Omni-directional Vision and 3D Robot Animation Bd T l t i f H dl i l l A t t d H d Based Teleoperation of Hydraulically Actuated Hexpod Robot COMET-IV

duewestseaurchinAI and Robotics

Nov 14, 2013 (3 years and 8 months ago)

142 views

Omni-directional Vision and 3D Robot Animation
BdTltifHdlillAttdHd
B
ase
d

T
e
l
eopera
ti
on o
f

H
y
d
rau
li
ca
ll
y
A
c
t
ua
t
e
d

H
expo
d

Robot COMET-IV
Hiroshi OHROKU
Control and Robotics Lab.Control and Robotics Lab.
CHIBA UniversityCHIBA University
Background
Background
Assistanceduringhazardousoperations
Assistance

during

hazardous

operations
•Disaster-relief work

Construction

Construction
•Mine detection and clearance etc.
The Expectation of robots is increasing!
http://www.yomiuri.co.jp/feature/20080614-2892868/news/20080616-OYT1T00506.htm
http://headlines.yahoo.co.jp/hl
Background
Background
Sitesofhazardousoperations
•Disaster site
Constructionsite
Rhti
Sites

of

hazardous

operations

Construction

site
•Mine field
R
oug
h

t
erra
i
n
Utility of multi-legged robot
•Multi-legged robots have high
stabilit
y
and
mobility
in rough terrain.
•Multi-legged robots can enter areas
where it is difficult for wheeled robots
dltbttt
an
d
craw
l
er
t
ype ro
b
o
t
s
t
o en
t
er.
DevelopmentofCOMET
IV
Development

of

COMET
-
IV
COMET-I
COMET-II
COMET-IV
DevelopmentgoalDevelopmentgoal
COMET-III
1.1.Fully autonomous locomotion on outdoor rough terrain
Fully autonomous locomotion on outdoor rough terrain
2
2
Assistanceduringvarioushazardousoperations
Development

goalDevelopment

goal
2
.
2
.
Assistance

during

various

hazardous

operations
Lar
g
eLar
g
e--scaled le
gg
ed Robots
(
Past
)
scaled le
gg
ed Robots
(
Past
)
g
g
gg()
gg()
Walking Forest Machine
ASV
MECANT
TITAN-XI
A
bout autonomous s
y
stem
y
Fullyautonomoussystem
Halfautonomoussystem
Fully

autonomous

system
Half

autonomous

system

䥮瑥汬楧敮I獹獴敭

啰灥爭
污祥爠獹獴敭
Te汥潰敲慴楯渠獹獴敭l
佰敲慴楯O

䥮瑥汬楧敮I

獹獴敭

-T慳欠浡湡来浥湴a☠偬慮湩湧
-E湶楲潮浥湴⁲散潧湩瑩潮
-
卥汦
-
䱯捡汩穡瑩潮
-
佰敲慴楯O
-S異敲癩獩潮
卥汦
䱯捡汩穡瑩潮
䥦lit
䱯睥
°
-

y
敲⁳
y
獴s
m
䱯睥
°
-

y
敲⁳
y
獴s
m
-
I
浡来
f
⁲敡
l
⁥湶
i
牯湭敮
t
-S敮獯爠摡瑡
<Robust controller>
-Force & Position control
yy
<Robust controller>
-Force & Position control
yy
It is very difficult to implement fully autonomous robot in the stricken area・・
Tele
roboticsresearches(
1
)
Tele
-
robotics

researches(
1
)
Master-slave system
+
3D Animation
+
Open Dynamic Engine(ODE)
http://pc.watch.impress.co.jp/docs/2002/1219/hrp.htm
Master-slave system
+
FES
(Functional Electrical Stimulation)
based bilateral control
http://const.tokyu.com/topics/1998/topics_03.html
Tele
roboticsresearches(
2
)
Tele
-
robotics

researches(
2
)
K.Saitoh, T.Machida, K.Kiyokawa, H.Takemura: A Mobile Robot Control Interface Using OmnidirectionalImages and 3D Geometric Models,
Technical report of IEICE. Multimedia and virtual environment 105-256, 7/12(2005)
Focusofmyresearch
Focus

of

my

research
Theresearchonteleoperationsystemtoassistoperatorfor
The

research

on

teleoperation

system

to

assist

operator

for

controlled large-scale legged type robot is little
Legmovement
In rough terrain operation,
the chan
g
e of ・・・・
Body height
Leg

movement
g
Attitude
The teleoperation assistant system is indispensable for controlling legged robot
in outdoor environment
Develo
p
ment of the
■Omni-directional vision
p
Teleoperationassistant system
■3D Animation of robot movement
DevelopmentTasksDevelopmentTasks
Development

