11 . References

designpadAI and Robotics

Dec 1, 2013 (3 years and 9 months ago)

145 views


182

REFERENCES



Adams Henry Brooks, (1907
)
:
U.S. Historian. The education of
Henry Adams, Ch. 16.




Allan, D. W., (1962):
Effects of long term stability and measurement
of short term stability .

Proc camb. Phil. Soc.,
vol. 58
, 671 .




Aristotle, (1984):
The comple
te works of Aristotle. The revised
Oxford Translation ed. Jonathan Barnes,
2 vols
.(Princeton University
Press,).




Arnold, V.I., (1964):

Arnold diffusion
,
Dokl. Acad. Nauk. USSR
vol.
156
,
p.

9
-
12
.




Arnold, V.I., (1982):
Geometrical methods in theory of ordina
ry
differential equations. New York, Springer.




Arnold, V.I.,
and
Avez., A., (1968):
Ergodic problems of classical
mechanics. New York, W. A. Benzamin.




Ashby, W. Ross
., (
1962):

"Principles of the Self
-
organizing system.”
Principles of Self
-
Organization. Fo
erster and Zopf, eds. New York:
Perganmon Press.





Ashby, W. Ross., (1960):

Design for a Brain. 2nd. ed. (New York:
Wiley Publishers).




Aubry, S., (1978):
In soliton and condensed matter physics (Ed. A.R.
Bishop and Schneider, T.) (Springer series in solid

state science no.
8), 264
-
277, New York: Springer.




Aubry, S., (1983):
The twist map, the extended Frenkel Kontorova
model and the Devils staircase.

Physics D ,
Vol7
,p.240
-
248.




Aubry, S. and Le Daerons, P.V., (1983):
The discrete Frenkel
Kontorova model an
d its extensions .
Physica D,
vol.8

p. 381
-
422.




Bak, Per

and P., Tang, C., (1988):
"Self
-
Organized Criticality".
Physics Review A 38
:
364.






Beauge C., Ferraz S.

Mello, Michtchenko, T.A.,

(2002
)
:
Extrasolar Planets in Mean
-
Motion Resonance: Apses Alignment and
Asymmetric Stationary Solutions :
Submitted to ApJ.



183



Belbruno, Edward, Marsden, Brian G., (1997):

Resonance Hopping
in Comets: Astronomical Journal
v.113
, p.1433.




Beletskii, V.V., (196
5):
Dvunogaya Khob’da ,

Nauka Moscow (In
Russian).




Bergé, P., Pomeau, Y., and Vidal,

C
.,

(1984),

Order Within Chaos.
Translated by L. Tuckerman. Paris: J. Wiley & Sons.
.
P.265.




Besser, B. P., Schwingenschuh, K, Jernej, I., Eichelberger, H. U.,
Lichtenegg
er, H. I. M.
,
Fulchignoni, M. Molina
-
Cuberos, G. J.,
Morente, J. A., Porti, J. A., Salinas, A., (2002):
Schumann
Resonance’s as indicators for lightning on the Titan: In: Proceedings
of the First European Workshop on Exo
-
astrobiology, 16
-
19
September 2002,

Graz, Austria. Ed.: Huguette Lacoste. ESA SP
-
518,
Noordwijk, Netherlands: ESA Publications Division, ISBN 92
-
9092
-
828
-
X, 2002, p.341
-
344.




Bhagwad Gita, (2003):
Study Guide, Intellectual Heritage 51, Robert
Guay.




Bhardwaj R., and Bhatnagar, K. B., (1997
):
Chaos in nonlinear
planar oscillation of a satellite in an elliptical orbit under the
influence of Third Body Torque”, Indian J. Pure Appl. Math.,28(3)
391
-
442, March 1997.




Bhardwaj R., and Bhatnagar, K. B., (1998):
Nonlinear planar
oscillation of a sa
tellite in a circular orbit under the influence of
Magnetic Torque (II), Indian J. Pure Appl. Math.,29(2) 139
-
150, Feb.
1998.




Bhardwaj, R. and Kaur P., (2002):

Chaos in Satellite's Motion in an
elliptic orbit under Magnetic torque (I), Submitted for publi
cation in
Indian Journal of Pure and Applied Mathematics, Manuscript no.
PB/14900JM/30.10.02




Bhardwaj, R. and Kaur P., (2003):

Chaos using Matlab in the
motion of a satellite under the influence of magnetic torque,
“Proceeding of “Inter National Congress
of Industrial and Applied
Mathematics held at Sydney (Australia), July, 7
-
11, 2003.Published
by Marceal Decker, U.S.A.




Bhardwaj, R. and Tuli, R., (2002):

Melnikov’s function in
Rotational Motion of a satellite under a third body torque in an
elliptical or
bit, Proceedings of “Joint 9
th

National Conference of the
Vigyan Parishad of India on Applied and Industrial Mathematics and

184

5
th

Annual Conference of Indian society of information Theory and
Application”, Netaji Subhash Institute of Technology, New Delhi,
Feb., by Amanaya Publishers.






Bhardwaj, R. and Tuli R., (2003a):
Chaos in attitude motion of a
satellite under a third body torque in an elliptic orbit (II), submitted
for publication in Indian Journal of Pure and applied Mathematics,
manuscript, no. PB/
15083JM/26.02.03
.




Bhardwaj, R. and Tuli R., (2000 b):

Nonlinear planar oscillation of
a satellite leading to chaos under the influence of third body torque.
Proceedings of “Inter National Congress of Industrial and Applied
Mathematics held at Sydney (Aust
ralia), July, 7
-
11,. Published by
Marceal Decker, U.S.A..




Bhardwaj, R. and Tuli, R., (2000c):

Chaos in attitude motion of a
satellite under a third body torque in an elliptic orbit (I), Indian
Journal of Pure and applied Mathematics, 34(1), 277

289, Feb20
03 .




Bhatnagar, K. B., and Bhardwaj R., (1994):
Rotational Motion of a
Satellite in an Elliptical Orbit under the influence of third body
torque (I), Bull. Astr. Soc. India 22, , 359
-
367.




Bhatnagar, K. B., and Bhardwaj R., (1995a):
Non linear Planar
Osci
llation of a Satellite in a circular Orbit under the influence of
Magnetic Torque (I), Indian J. Pure Appl. Math., 26(12), 1225
-
1240,
Dec.1995 .




Bhatnagar, K. B., and Bhardwaj R., (1995b):
Resonance on
nonlinear planar oscillation of a satellite under the

influence of
Magnetic torque: Proceedings of workshop on Space Dynamics and
Celestial Mechanics, Published by Deptt. Of Mathematics,
Muzaffarpur, Bihar, 57
-
63
.




Bhatnagar, K.B., Khan, Ayub, Saha, L.M., (1994a):
Non
-
linear
planar oscillation of a satellite

in elliptical orbit under the influence
of solar radiation pressure, (1): Bulletin of Astronomical Society of
India, (ISSN 0304
-
9523),
vol.22,

no.1, p.47
-
58.




