GRAMS Opportunities Fall 2013

determinedenchiladaUrban and Civil

Nov 25, 2013 (3 years and 8 months ago)

61 views

GRAMS Opportunities


Fall 2013


Advanced Signal Processing with Application to Nondestructive Evaluation

A multitude of concrete
-
based structures
constitutes our nation’s aging infrastructure
including nuclear power plants.
Unlike most metallic
materials, reinforced concrete is a
nonhomogeneous material comprised of, a composite with low
-
density matrix, a mixture of
cement, sand, aggregate and water, and a high
-
density reinforcement (typically 5% in NPP
containment structures), made up of steel r
ebar or tendons.

Concrete structures in nuclear
generating stations are extremely large. For example, the height of an atmospheric cooling
tower is about 400
-
500 feet; a containment building is nearly 200 feet high. Though this
situation is not unique (
hydro
-
dams, long
-
span bridges), it poses major difficultie
s in terms
of nondestructive evaluation

(NDE) of these important structures
.
Current research
activities involve using multiple NDE techniques and advanced signal processing methods
to analyze this

data to perform volumetric imaging on thick
, reinforced concrete sections,
the location of reinforcement members, and the physical and chemical properties of a
concrete structure. Therefore research opportunities under this activity require skills in
Ma
tlab and advanced signal processing methods.


Radio Frequency Testing

The Technical Testing and Analysis Center at Oak Ridge National Laboratory performs
radiological, environmental, mechanical, and electromagnetic compatibility/interference
characterizati
on testing as well as standards based testing.

The electromagnetic
compatibility/interference testing includes Radio Frequency (RF) susceptibility, RF
emissions, conducted disturbances, magnetic field, electrostatic discharge, and surges and
oscillatory w
aves.

In particular, the RF susceptibility and emissions testing is performed in
either a semi
-
anechoic chamber or a gigahertz transverse electromagnetic (GTEM) wave
cell.

Both chambers operate from the same set of signal generators and amplifiers that
p
erform testing from 26 MHz up

to 18 GHz.

A variety of research projects can stem from
these two chambers.

For instance, one could perform a characterization on the GTEM for
modeling purposes that would be used as an aid in placement of equipment within t
he
chamber.

Another area of interest is an evaluation of materials or techniques that could be
utilized to reduce RF susceptibility or emissions on radiological detection instrumentation.

Therefore research opportunities under this activity require
skill
s in RF testing.


Physical Uncloneable Functions using Field Programmable Gate Arrays

New protocols for user authentication and key distribution are needed for Smart Grid
applications. The Measurement Science and Systems Engineering Division is researchin
g
using physical unclonable functions
(PUFs)
to implement these new protocols.

PUFs are
physical devices whose random response depends on intrinsic randomness of their
production variability.

Current research activities involve

using field programmable gate
array
s

(FPGA
s
)

to design/develop scalable cyber security solutions. Therefore research
opportunities under this activity require skills in ISE (Xilinx design and development tools)
and VHDL/Verilog.