TasksDevelopment

Tasks

AutonomousNavigationSystemAutonomousNavigationSystem

Autonomous

Navigation

SystemAutonomous

Navigation

System

ﱥー說拾ﱥー說拾

ﱥー說



ﱥー說




Control S
y
stemControl S
y
stem
y
y
•Gait Planning

FootTrajectoryTracking
•Force Control

AttitudeControl
Designspecificationinlocomotion

Foot

Trajectory

Tracking

Attitude

Control
1.Walking speed: max 1 km/h
2
Vtilt
1
Design

specification

in

locomotion
3.Gradient: max 20 deg
4
Oi
ditillki
2
.
V
er
ti
ca
l
s
t
ep: max
1
m
4
.
O
mn
i
-
di
rec
ti
ona
l
wa
lki
ng
HardwareSpecificationsHardwareSpecifications
Hardware

SpecificationsHardware

Specifications
Leg 1
Le
g

4
Leg
2
g
Leg
5
H:2.8 m
Leg

2
L
3
Leg

5
L
6
L:2.5m
L
eg
3
L
eg
6
W:3.3 m
L×W×H2.5×3.3×2.8(m)
Weight
2200 (kg)
PowerSource
GasolineEngine

2
Power

Source
(Max. Output)
Gasoline

Engine

2
(25.0ps/3600rpm)
Supply Pressure
22 (Mpa)
SlFl
78
2

L/i

S
upp
l
y
Fl
ow
78
×
2

L/
m
i
n

HardwareSpecificationsHardwareSpecifications
Hardware

SpecificationsHardware

Specifications
Omni-directional
Vii
Vi
s
i
on senso
r
Stereo vision
LRF
(Laser Range Finder)
CoordinateSystemofLeg
Coordinate

System

of

Leg
В1
В
2

В
2
В3
L2
L
3
В
4
Z
Y
L
3
L
4
LinkLength (m)Range of Motion [deg]


В
4
Y
X
L
4
Shoulde
r
L10
-180°

θ1

1°
ThighL21.13
50°θ2
142°
Shank
L
3
0
77
36
6
r

θ

150
r
Shank
L
3
0
.
77
36
.
6
°

θ
3

1
°
䙯潴䰴〮㌹
ⴴ㜮-°θ4
103°
Basic configuration of
hydrauliccontrolsystem
hydraulic

control

system
COMET
IV
COMET
IV
COMET
IV
COMET
IV
COMET
-
IV
Proportional
Solenoid Valve
Valve
Controller
D/A
Board
LRF
SVC
ODC
GPS
COMET
-
IV
Proportional
Solenoid Valve
Valve
Controller
D/A
Board
LRF
SVC
ODC
GPS
COMET
-
IV
Proportional
Solenoid Valve
Valve
Controller
D/A
Board
LRF
SVC
ODC
GPS
COMET
-
IV
Proportional
Solenoid Valve
Valve
Controller
D/A
Board
LRF
SVC
ODC
GPS