Bhatnagar, K.B. Khan, Ayub. Saha, L.M., (1994b):
Non
-
linear
planar oscillation of a satellite in

elliptical orbit under the influence
of solar radiation pressure, (2): Bulletin of Astronomical Society of
India, (ISSN 0304
-
9523),
vol.22,
no.1, p.275
-
290.



185



Binzel, R. P., Green, J. R., Opal, C. B. (1986):
Chaotic rotation of
Hyperion ?: Nature (ISSN 002
8
-
0836),
vol. 320
, April 10, , p. 511.




Birkhoff, G. D., (1920):
Surface transformationsand their dynamical
applications.

Acta Math.,
Vol.

43
, 1
-
119.




Birkhoff, G. D., (1927):
Dynamical Systems, A.M.S. Public
Providence.




Birkhoff, G. D., (1932):
Sur Quelques

Courbes termees

remarquables.

Bull. Soc. Math. Fr.
,
vol.

60
, 1
-
26.




Bogoliubov, N. N., and Mitropolsky, Y. A., (1961):

Asymptotic
methods in the theory of non
-
linear oscillations.

Hindustan Publishing
Corporation, Delhi
-
110006.




Bolotin, S.V., (1986):
Con
dition for the Liouville non
-
integrability of
Hamiltonian systems .
Vestnik Moscov. Univ. Ser. Mat. Mech.,
No.3
,
58
-
64.




Boyer C.B. (1968):

The age of Euler, in A History of Mathematics
.




Brahe Tycho,

(1913
-
1929)
,

Tychonis Brahe Dani Opera Omnia, ed.
J.L.E
. Dreyer (1972): 15 volumes (Copenhagen 1913
-
1929: reprinted
Amsterdam: Swets and Zeitlinger,).




Brasser. R., Lehto, H. J., (2002):

The role of secular Resonance’s on
Trojans of the terrestrial planets: Monthly Notices of the Royal
Astronomical Society,
v
ol. 334,

Issue 1, pp. 241
-
247.




Breiter, S. Lawomir, (2001):

On the coupling of lunisolar
Resonance’s for Earth satellite orbits: Celestial Mechanics and
Dynamical Astronomy,
v. 80,
Issue 1, p.1
-
20.




Brown Brian, (2000):
Research 201: A Basic introduction.




Brown, E. W., and Shook, C. A., (1964):
Planetary Theory. Dover
Pub. Inc. New York.




Bruce, G. Bills, (2002):

Tidal dissipation on Mercury.
Lunar and
Planetary Sciences,
vol.XXXIII

.




Caldwell, Richard S., (1987):
Hesoid's Theogony, Focus information
grou
p, Inc.
.



186



Callegari Jr. N., Michtchenko T.A., Ferraz
-
Mello S., (2002):

Dynamics of two planets in the 2:1 and 3:2 mean motion Resonance’s:
DPS 34
th

meeting October.




Cambel, A. B.,

(
1993):

Applied Chaos Theory: A Paradigm for
Complexity. Academic Press, In
c. San Diego, CA. P. 15.






Cambel. P.,

Zeldovich, Y. A., Ruzmaikin, A. A
. and
Sokoloff, D.D
.,

(1990):

The Almighty Chance. Singapore: World Scientific.






Cantor G., (1882):

Grundlagen Einer Hlgemeinen
Mannichjaltigkeitslehre, Mathematische , Annalen , 2
1 , p
-
545
-
591 .





Cantor, G., (1883):

Uber unendliche, lineare
punktmannigfaltigkeiten V, mathematische Annalen 21 (1883) 545
-
591.




Carruba, V., Burns, J. A., Nicholson, P. D., Cuk, M., Jacobson, R.
A., (2002):

S2000S5 and S/2000S6: Saturnian moons trapped

in the
Kozai resonance: American Astronomical Society, DPS meeting #34,
#35.01




Cayley, A., (1859):
Tables of the Developments of Functions in the
Theory of Elliptic Motion, Mem. Roy. Astron. Soc. 29, 191
-
306.




Chakrabarti, Sandip K., Bhattacharyya, Abhi
jit., (2001):

Constraints on the C ring parameters of Saturn at the Titan

1:0
resonance: Monthly Notices of the Royal Astronomical society,
vol.
326
, Issue 2, pp. L23
-
L26.




Champenois, Sylvain, Vienne, Alain, (1999):

The Role of Secondary
Resonance’s in t
he Evolution of the Mimas
-
Tethys System: Icarus,
Volume 140,
Issue Icarus, pp.106
-
121.




Chang Wei
-
wen,

(1998):

Chaos Theory in Organizations, University
of Wisconsin
-
Modison.




Cheever John, (1978):
The stories of John Cheever, Knopf, New
York, ISBN 0
-
394
-
5
00087
-
3.




Chernin, A.D., Lehto, H.J., Valtonen, M.J., Heinamaki, P., (2000):

Three
-
Body Chaos: The Chaotic Universe, Proceedings of the Second
ICRA Network Workshop, Advanced Series in Astrophysics and
Cosmology,
vol.10,
Edited by V.G. Gurzadyan and R. Ruf
fini, World
Scientific, p.559.



187



Cherousko, F.L., (1969):
Applied Mathematics and Mechanics,
Vol.27,
No. 3, 474
-
483.




Chiang E. I.
,
Fischer D
. and
Thommes E., (2002):
Excitation of
orbital Eccentricities of Extrasolar Planets by repeated Resonance
Crossings
, the Astrophysical Journal ,
vol
.
564
,Issue 2 , pp. L105


L109 .




Chirikov, B.V., (1969):
Research concerning the theory of non
-
linear
resonance and stochasticity, Nuclear Physics section of the Siberian
Academy of Sciences, Report 267. (In Russian).




Chi
rikov, B.V., (1979):
Physics Reports, 52, 263
-
379.




Chirikov, B.V., Vecheslavov, V.V., (1989):
Chaotic dynamics of
Comet Halley: Astronomy and Astrophysics (ISSN 0004
-
6361),
vol.221,
no.1, pp.146
-
154.




Christie Anthony, (1968):
Chinese Mythology, publishe
d by
Hamlyn, p.46ff.




Cohen, C.J., Hubbard, E.C., (1965):

Liberation of the close
approaches of Pluto to Neptune: Astronomical Journal,
Vol.70
, p.10.




Collins, G.C., Head, J.W., Pappalardo, R.T
.,

(2000):

Chaos
Formation on Europa: Plausibility of the Mel
t
-
Through and Solid
-
State Diapir Models., 31
st

Annual Lunar and Planetary Science
Conference, March 13
-
17, Houston, Texas, abstract no. 1033.




Collins, G.C., Head, J.W.
,
Pappalardo, R.T., Spaun, N.A., (1999):
Evaluating Models for the Formation of Chaotic
Terrain on Europa:
30
th

Annual Lunar and Planetary Science Conference, March 15
-
29,
Houston, TX, abstract no. 1434.




Cooper Leon N., (1968):
An introduction to the meaning and
structure of physics by, Harper and Row.




Copernicus Nicolus,

(1543) :
De Revolu
tionibus Orbium Coelestium.




