velocity for
spherical and non

spherical particles.
Compute the pressure drop through a packed bed and estimate the minimum fluidization
velocity of the bed.
Describe boundary layer development for flow over a flat plate including velocity profile and
boundary layer thickness and describe the phenomenon of pipe entrance length using
boundary layer development.
Develop microscopic mass and momentum balances for chemical engineering systems. Use
the Navier

Stokes equations and equation of continuity to evaluate shear stress profile,
velocity profile, and friction factor for simple one

dimensional fl
ows. Perform scaling
analysis on the Navier

Stokes equations to non

dimensionalize them.
Grading
:
15% homework
20% design projects/computer programs
35% hour exams (2)
30% final exam
Homework
: Completing all your homework assignments is
absolutely required to learn the
course material. Problem sets are carefully designed to promote learning and will not consist of
“busy work” or “drill” problem sets. Homework will be assigned about once per week and will
be due by noon on the due date (
at least two class periods after being assigned). To help you
keep from falling behind,
no late homework will be accepted
. Answers (not solutions) to the
problems will be provided with each assignment and complete solutions will be posted after the
assig
nment due date. Very few students succeed in this course without regularly completing the
homework; to encourage you to do well on the homework,
you must have a homework score of
60% or greater to pass the course
.
Please start each problem on a separat
e sheet of paper and write on only one side of the page.
Staple your solution pages together. Points will be deducted for sloppy and unprofessional work.
Projects/computer programs
: Two or three projects will be assigned; each will require more
involv
ed computations or analysis than homework problems. Unless otherwise specified,
projects will be completed individually.
3
Hour exams
: Exams will emphasize topics covered in class and homework. To reduce the stress
of time constraints, exams will be admi
nistered in the evening with two hours allowed to
complete each exam.
Tentative
exam dates are:
Week of October 2
nd
Week of November 13
th
Final exam
: The final exam for this course will be comprehensive and is scheduled for
Wednesday, Dece
mber 13
th
from 8

10 am.
Tentative Class Schedule
Week
Dates
Topics
Text Chapter(s)
1
8/22
–
㠯㈵
fntr潤oction t漠flui搠 mechanics; review units &
摩mensions; fl畩搠 灲潰orties
1
2
㠯㈸2
–
㤯1
A灰
lications 潦 flui搠 statics
1
3
㤯㐠
–
㤯8
oeview 潦 mass an搠energy 扡lances
2
4
㤯ㄱ1
–
㤯ㄵ
fntr潤oction t漠m潭ent畭 扡lances
2
5
㤯ㄸ1
–
㤯㈲
A灰pications 潦 Bern潵lli e煵ati潮
㈬2
6
㤯㈵2
–
㤯㈹
A灰pications 潦 Bern潵lli e煵ati潮 (c潮t⸩
㈬2
T
1㈠
–
1
〯6
cl潷 in 灩灥s;
exam 1
3
8
10/9
–
1ㄳ
cl潷 in 灩灥s (c潮t⸩
3
9
1ㄶ1
–
1㈰
bxternal fl潷s
4
1㈳2
–
1㈷
aesign 潦 灵m灳
4
ㄱ
1㌰3
–
ㄱ13
C潭灲essi扬e fl潷 in 灩灥s
3
ㄲ
ㄱ1㘠
–
ㄱ1
aiffere湴ial e煵ati潮s 潦 fl畩搠 mechanics
5
ㄳ
ㄱ1ㄳ1
–
ㄱ1ㄷ
p潬uti潮 潦 visc潵s fl潷 灲潢oems;
exam 2
6
14
11/20
–
ㄱ1㈲
p潬uti潮 潦 visc潵s fl潷 灲潢oems (c潮t⸩
6
ㄵ
ㄱ1㈷2
–
ㄲ11
B潵n摡ry layer fl潷s
8
ㄶ
ㄲ1㐠
–
ㄲ16
B潵n摡ry layer fl潷s (c潮t⸩
8
††††††††††††††††††††††††††††
††††††††††
††
††
Comments 0
Log in to post a comment