6
i
ﱯ浯瑩潮 ††
﹡Ni
g
慴楯渠††

6
i

6
i
ﱯ浯瑩潮 ††
﹡Ni
g
慴楯渠††

6
i

6
i
ﱯ浯瑩潮 ††
﹡Ni
g
慴楯渠††

6
i

6
i
ﱯ浯瑩潮 ††
﹡Ni
g
慴楯渠††
周不h

6
慵H
i
††
ﱩ﹤敲C
浰mt敲
g
浰mt敲

W
周不h

6
慵H
i
††
ﱩ﹤敲C
周不h

6
慵H
i
††
ﱩ﹤敲C
浰mt敲
g
浰mt敲

W
周不h

6
慵H
i
††
ﱩ﹤敲C
周不h

6
慵H
i
††
ﱩ﹤敲C
浰mt敲
g
浰mt敲

W
周不h

6
慵H
i
††
ﱩ﹤敲C
周不h

6
慵H
i
††
ﱩ﹤敲C
浰mt敲
g
浰mt敲

W
S湫
オSder
li
Wireless Network
A/D
Board
Shank
Shoulder
Hdli
Shank
Shoulder
Hdli
Wireless Network
Wireless Network
A/D
Board
Shank
Shoulder
Hdli
Shank
Shoulder
Hdli
Wireless Network
Wireless Network
A/D
Board
Shank
Shoulder
Hdli
Shank
Shoulder
Hdli
Wireless Network
Wireless Network
A/D
Board
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Teleoperation
Attitude
Sensor
Azimuth
Sensor
WM
AP
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Teleoperation
Attitude
Sensor
Azimuth
Sensor
WM
AP
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Teleoperation
Attitude
Sensor
Azimuth
Sensor
WM
AP
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Foot
:Potentiometer
: Pressure Sensor
H
y
d
rau
li
c
Motor
Teleoperation
Attitude
Sensor
Azimuth
Sensor
WM
AP
LRF : Laser Range Finder, SVC : Stereo Vision Camera, ODC : Omni-Directional Camera
WCM : Wireless Client Module, WM : Wireless Modem (for sensor data), AP : Access Point
:

Potentiometer
Computer
Sensor
Sensor
LRF : Laser Range Finder, SVC : Stereo Vision Camera, ODC : Omni-Directional Camera
WCM : Wireless Client Module, WM : Wireless Modem (for sensor data), AP : Access Point
:

Potentiometer
:

Potentiometer
Computer
Sensor
Sensor
LRF : Laser Range Finder, SVC : Stereo Vision Camera, ODC : Omni-Directional Camera
WCM : Wireless Client Module, WM : Wireless Modem (for sensor data), AP : Access Point
:

Potentiometer
:

Potentiometer
Computer
Sensor
Sensor
LRF : Laser Range Finder, SVC : Stereo Vision Camera, ODC : Omni-Directional Camera
WCM : Wireless Client Module, WM : Wireless Modem (for sensor data), AP : Access Point
:

Potentiometer
:

Potentiometer
Computer
Sensor
Sensor
Omni
directionalgait
Omni
-
directional

gait


復若異ﱥ﹧
arbitrarily
,
wecanapplyvariousnavigationstrategies!!








オ

﹡ョ




塞若鸞﹧贈イ鸞塞鸞
ttdilki
idd
Inthissystemweappliedthetrajectory
・・・
a
t
any s
t
ep
d
ur
i
ng wa
lki
n
g
i
s nee
d
e
d
.
In

this

system
,
we

applied

the

trajectory
・・・
鍔桥⁓瑡湤慲搠䍩牣畬慲C䝡楴鐠
[*]
[*]S.Hirose, H.Kikuchi, Y.Umetani:
The Standard Circular Gait of the Quadruped Walking Vehicle,
JournalofRoboticsSocietyofJapan
2
6
41
/
52
(
1984
)
“Low impact foot trajectory”[**]
+
Journal

of

Robotics

Society

of

Japan
,
2
-
6
,
41
/
52
(
1984
)
[**]Y.Sakakibara, K.Kan, Y.Hosoda, M.Hattori, M.Fujie :
Low Impact Foot Trajectory for aQuadruped Walking Machine,
Journal of the Robotics Societ
y
of Ja
p
an
,
8-6
,
22
/
31
(
1990
)
yp,
,
(
)
Omni
directionalgait
Omni
-
directional

gait
Crab gait
Crab
g
ait
g
Cilit
Circular
g
ait
Ci
rcu
l
ar ga
it
g
Circular
g
ait includes all
g
aitCircular
g
ait includes all
g
ait[*]
[*]
Rotation center
gg
gg
Definitionofcoordinatesystem
Definition

of

coordinate

system
<FRONT>
X
c
X
s1
X
t
α
Body coordinate system
:Crab angle
_
Leg1
Leg4
O
s_1,
Z
s_1
Y
t
O
t
RR
tt
Y
c
Y
s_1
<LE
F
<RIG
H
Rotation center
ditt
RR
c
t
c
t
c
F
T>
H
T>
Leg2Leg5
coor
di
na
t
e sys
t
em
<REAR>
Leg3
Leg6
O
c,
Z
c
Shoulder
θθ
ct
ct
<REAR>
Shoulder
coordinate
system
Conditionofcircularanglesetting
Condition

of

circular

angle

setting
R

)
1
(
2
θ
2
2.5
dL
2
2.5
dL
Condition:
btbct
rR≤−)cos1(2
θ
btbct
r
R


)
cos
1
(
2
θ

1
ㄮ5

1
ㄮ5
Arbitrarycrabanglewalkingisachieved
-0.5
0
0
.
5
Y [m]
rb
-0.5
0
0
.
5
Y [m]
rb
Arbitrary

crab

angle

walking

is

achieved

by setting as follows.
R
π
α
θ
+
2
π
αθ
+=
ct
-1.5
-1
-1.5
-1
→ ∞
ct
R
2
α
θ
+
=
ct
2
-2
-1
0
1
2
-2.5
-2
X[m]
-2
-1
0
1
2
-2.5
-2
X[m]
X