Cotterell Arthur, (1989):
The Illustrated Encyclopedia of Myths and
Legends, published by Collins Australia (Marshall Editions, London).




Cramer, F., (1993):
CHAOS AND ORDER. Translated by D. I.
Loewus. New York: VCH Publisher
s. pp.6
-
7.




188



Cuk, M., Burns, J. A.,

Carruba, V., Nicholson, P.D., Jacobson, R.
A
.,

(2002):

New Secular Resonance Involving the Irregular Satellite
of Saturn.: American Astronomical Society, DDA meeting #33,
#14.02.




Danielou Alain, (1991):
The Myths and go
ds of India: Classic work
on Hindu polytheism from the Princeton Bollingen Series.




Dermott, Malhotra, Murray, (1988):

Dynamics of the Uranian and
Saturnian satellite systems


A chaotic route to melting Miranda?:
Icarus (ISSN 0019

1035),
vol. 76,
Nov. 198
8, p.295

33. SERC

supported research.





Diacu, Florin N
.,

(1991):

Tame and chaotic behaviour in the planar
isosceles 3
-
body problem: Celestial Mechanics and Dynamical
Astronomy (ISSN 0923
-
2958),
vol.50,

no.4, pp313
-
324.




Donahue Manus J. III, (1997)
, An
introduction to chaos theory and
fractal geometry, copyright Fall, all rights reserved.




Duhem, (1906):
Etudes Sur Leonard de Vinci (
3 volumes
1906
-
1913)
and Le Systeme due monde (
10 volumes
1913
-
1959).




Duhem, P., (1906):
La theorie Physique sonobject , s
a structure,
Paris, Chevalier et Riviere (tr. The Aim and Structure of Physical
Theory, 1954)




Earman John, (1986):

Quote by Kellert, 69, A Primer on
Determinism, Dordrecht: D. Reidel.




Eberhart, J, Wisdom, J., Peale, S. J., Mignard, E., Pang, K. D.,
Rhoad
s, J. W., (1983):

Hyperion
-
a Moon in Chaos: SCIENCE NEWS
V. 124
, P. 59.




Emelyanenko, V.V
.,

(1992):

Chaotic Motion of Nearly Parabolic
Comets Perturbed by the Planets: SOVIET ASTR. LETT.
(TR.PISMA)
V.18,
NO. 3/MAY, P.210.




Euler, L., (1952):
De Curvis Elas
tics, Methodues, Ineveniendi Linear
Curves Maxime Minimive proprietate Gaudentes, Additamentum I
(1744). In Opera Ominia I,
Vol. 24,
231
-
297, Zurich.




Evehart, E., (1979):
Chaotic orbits in solar system, In: Asteroids (A
8o
-
24551 08
-
91) Tucson,Ariz., Unive
rsity of Arizona Press, 1979, p.
283
-
288.


189





Feigenbaum, M. J
., (1979):
"Quantitative universality for a class of
nonlinear transformation," J.STATIST..PHYS. 21. Pp. 25
-
52.






Fe
rraz and Dvorak, (1987):

Chaos and secular variations of planar
orbits in 2:1 resonance with Dione: Astronomy and Astrophysics
(ISSN 0004

6361),
vol. 179
, no. 1

2, , p. 304

310.




Ferraz
-
Mello, S., Michtchenko, T.A
.,

(1998):

Roig., F.: High
-
eccentricity no
n
-
secular Three
-
Period Resonance’s inside Two
-
period
Resonance’s (Kirkwood Gaps).: American Astronomical Society, DPS
meeting #30, #10.01: Bulletin of the American Astronomical Society,
Vol.30,

p.1028.




Fischer, (1990):
The planetary orbits


A chaotic sys
tem?: Sterne und
Weltraum (ISSN 0039

1263),
vol.29
, p.28

31. In German.




Franklin, Fred A., Soper, Paul R
.,

(2003):

Some Effects of Mean
Motion Resonance passage on the Relative Migration of Jupiter and
Saturn. : The Astronomical Journal,
Volume 125
, Issue

5, pp. 2678
-
2691.




Freeman, W.J. & Yao, Y., (1990):
Model of Biological Pattern
Recognition with Spatially Chaotic Dynamics Neural Networks,
vol.
3
,
153
-
170.




Freeman, W.J., (1991):
The Physiology of Perception Scientific
American,
vol.
264/2
, 78
-
85.




Freem
an, W.J., Yao, Y., Burke, B., & Yang, Q., (1991):

Pattern
Recognition by a Distributed Neural Network: An Industrial
Application Neural Networks, 4, 103
-
121.




Froeschle, C., (1970) :
O
n the isolating integrals in systems with
three degrees of freedom .
Astr
on. Astrophys.
vol.

9
, 15
-
23.




Froeschle, (1987):

Chaotic behaviour of resonant motion in the solar
system: IN : European Regional Astronomy Meeting of the IAU, 10
th
,
Prague, Czechoslkovakia, Aug. 24

29, 1987, Proceedings.
Volume 3
(A89

32558 13

90). Ondrej
ov, Czechoslovakia, Czechoslovak
Academy of Sciences, p. 113

119.




Fuse, Tetsuharu, (2002):

Planetary Perturbations on the 2:3 Mean
Motion resonance with Neptune: Publications of the Astronomical
Society of Japan,
Vol.54,
No.3, pp.493
-
499.



190



Gabryszewski,
(2002):
2060 Chiron
-
Chaotic Dynamical Evolution
and its Implications: Acta Astronomica,
v.52,
pp.305
-
315.




Gabryszewski, R., Wlodarczyk, I., (2002):

Dynamics of small body
orbits among giant planets


mean motion Resonance’s: In:
proceedings of Asteroids,
comets, Meteors
-
ACM 2002. International
conference, 29 July


2 August 2002, Berlin, Germany. Ed. Barbara
Warmbein. ESA SP
-
500. Noordwijk, Netherlands: ESA Publications
Division, ISBN 92
-
9092
-
810
-
7, p359
-
362.




Galileo

G., (1632):

Dialogues Concerning the
Two Chief World
Systems.




Galileo

G.,

(1638):

Dialogues Concerning Two New Sciences.




Gallardo, T., Ferraz
-
Mello, S., (1998):

Dynamics in the exterior 2:3
resonance with Neptune: Planetary and Space Science,
Volume 46,
Issue 8, p.945
-
965.




Gerasimov, A.,
Mushailov, B. R., Kaloshim, A. A., (2003):

Discovery of a New class of Predicted Resonance Objects beyond
Jupiter: Solar System Research,
v. 37,
Issue 1, p. 51
-
55.




Gleick James, (1988):
“CHAOS: Making a New Science,”: Viking
Penguin Inc, NY.




Goldstar Co
., (1993):

First Pacific Conference on Computer
Graphics and Applications (Pacific Graphics 93) held in Seoul, Korea,
30 Aug
-
2 Sept.1993.(PG’93, was organized by Korean Information
Science Society (KISS) and Computer Graphics Society (CGS). This
Chairman o
f this Conference was Prof. Ha
-
Jine Kimn, Dean of
college of Science, Ageu Univ., S., Wonchan
-
dong Paldal
-
gu, Suwan,
441
-
749, Korea 1993.




Goldberger, A. L., and West, B. J., (1957):
In chaos in biological
systems (ed.) Degn, H., Holden, E. V., and Olsen, L
. F., New York,
Plenum Press.




Goldreich, P. Peale, S.J., (1967):

Spin orbit coupling in the solar
system 1. The resonant rotation of Venus: Astron. J. 72: 662.




Goldreich, P., (1963):

On the eccentricity of planets orbits in Solar
system.


Mon. Not. R. So
c.
,
vol.

1
26
,
p.

256.




Goldreich, P., (1965):
Inclination of satellites orbit about anoglate
precessing planet.

Astr. J.,
vol.

70
,
p.
5.


191




Goldreich, P., (1966):

Near commensurate satellite orbits in solar
system.


Ibid, 286, Mon. Not. R. Astr. Soc.,
vol.1
30
,
p.

159.




Goldreich, Peale., (1966):
Final spin states of planets and satellites ,
Astro. J.,
vol.

71
,
p.1
.




Gomes, R.S., (1997):
Orbital Evolution in Resonance Lock.I. The
Restricted 3
-
Body Problem: Astronomical Journal,
v.114
, p.2166.




Goward, F.K., (1953):
In Lectures on the Theory and Design of an
alternating Gradient Synchroton, 19, Geneva, CERN.




Greenberg, R. Hoppa, G.V. Tufts, B. R. Geissler, P. Riley, J.,
(1999a):

Chaos, Cracks and Ridges: Surface Effects of Thin Ice over
Liquid Water on Europa: 30
th

Annual Lunar and Planetary Science
Conference, March 15
-
29, Houston, TX, abstract no. 1421.




Greenberg, R. Tufts, B.R. Hoppa, G.V. Geissler, P. Riley, J.,
(1999b):
Cracks, ridges, and chaos: Europa un bel posto per vivere:
American Astronomical Society, DPS

meeting #31, #66.07.




Greenberg, R. Riley, J., Hoppa, G.V. Tuffs, B.R. Geissler, P.,
(2000):

Distribution of Chaotic Terrain on Europa, 31
st

Annual Lunar
and Planetary Science Conference, March 13
-
17, Houston, Texas,
abstract no. 1936.




Greenberg, R., Ho
ppa, G. V., Tufts, B.R., Geissler, P., Riley, J.,
Kadel, S., (1999):
Chaos on Europa: Icarus,
Volume 141
, Issue
Icarus, pp.263
-
286.




Guillens, S. A., Vieira Martins, Roberto Gomes, Rodney S.,
(2002):
A Global Study of the 3:1 Resonance Neighborhood: A
Sea
rch for Unstable Asteroids: The Astronomical Journal,
Vol. 124,
Issue 4, pp. 2322
-
2331.




Hadamard J., (1910):
Lecons sur le calcul des variations professes
par Paris :A.Hermann et fils.




Hadamard J., (1945):
The Psychology of Invention in the
Mathematical

Field, New York, Dover.




Hadjidemetriou, J.D., (1982):
On the relation between resonance
and instability in planetary system Celestial Mechanics, 27.



192



Hadjidemetriou, J.D., (1993):
Asteroid motion near the 3:1
resonance, Celest. Mech. Dynam. Astronom., 56
, 563
-
599.




Hadjidemetriou, J.D., (1994):
Mechanisms of generation of chaos in
the solar system. Proc. of the Cortina 1993 Meeting from Newton to
chaos, A.E. Roy (Ed.).




Hadjidemetriou, John D., (2002):

Resonant Periodic Motion and the
Stability of Extraso
lar Planetary Systems , Celestial Mechanics and
Dynamical Astronomy,
v. 83,
Issue 1, p.141
-
154.




Haghighipour N., (2000):
Resonance Lock and Planetary Dynamics:
Thesis (PhD). University of Missouri
-
Columbia, source DAI
-
B60/09,
p. 4657, 121 pages




Haghighip
our N., (2002):

Resonance’s and Stability of Restricted
Three
-
Body System: DPS 34
th

meeting.




Hamilton, W.R., (1834):
On a General Method in Dynamics: by
which the Study of the Motions of all free Systems of attracting or
repelling Points is reduced to the

Search and Differentiation of one
central Relation, or characteristic Function: Philosophical
Transactions of the Royal Society, part II for, pp. 247
-
308.




Hamilton W.R., (1835):,
Second Essay on a General Method in
Dynamics, Philosophical Transactions of

the Royal Society, part I for,
pp. 95
-
144.




Hart George, (1990):
Entry for Nun, Egyptian Myths, published by
British Museum Publications.




Head, J.W., III Pappalardo, R.T. Spaun, N.A. Prockter, L.M.
Collins, G.C., (1999):
Chaos Terrain on Europa: Characte
rization
from Galileo E12 Very High
-
Resolution Images of Conamara Chaos:
1 Polygons: 30
t h

Annual Lunar and Planetary Science Conference,
March 15
-
29, Houston, TX, abstract no. 1285.




Heinamaki, Pekka, Lehto, Harry J., Voltonen, Mauri J., Chernin,
Arthur D.
, (1999):
Chaos in three
-
body dynamics: Kolmogorov
-
Sinai
entropy: Monthly Notices of the Royal Astronomical Society,
Volume
310
, Issue 3, pp.811
-
822.




Henon, M. and Heiles, (1964):
The applicability of the third integral
of motion , some numerical experime
nts . Astron. J. 69 , 73
-
79 .



193



Hine, M.G.N., (1953):
In lectures on the theory and design of an
alternating gradient proton synchrotron, 69, Geneva, CERN.




Holman and Murray, (1996):

Chaos in High
-
Order Mean
Resonance’s in the Outer Asteroid Belt: Astronom
ical Journal
v.112
,
p.1278




Holman, Matthew J., Wiegert, Paul A., (1999):
Long
-
Term Stability
of Planets in Binary Systems: The Astronomical Journal,
Volume
117,
Issue 1, pp.621
-
628.




Ip, W.H., Fernandez, J.A., (1997):
On dynamical scattering of
Kuiper Be
lt Objects in 2:3 resonance with Neptune into short
-
period
comets: Astronomy and Astrophysics,
v.324,
p. 778
-
784.




Ipatov, S.I., Henrard, J., (1997):
Evolution of orbits at the 2:3
resonance with Neptune: Conference Paper, 28
th

Annual Lunar and
Planetary
Science Conference, p.621.




Ipatov, S.I., Henrard, J., (2000):

Evolution of orbits of Trans
-
Neptunian Bodies at the 2:3 Resonance with Neptune:
Astronomicheskii Vestnik,
vol. 34,
Issue 1, p.61.




Julia, G., (1918):
Sur1’iteration des functions rationnelles
, Journal
de Math. Pure et Appl.8 (1918) 47
-
245.