[m]
X

[m]
Circular gait 
Crab gait
Teleoperation
assistantsystem
Teleoperation
assistant

system
Instruction
information
Received
sensor data
Map
Log
Omni-directional
image
Generated
image
3
DAnimationofrobot
3
D

Animation

of

robot

PeripheralDevice
Peripheral

Device
■Omni-directional vision sensor
-Digital Video Camera:DCR-HC48(SONY)
-
Hyperbolic Mirror
Diameter of mirro
r
82mm
Angle of elevation
15°
Alfdi
50
r
?‘Joystick: Cyborg Evo Force(Saitek )
A
ng
l
e o
f

d
epress
i
on
50
°
䥮瑥牦慣IU卂ㄮS
卩穥S(mm)210 ×199 ×240
Buttons11
Axes3
Instructioninformation
Instruction

information
Ai
Ail
A
ct
i
on
A
ct
i
on va
l
ue
Cycle_TimeCycle time
θ
呬fthbdttl[O
]
θ

T
牡癥牳攠慮r
l
攠e
f



b
o
d
礠捥y
t
敲⁡
t
湥 捹c
l


t
]
R捴
偯獩瑩潮P潦⁲潴慴楯渠捥湴敲⁛灯污爠摩獰污礠潦⁏
c]
θ
θ

䅣瑩潮⁶慬略⁳桯睳⁴桥A扡獩挠浯癥浥湴⁡捴楯渮
却d

St
an
d
up
■Sit down
UDPSocket
■Walking start
Teleoperation
Com
p
ute
r
Locomotion
Com
p
ute
r
UDP

Socket
(User Datagram Protocol)
■Walking stop
p
p
CoordinatesystemofJoystick
Coordinate

system

of

Joystick
Z
Z
XX
Z
zrot
_
Z
zrot
_
X
X
X
β
X
β
X
α
X
α
Y
Y
Y
Y
Theeightdirectionsofbasiclocomotionangle
β
canbeselectedusingthejoystick
The

eight

directions

of

basic

locomotion

angle

β

捡c



獥汥捴敤

畳楮u

瑨t

橯祳瑩捫
.
GaitparametersSetting
Gait

parameters

Setting
Therangeofthetraverseangle
o
oo
10
125
0
125.010


−≤≤−
tb
θ
θ
The

range

of

the

traverse

angle
o
10
125
.
0


tb
θ
<Crab gait>
<Circular gait>
is set to the minimal value
tb
θ
The circular angle of body center
derived from
rot_z
which is set to
tb
θ
(
)


R
θ
cos
12
1

=
→ ∞
ct
R
π
β
α
θ
+
+
=
ct
S
J
?
?
tb
T
cos
J
E
D
T
?
?

ct
o
o
125
0
10
θ
2
β
ct
2
γ
−=
o
o
o
10125.0
125
.
0
10
≤≤




tb
tb
θ
θ
2
π
γ
=
Configuration of omni-directional
vision senso
r
Z
O
Mirror focus
O
M
a26.2 [mm]
PʢX,Y,Zʣ
c
b
b35.4[mm]
c44.1 [mm]
Diameterofmirror
55
0
[
mm]
Y
O
y
Image plane
Diameter

of

mirror
55
.
0
[
mm]
Angle of elevation15.0 [deg]
Angleofdepression
50
0
[
deg]
X
x
pʢx,yʣ
f
Angle

of

depression
50
.
0
[
deg]
OC
Center of camera lens
Performance of Ambient
EitlI(
1
)
E
nv
i
ronmen
t
a
l

I
mage
(
1
)
Centralaxisofamirrorfitsanopticalaxisofacameraisassumed
(
)
180
/
π
φ

=
pan
Central

axis

of

a

mirror

fits

an

optical

axis

of

a

camera

is

assumed
.
The direction where the angle of pan and tilt is set to 0 degree to make X axis
and the origin of projection center coordination is (0, 0).
(
)
()
180/
180
/
πθ
π
φ
∗−=


=
tilt
pan
(7)
The spherical coordinates was derived by using pan, tilt angle and focal length



















x
fp
vy
vx
θ
φ
θφ
φ
φ
θ
φ
θφ
sin
sin
sincos
cos
sin
cos
sin
coscos
which is direction projection plane as against the sphere.