Karch and Dvorak, (1988):
New results on the possible chaotic
motion of Enceladus: (BMFWF, Oesterreichische
Forschungsgemeinschaft, Steiermaerkischer Wissenschafts


und
Forschungslandesfonds, et al., Alexan
der von Humboldt Colloquium
on Celestial Mechanics: Long Term Evolution of Planetary Systems,
Ramsau, Austria, Mar. 14

18, 1988) Celestial Mechanics (ISSN 008

8714),
vol. 43,
no. 1

4,
1987

ㄹ㠸Ⱐ
p.361

369.




Kauffman, Stuart A
., (1993):
The Origins of Order: Self
-
Organization and Selection in Evolution. (New York: Oxford
University Press.).






Kehoe, T. J. J., Dermott, S. F., Grogan, K., (2002):
Evolution of
asterodial dust particles through resonance

: In Memorie della
societa’ Astronomica Italiana,
Vol. 73,
no. 3, p. 684.




Kellert Stephen H
.,

(1993):

In the Wake of Chaos The University of
Chicago Press
.



194



Kerr, R. A., (1985):
The Rotations of Saturn’s Hyperion Looks
Chaotic: Science
V. 230
, No. 4729
/Nov 29, P.1026
.




Kirkwood, Daniel, (1867):
Meteoric astronomy: a treatise on
shooting
-
stars, fireballs and aerolites: Philadelphia, J.B. Lippincott &
co.




Kirkwood, Daniel, (1867):
The Meteors of November 13
-
14
th

, 1867,
observed at Bloomington, Indiana:

Monthly Notices of the Royal
Astronomical Society,
Vol. 28,
p.33






Klavetter, J.J., (1988):
The Observed Chaotic Rotation of Hyperion:
Bulletin of the American Astronomical Society,
Vol.20
, p.1072.




Klavetter, James Jay, (1989):

The Observed Chaotic Rot
ation of
Hyperion: Thesis (SC.D)
-
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY, Source: American Doctoral Dissertations, Source
code: X1989.




Knezevic, Z., Milani, A., Farinella, P., (1997):

The dangerous
border of the 5:2 mean motion resonance: Planetary and Spac
e
Science,
v.45,
p.1581
-
1585.




Koch, H. von, (1904):
Sur une courbe continue sans tangente,
obtenue par une construction gemetrique elementaire, Aqrkiv for
Matematik 1(1904) 681
-
704.




Kolmogrov, A. N., (1957):
Proceedings of the 7
th

International
Congress
of Mathematicians, 1954, Ed. J. C. H. Gerretson and J. de
Grovt,
Vol., I
, 315, (In Russian) (Trans R. Abraham Foundation of
Mechanics, Appendix D.,) New York: W. A. Benjamin (1967).




Konacki, M., Maciejewski A. J., and Wolszczan A., (1998):
Resonance in PS
R B1257+12 Planetary System
.
ApJ ,
vol.513
,471.




Koon et al., (2000):

Heteroclinic connections between periodic orbits
and resonance transitions in Celestial Mechanics.

Chaos

vol.

10
, 427.




Kotoulas, T. A., Hadjidemetriou, J. D., (2002):
Resonant Periodic

Orbits of Trans
-
Neptunian Objects: Earth, Moon, and Planets,
v.91,
Issue 2, p. 63
-
93
.




Lagrange Joseph Louis, (1775):

Lagrange's Oeuvres,
vol 4,
pp151
-
251.


195





Lanford, O. E
., (1982):
"A computer
-
a
ssisted proof of the
Feigenbaum conjectures". BULL .AMER. MATH. SOC.6
.
Pp.427
-
34.






Langton Chris, (1986):
"Studying Artificial Life with Cellular
Automata" in Physica. 22D. Pp. 120
-
49.






Laplace, Pierre Simon De, (1773):
“Recherches, sur l’integration d
es
equations differentielles aux differences finies, and sur leur usage
dans la theorie des hazards”. Savants etranges, 1773 (1776) p. 37
-
162.
Oeuvres 8, p.69
-
197. However, a note in the margin of the journal
states that the paper was read.




Laplace, (1825
):
Traite de Mecanique Celeste,
volume V
(Bachelier,
Paris). Laplace’s work is contained in book XVI, Chapter 4.
Reprinted in Oeuvres de Laplace, Tome Cinquieme (Gauthier/Villars
Paris, 1882) p.p. 445
-
452.




Laskar J., (1989):
A numerical experiment on the
chaotic behaviour
of the Solar system, nature (ISSN 0028
-
0836),
vol. 338,
p237
-

238.




Laskar, (1990):
The chaotic motion of the solar system

A numerical
estimate of the size of the chaotic zones: Icarus (ISSN 0019

1035),
vol. 88,
Dec. 1990, p.266

291.




La
skar, (1995):
Large
-
scale chaos in the solar system: Astronomy
and Astrophysics (ISSN 0004
-
6361),
vol.287,
no.1, p. L9
-
L12.




Laszlo, Ervin
, (1991):
The Age of Bifurcation: Understanding the
Changing World
. Philadelphia, Pa: Gordon and Breach Science
Publishers. P. 4.




Lecar et al, (2001):
Chaos in the Solar System: Annual Review of
Astronomy and Astrophysics,
Vol. 39
, p.581
-
631
.




Lecar, M., Franklin F., (1997):
The Solar Nebula, Secular
Resonance’s, Gas D
rag, and the Asteroid Belt: Icarus,
Volume 129,
Issue 1, pp. 134
-
146.




Lee Man Hoi and Peale S. J., (2001):
Dynamics and Origin of the
2:1 Orbital Resonance of the GJ 876 Planets: Department of Physics,
University of California, Santa Barbara, CA 93106
.




Lee, M. H., Peale, S. J., (2003):
Diversity and Origin of 2:1 Orbital
Resonance’s in Extrasolar Planetary Systems: American Astronomical
society, DDA meeting #34.


196




Li, T.Y., and Yorke, J.A., (1975):
Period three implies chaos. Am.
Math. Month.
,
vol.

82
, 98
5
-
992.




Lichtenberg, A.J., and Libermann, (1983):
Regular and stochastic
motion (Applied Mathematical Sciences 38), New York : Springer.




Liou, J.C., Zook, H. A., (1997):
Evolution of Interplanetary Dust
Particles in Mean Motion Resonance’s with Planets: I
carus, Volume
128, Issue 2, pp. 354
-
367.




Lorenz, E. N., (1963):
Deterministic Nonperiodic Flow, Journal of
the Atmospheric Sciences:
Vol. 2
, No. 20, pp. 130
-
148
.




Lotko, W., Streltsov, A.V., (1997):
Magnetospheric resonance,
Auroral structure, and multip
oint measurements: Adv. Space Res.
Vol.20,
No. 4
-
5, pp.1067
-
1073.




Maciejewski, A., (1992):
Instability, chaos and predictability in
Celestial Mechanics and Stellar Dynamics (Ed., Bhatnagar, K.B.),
Nova Science Publishers Inc. New York, 23
-
38.




Maciejewsk
i, Andrzej J., (1995):
Non
-
Integrability of the Planar
Oscillations of a Satellite: Acta Astronomica,
v.45
, pp.327
-
344
.