8
















=






i
i
y
x
vz
vy
θ
θ
φ
φ
θ
θ
φ
cos
sin
sin
0
cos
sin
cos
sin

8

222
i
i
i
i
vz
vy
vx
r
+
+
=

9

i
i
i
i
vz
vy
vx
r
+
+

9









=
i
i
is
vx
vy
arctan
_
φ








=


i
i
is
i
r
vz
vx
arctan
_
θ
(10)
Performance of Ambient
EnvironmentalImage(
2
)
Environmental

Image(
2
)
ThecoordinatesthatderivedfromEq(
7
)toEq(
10
)istransformedto
The

coordinates

that

derived

from

Eq
.
(
7
)

to

Eq
.
(
10
)

is

transformed

to

rectangular coordinates.
isisis
x
___
sincos
θφ
=
isis
isisis
z
y
__
___
cos
sinsin
φ
θ
φ
=
=
(11)
Mirror parameter is in Semi-major axis and mirror parameter b is
in Semi-minor axis. Semi-latus rectum is derived by Eq. (12).
a
b
2
=
λ
(12)
2
2
1
b
a
+=
ε
(13)
Performance of Ambient
EitlI(
3
)
E
nv
i
ronmen
t
a
l

I
mage
(
3
)
Parameters
l
and
m
isusedinsphericalprojectionwasderivedfrom
Parameters

l

and

m

is

used

in

spherical

projection

was

derived

from

Eq. (14) to Eq. (15) including.
2
2
ε
=
l

14

2
1
ε
+

14


2
1
22
λεμεμ
−+−
=m

15

2
1
ε
+


l
lm
s

=

16

l
z−


On the other hand, projection coordinates of hyperboloidal is calculated as
Eq.(
16
)and(
17
).
Eq.

(
16
)

and

(
17
).
i
s
i
isi
yshy
xshx
_
*
*
=
=
(17)
_
Performance of Ambient
EitlI(
4
)
E
nv
i
ronmen
t
a
l

I
mage
(
4
)
FinallythepixelcoordinatesystemisdeterminedbyusingmatrixKviaEq(
18
)
Finally
,
the

pixel

coordinate

system

is

determined

by

using

matrix

K

via

Eq
.
(
18
)
.
Furthermore projection coordinates is calculated by Eq. (19).
The values (358.1, 215.1) in the matrix K are XY coordinates of the center point
inomni
directionalimage
in

omni
-
directional

image
.




6.35805.884








=
100
1.2154.7880K
(18)








ii
hxpx








=








11
ii
hyKpy
(19)
Texturemapping
Texture

mapping
Timeconsumingfactoronthesystemprocessingunitstillbecomeanissues
Time

consuming

factor

on

the

system

processing

unit

still

become

an

issues

because previous mentioned calculation method does similar process
to all image pixels.
Consequentially, it is difficult to present the smooth image operator.
Therefore, the load of the calculation processing is reduced by
using texture mapping
.
Texturemapping
Texture

mapping
(-100,100
)
(100,100
)
Y
(-1,1)(1,1)
Y
X
P[3]P[2]
X
P[
0]
P[
1]

Fig
11
(a)
P[0
]
(-100
,
-100
)
(100
,
-100
)
P[1
]
P[
3]
(-1,-1)(1,-1)
P[
2]
Fig
11
(b)
Fig
.
11
-
(a)
(0,1
)
(1,1
)
Y
T
[
0
]
T
[
1
]
Fig
.
11
-
(b)

Texture mapping

T
[
0
]
T
[
1
]
T[
2]
T[
3]
vertex[0] = P[0]texcoor[0] = T[0]
vertex[1] = P[1]texcoor[1] = T[1]

(0,0
)
(1,0
)
X
Fig.12
vertex[2] = P[2] texcoor[2] = T[2]
vertex[3] = P[3] texcoor[3] = T[3]
The corresponding points in omni-directional image
as against lattice points were derived
from Eq1 to Eq3.
Mappingimage
Mapping

image
Fig.12 Calculated points on texture coordinate system
Robot animation using 3D geometric
dlddt
mo
d
e
l
s an
d
sensor
d
a
t
a
The 3D COMET-IV online model is designed to predict the real-time
movement of COMET-IV on the reality environment.
Each sensor data is used for the robot 3D animation movement reference
whichistransmittedfromtargetcomputerunitonCOMET
-
IVto
which

is

transmitted

from

target

computer

unit

on

COMET
IV

to

teleoperation computer via wireless serial MODEM with
data transfer rate 57600bps at 10Hz.
Locomotion
Computer
2.4GHz
Wireless serial Modem
(for sensor data)
Wireless serial Modem
(for sensor data)
Coordinatesystemof
3
Drobot
Coordinate

system

of

3
D

robot
Table.6 and Fig. 13 shows the parameters used for robot 3D animation
in virtual environment and coordinate system of 3D robot respectively.
Z
Roll
Y
Pitch
Yaw
X
Y
Initializationof
3
DAnimation
Initialization

of

3
D

Animation
Fiitiliti
F
or
i
n
iti
a
li
za
ti
on,
received azimuth angle, XY value of GPS, and roll and pitch angle of the body
are set up as default values.
The robot is rotated using azimuth angle ψ including magnetic variation
Δd with Y axis.
Thehomogeneoustransformation
The

homogeneous

transformation

Afterinitializationeachpartisexpressedasfollows
[1] Each leg (Foot -Shank -Thigh -Shoulder)
After

initialization
,
each

part

is

expressed

as

follows
.
(
)
(
)
(
)
ifootifoot
PTransZRotPTransT
_4_1
,
θ

=
(20)
(
)
(
)
(
)
iskisk
PTransZRotPTransT
_3_2
,90


=
θ
(21)
(
)
(
)
(
)
ithith
PTransZRotPTransT
_2_3
,90


=
θ
(22)
(
)
(
)
(
)
i
h
i
h
P
Trans
Y
Rot
P
Trans
T
1
4
,
θ

=

23







i
sh
o
i
sh
o
P
Trans
Y
Rot
P
Trans
T
_
1
_
4
,
θ

23

[
2
]
Robot bod
y
[
]y
(
)()
(
)
YRotXRotZRotT
offset
,,,
5
ϕ
ρ
λ
=
(24)
(
)
offsetoffset
GXGYTransT,0,
6
=
(25)
Obstacleavoidancewalkingtest
Obstacle

avoidance

walking

test
Robot Settin
g
:
Goal
■Controller is PID position control

䍹捬Ct業i

孳[
g
佢獴慣汥⠲O

䍹捬C

瑩浥


孳[
■Omni-directional gait (crab gait)
Obstacle(1)
■Tripod walking
■The number of lattices was set as 16×12
System Setting:
■virtual obstacle object on the screen
Operator
ExperimentalResults
Experimental

Results

Fi
15
WlkitjtidbGPS
Fi
16
Fttjtflkitt(L
1
)
Fi
g.
15
W
a
lki
ng
t
ra
j
ec
t
ory acqu
i
re
d

b
y
GPS

Fi
g.
16

F
oo
t

t
ra
j
ec
t
ory o
f
wa
lki
ng
t
es
t

(L
eg
1
)
Experimental Photos and
I(
1
)
I
mages
(
1
)

110 s
205 s
365 s
110 s
205 s
365 s
Fig.17 Photos of the obstacle avoidance walking test
Fig.18 Images of 3D animation
Experimental Photos and
Images(
2
)
Images(
2
)

(a)
(b)
(c)
(a)’
(b)’
(c)’
Fig.19 Omni-directional images and generated images
Conclusion
Conclusion

A
pplication of omni-directional gait
•Implementation of Teleoperation assistant system
-
Teleoperationassistantsystemisthatappliedwith
Teleoperation

assistant

system

is

that

applied

with

the omni-directional vision sensor and robot 3D animation
was successfully implemented on COMET-IV system.
-Outdoor obstacle avoidance walking experiment indicates
the effectiveness of proposed system.
However the problem when network entered the state of a high load
in the video data transfer that influenced the communications
between teleoperation computer and locomotion computer are still remained.
FutureWorkFutureWork
Future

WorkFuture

Work
•The network of the video data transfer and
communications will be separated.
•We will improve the accuracy of self-localization and
lthftltCOMET
IVidt
app
l
y
th
e
f
orce con
t
ro
l

t
o
COMET
-
IV

i
n or
d
er
t
o
realize steady walking in rough terrain.