Malhotra, R, Dermott, S. E.: Murray, C. D., (1987):
A chaotic
Route to Melting Miranda: Bulletin of the American Astronomical
Society,
Vol. 19
, p.820.




Mallove, Eugene F., (1989):
The solar system in chaos: Planetary
Report (ISSN 0736
-
3680),
vol.9
, May
-
June, p.4
-
7.




Mandelbrot, B. B., (1967):
How long is the coastline of Britain ?
Statistical self similarity and fractional dimension. Sci
ence 156:636
-
638.




Mandelbrot, B.B.,

(1975):
Stochastic models for the Earth’s relief,
the shape and the fractal dimension of the coastlines, and the number
are rule for islands. Proc. Nat. Acad. Sci. U.S.A. 72: 3825
-
3828.




Mandelbort, B. B., (1980):
Fract
al aspects of the iteration of
z


z(1
-
z) for complex

and z, Annals NY Acad. Sciences 357
(1980) 249
-
259.




Mandelbrot, B. B., (1982):
The fractal geometry of nature. Freeman,
San Franscisco.


197




Mandelbrot, B.

B., (1985a):
On the dynamics of iterated maps V:
conjecture that the boundary of the M
-
set has fractal dimension equal
to 2, in:Chaos, fractals and Dynamics, Fischer and Smith (eds.),
Marcel Dekker, 1985.




Mandelbrot, B. B., (1985b):
Self
-
affine fractals and fractal
dimension. Physica Scripta 32 (1985) 2
57
-
260.




Mandelbrot, B.

B., (1988):

An introduction to multifractal
distribution functions, in: Fluctuations and pattern Formation, H. F.
Stanley and N. Ostrowsky (eds), Kluwe Academic, Dordrecht, 1988.




Marcialis, R, Greenberg, R., (1987):
Warming of Mira
nda During
Chaotic Rotation: Bulletin of the American Astronomical Society,
Vol. 19,
p.821.




Marcy, Geoffrey W., Butler, R. P., Fischer, D., Vogt, Steven S.,
Lissauer, Jack J., Rivera, Eugenio J., (2001):
A Pair of Resonant
Planets Orbiting GJ 876.: The As
trophysical Journal,
Volume 556,
Issue 1, pp.296
-
301.




Marjanov, M., (1997):
Gravitational Resonance’s: Bulletin
Astronomique de Belgrade No. 156, page 9.




Markeev, A. P., Bardin, B. S.,

(2003):
On the Stability of Planar
Oscillations and Rotations of a S
atellite in a Circular Orbit: Celestial
Mechanics and Dynamical Astronomy,
v.85,
Issue 1, p.51
-
66.




Markellos, V. V., (1974):
Numerical Investigation of the Planar
Restricted three
-
body problem. II. Regions of Stability for retrograde
satellite of Jupiter

as determined by periodic orbits of the second
generation: Celestial Mechanics,
Vol. 10,
p.87.




Marsden, Brain G., (1999):
The Kozai Resonance in the Motions of
Asteroids and Other Bodies: Astrophysical Journal, Centennial Issue,
Vol. 525C
, p.934.




Marza
ri, F.,

Weidenschilling, S.J., (1998):
Mean Motion
Resonance’s and Gas Drag in the Early Asteroid Belt: 29
th

Annual
Lunar and Planetary Science Conference, March 16
-
20, Houston, TX,
abstract no. 1718.




Marzari, F., Vanzani, V., Tomasella, L., (2001):
On T
he Origin Of
The 3:2 Almost Resonance between the Two Earth Like Planets
Orbiting Pulsar PSR 1257+12: 32
nd

Annual Lunar and Planetary

198

Science conference, March 12
-
16 2001, Houston, Texas, abstract no.
1120.




Marzari, F., Weidenschillin, S., (2002):
Mean M
otion Resonance’s,
Gas Drag and Supersonic Planetesimals in the Solar Nebula: Celestial
Mechanics and Dynamical Astronomy,
v. 82,
Issue 3, p. 225
-
242
.




Mather, J.N., (1982):
Ergodic Theory Dynam. Syst.
,
vol.

2
, 397.




Mather, J.N., (1984):
Ergodic Theory Dyn
am. Syst.
,
vol.

4
, 301.




May, R. M., (1974):

Biological populations with non
-
over lapping
generations: Stable points, stable cycles and chaos.sci. Wash.186,
645.




May, R. M., (1976):
Simple mathematical models with very
complicated dynamics. Nature London,
261, 459
-
467.




May, R. M., (1987):
Chaos and the dynamics of biological
population, proc. R. Soc. Lond. A413, 27
-
44.




May, R. M., (1989):
Dynamical chaos, Proc. Roy. Soc. London,
vol.
413,
27
-
44, Ed. M.V. Berry, I. C. Percival and N. O.Weiss.




May, R. M. a
nd Anderson R. M., G. F., (1983):
Apidemiology and
genetics in the co evolution of parasites and hosts, proc. R. Soc.
Lond. B219 ,281

313 .




May, R. M., and Oster, G. F., (1976):
Bifurcations and Dynamic
complexity in simple ecological models, Am. nat 110
, 573
-
599.




McKinnon, W.B., Schenk, P.M., (2000):
Chaos on Io: A Model for
Formation of Mountain Blocks by Crustal Heating, Melting and
Tilting: 31
st

Annual Lunar and Planetary Science Conference, March
13
-
17, Houston, Texas, abstract no. 2079.




Melnikov,
V.K., (1963):
On the stability of the Centre for time
periodic perturbations. Trusty Moskov, Mat. Obshch, 12, 3
-
52
(Translation in Trans. Moscow Math Soc., 1988, 12, 1
-
57).




Michel, Patrick, (1997a):
Overlapping of secular Resonance’s in a
Venus horseshoe
orbit: Astronomy and Astrophysics,
v.328,
p.L5
-
L8
.




Michel. P., (1997b):
Secular Resonance’s in the Inner Solar System.:
American Astronomical Society, DPS meeting #29, #07.02: Bulletin
of the American Astronomical Society,
Vol
.
29
, p.971.


199




Michtchenko, T.
A., Ferraz
-
Mello, S., (2001a):
Modeling the 5:2
Mean
-
Motion Resonance in the Jupiter
-
Saturn Planetary System :
Icarus,
Volume 149,
Issue 2, pp. 357
-
374
.




Michtchenko, T. A., Ferraz
-
Mello, S., (2001b):
Resonant Structure
of the Outer Solar System in the Nei
ghborhood of the Planets: The
Astronomical Journal,
vol. 122,
Issue 1 pp. 474
-
481.




Milani and Nobili, (1992):
An example of stable chaos in the Solar
System: Nature (ISSN 0028

0836),
vol. 357,

no. 6379, June 18, 1992,
p.569

571. Research supported by ESA

and NATO.




Milani, A., (1993):
Asteroid 522 Helga is Chaotic and Stable:
Celestial mechanics,
vol. 56
, p.323
.





Millay, Edna St. Vincent
, (
1954):

in Mine the Harvest, A collection
of New Poems.




Miller Henry, (1936):
Black Spring, Paris : Obelisk Press
.




Milton John, (1667):
Paradise Lost.




Moons, M., Morbidelli, A., Migliorini, F., (1998):
Dynamical
Structure of the 2/1 Commensurability with Jupiter and the Origin of
the Resonant Asteroids: Icarus,
Volume 135,
Issue 2, pp.458
-
568.




Morbidelli, (2000):
A
STEROIDS: Living in the Kingdom of Chaos:
American Astronomical Society, DPS Meeting #32, #05.01: Bulletin
of the American Astronomical Society,
Vol.32,
p.998.




Moser, J., (1973):
Stable and random motion in dynamical systems.
Princeton Univ. press.




Muris
on et.al., (1994):
Chaotic motion in the outer Asteroids belt
and its relation to the age of the solar system , Astronomical
Journal,ISSN0004
-
6256,
vol.108,
no.6 ,p 2323
-
2329
.




Murray, C. D., (1984):
Chaotic Spinning of Hyperion: Nature
V.311
,
No. 5988, P. 7
05
.




Murray, Holman and Potter, (1998):
On the Origin of Chaos in the
Asteroid Belt: The Astronomical Journal,
Volume 116
, Issue 5, pp.
2583
-
2589.



200



Murray and Holman, (1997):
Diffusive chaos in the outer asteroid
belt.: Astronomical Journal
v. 114
, p.1246
-
1259.




Murray, N., Holman M., (2001):
The role of chaotic Resonance’s in
the Solar System: Nature,
volume 410
, Issue 6830, pp. 773
-
779
.




Muzzio, J. C., Wachlin, F. C., Carpintero, D. D., (2000):
Regular
and chaotic motion in a restricted three body problem

of
Astrophysical interest

,
ASP Conference series,Published by
Astronomical society of the Pacific,San Franscisco,CA 2000,p.281.




Nagasawa, M., Ida, S., (2000):
Sweeping Secular Resonance’s in the
Kuiper Belt Caused by Depletion of the Solar Nebula: The
A
stronomical Journal,
Volume 120
, Issue 6, pp.3311
-
3322.




Nakai, H., Kinoshita, H., (2002):
Minor planet’s orbits in or near
mean motion Resonance’s with Jupiter: In: Dynamical friction strikes
back. Proceedings of the 34
th

symposium on Celestial Mechanics
,
March 11
-
13, at Hakone
-
Onsen, Kanagawa, Japan, eds.: E. Kokubo,T.
Ito, and H. Arakida. Mitaka, Tokyo, Japan: National Astronomical
Observatory, 2002, p. 289
-
302




Nauenberg M., (2002):
Stability and Eccentricity for two Planets in a
1:1 Resonance, and the
ir possible occurrence in Extrasolar Planetary
Systems : Department of Physics, University of California, Santa
Cruz, CA 95064.




Nesvorny, D., Morbidelli, A., (1998):
Three
-
Body Mean Motion
Resonance’s and the Chaotic Structure of the Asteroid Belt: The
A
stronomical Journal,
Volume 116
, Issue 6, pp.3029
-
3037.




Nesvorny, D., Ferraz
-
Mello, S., (1997):
On the Asteroidal
Population of the First
-
Order Jovian Resonance’s: Icarus,
Volume
130
, Issue 2, pp.247
-
258
.




Nesvorny, D., Roig, F., (2001):
Mean Motion Re
sonance’s in the
Transneptunian Region Part II: The 1:2, 3:4 and Weaker Resonance’s:
Icarus,
Volume 150,
Issue 1, pp. 104
-
123.




Newton, Isaac, (1934):
Philoshiae Naturalis Principia Mathematica
(London,
1687
) :English translation by F.Cajori, Newton’s Pri
ncipia
(University of California Press, Berkeley.




Nobili, A.M.. Burns, J.A., (1989):
Solar System Chaos: SCIENCE
V.244,
NO.4911/JUN 23, P.1424.



201



Novak G. S., (2002):
The Co
-
orbital Resonance and Extrasolar
Planets: DDA 33
rd

Meeting, Mt Hood
.




O’Brien, D.P
., Geissler, P., Greenberg, R., Tufts, B.R., (2001):
A
Melt
-
Through Model for Chaos Formation on Europa: 32
nd

Annual
Lunar and Planetary Science Conference, March 12
-
16, Houston,
Texas, abstract no. 2050.




O’Brien, D. P., Geissler, P., Greenberg, R., (2002
):
A Melt
-
through
Model for Chaos Formation on Europa: Icarus,
Volume 156
, Issue 1,
pp.152
-
161.




Packard, N., (1988):
"Adaptation Toward the Edge of Chaos." A
Technical Report, Center for Complex Systems Research. University
of Illinois. CCSR
-
88
-
5
.




Parr
y Rubincam, David, (2000):
Pluto and Charon: A case of
precession
-
orbit resonance?: Journal of Geophysical Research,
Volume 105
, Issue E11, November 25, pp.26745
-
26756.
Peale, S.J.
(1978):
An observational test for the origin of the Titan
-

Hyperion
orbita
l resonance. Icarus, 36, 240.




Peng, B., Petrov, V. and
Showalter, K
., (1991):
"Controlling
Chemical Chaos". Journal of Physical Chemistry. 95. Pp. 1957
-
59.






Percival, I.C., (1979):
In non
-
linear

dynamics and the beam
-
beam
interaction (Ed. Month, M. & Herrera, J.C.),
Vol.57,
302
-
310.
American Inst. of Phys. Conf. Proc.




Percival, I.C., (1987):
Chaos in Hamiltonian systems, Proc. R. Soc.
Lon. A 413, 131.




Peters Edgar E., (1994):

Fractal Market Ana
lysis: Applying Chaos
Theory to Investment and Economics (Wiley Finance Edition).




Peterson, I., (1984):
Jupiter’s SPOT of Order in chaos: SCIENCE
NEWS,
vol. 125
, 340.




Peterson, I., (1993)
Newton’s Clock: Chaos in the Solar System. New
York: MacMillan.






Pirraglia, Joseph, (1986):
Chaotic motion in the Jovian atmosphere:
In NASA. Goddard Inst. For Space Studies The Jovian Atmospheres p
207
-
209 (SEE N87
-
17598 09
-
91)
.



202



Poincare, H, (1880
-
1890):
Memories Sur Les Caurbes Definies par
les Equations differentie
lles I
-
VI, Oeuvre I, Gauthier
-
Villar, Paris.




Poincare, H, (1890):
Sur Les Equations De la Mechanique. Celeste 3
Vols. Gauthier

Villarrs, Paris.




Poincare, H, (1892):
Les Methodes ‘Nouvelles De La Mechanique
Celest. Gauthier

Villars, Paris.




Poincare, H, (
1902):
Sur Les Planets Du Type d’ Hecube. Bull.
Astron., 19, 289

310.




Poincare, H, (1913):
The Foundation of Science: Science and
Method. English Trans. 1946, The Science Press, Lancaster, PA, 397.




Poincare, Jules Henri,

(1952):
Science and Method. New Y
ork:
Dover
.




Poincare, H, (1967):
Les methods Nauvelles De La Mechanique
Celest.,
Vols. 1, 2, & 3,

Paris : Gauthier


Villars, (1899): Dover
Press (1957) : (in English) NASA Translation TTF

450/452, U. S.
Fed. Clearing Hause Spring Field, V. A., U. S. A.




Poincare, H., (1985):
Sur I’ Equilibre Dune Masse Fluide Animee
Due Mouvement De Rotation. Acta Mathematica 7, 259
-
380.




Pour, Nader H., (1998):
Resonance Trapping in Planetary Systems:
American Astronomical Society, DDA meeting #30, #09.03: Bulletin
of
the American Astronomical Society,
Vol.30
, p.1145.




Prigogine, Ilya. and
Stengers,
I., (1984):

Order out of Chaos: Man's
New Dialogue wi
th Nature
. New York: Bantam Books.




Ptolemy's, (1984):
Almagest, translated by G. J. Toomer (London:
Duckworth: New York: Springer Verlag.




Radwan, Mohamad, (2002):
Resonance Caused by the Luni Solar
Attractions on a Satellite of the Oblate Earth.: Astro
physics and
Space Science,
v. 282,
Issue 3, p.551
-
562
.




Rappaport, (2003):
The origin of chaos in the dynamics of the
Prometheus
-
Pandora System: American Astronomical Society, DPS
meeting #35, #46.03



203



Rappaport, N.J., Goldreich, P., (2002):
The chaotic dyn
amics of
Prometheus and Pandora, Bulletin of the American Astronomical
society,
vol.34
, p.883
.




Rappaport, N.J., Goldreich, P., (2003):
The origin of chaos in the
dynamics of the Prometheus
-
Pandora System: American Astronomical
Society, DPS meeting #35, #4
6.03.




Rappaport, N.J., Goldreich, P., (2002):
The chaotic dynamics of
Prometheus and Pandora, Bulletin of the American Astronomical
society,
vol.34
, p.883
.




Renner, S., Sicardy, B. (2003):
Consequences of the Chaotic
Motions of Prometheus and Pandora: Ame
rican Astronomical Society,
DDA meeting #34, #10.02
.





Roig, F., Nesvorny, D., Ferraz
-
Mello. S., (2002):
Asteroids in the
2:1 resonance with Jupiter: dynamics and size distribution: Monthly
Notices of the Royal Astronomical Society,
Volume 335
, Issue 2, pp
.
417
-
431.




Selvam M., A., (1990):
Deterministic chaos, fractals and quantum
like mechanics in atmospheric flows. Can. J. Phys.68, 831
-
841.




Selvam A. Mary., (2000):
Remote Sensing of Geomagnetic Field and
Applications to Climate Prediction.
ArXiv:physics
/0002033
vI 17
.




Selvam, A.M., (2002):
Quantumlike chaos in the frequency
distributions of bases A, C, G, T in drosophila DNA, Apeiron,
9(4):103
-
148
.




Selvam A.M. and Pethkar J.S., (2001):
Nonlinear Dyanmics and
Chaos: Applications for Prediction of Weathe
r and Climate.
ArXiv:physics/0104056
vI
.




Shakespeare, (1623):
Mr. William Shakespeare's comedies, histories
and Tragedies. Published according to the true original copies,
Printed by Isaac Iaggard, and Ed. Blount
.




Shinkin, V.N., (1997):
Stable Stationar
y Solutions to an Unrestricted
Four
-
Body Problem in the Case of Two First
-
Order Resonance’s.:
Cosmic Research,
Vol.35
, No.6, p.623.




Shore, L.A., Shore, S.N., (1988):
The chaotic material between the
stars.: Astronomy, 16, part no. 6, 6
-
19
.



204



Showman, A. P
., Malhotra, R., (1997):

Tidal Evolution into the
Laplace Resonance and Resurfacing of Ganymede: Icarus,
Volume
127,
Issue 1, pp.93
-
111.




Sidorenko, V. V., Neishtadt, A. I., (2000):
Investigation of the
Stability of Long Periodic Planar Motion of a Satell
ite in a Circular
Orbit: Cosmic Research,
vol. 38,
No. 3. p. 289
.




Sierpinski, W., (1916):
Sur une courbe cantorienne qui content une
image biunivoquet et Continue detouts courbe donnee, C. R. Acad.
Paris162 (1916). 629
-
632.




Sinclair, A. T., (1970):
Perio
dic solutions close to
commensurabilities in three body problem, M.N.R.A.S., 148, 325
-
351.





Singh, R.B., (1986):
Non
-
linear planar oscillation of a satellite in
elliptical orbit under the influence of external forces of general
nature: IN: Space dynamics
and celestial mechanics: Proceedings of
the International Workshop, Delhi, India, Nov. 14
-
16, 1985 (A87
-
37127 15
-
13). Dordrecht, D. Reidel Publishing Co., p.295
-
307.




Smale., (1963):
Stable manifolds of differomorphism and differential
equation Annati Dell
a Scuola Normati Superioro di Pisa Series III,
XVII pp 97
-
116.




Smith and Szebehely, (1993):
The onset of chaotic motion in the
restricted problem of three bodies: Celestial Mechanics and
Dynamical Astronomy (ISSN 0923
-
2958),
vol. 56
, no.3, p.409
-
425.




Smi
th, Robert Hanson, (1991):
The Onset of Chaotic Motion in the
Restricted Problem of Three Bodies: Thesis (Ph.D.) THE
UNIVERSITY OF TEXAS AT AUSTIN, Source: Dissertation
Abstracts International,
Volume: 52
-
07,
Section: B, p.3734.




Spaun, N.A., Head, J.W., I
II, Pappalardo, R.T., The Galileo SSI
Team, (1999):
Chaos and Lenticulae on Europa: Structure,
Morphology and Comparative Analysis: 30
th

Annual Lunar and
Planetary Science Conference, March 15
-
29, Houston, TX, abstract
no. 1276.




Spaun, N.A., Prockter, L.M
., Pappalardo, R.T., Head J.W.,
Collins, G.C., Antman, A., Greeley, R., The Galileo SSI Team,
(1999):
Spatial Distribution of Lenticulae and Chaos on Europa: 30
th


205

Annual Lunar and Planetary Science Conference, March 15
-
29,
Houston, TX, abstract no. 1847.




Sproul, Barbara C., (1991):

Primal Myths: Creation Myths Around
the World, published by Harper Collins, P.91, P.199.




Stein, Daniel L., (ed.) (1989):
Lectures in the Sciences of
Complexity.
Vol. 1.
Redwood City, CA. Addison
-
Wesley Publishing
Co.P. XIII.






Stewart Ian, (2002):
Does God Play Dice? The New Mathematic
s of
Chaos: (Blackwell, 416 pp
).




Suli, Aron, (2001):
Structure of the outer 1:2 resonance in the Kuiper
Belt: Publications of the Astronomy Department of the Eotvos
University No. 11, Proceeding
s of the National Postgraduate Reunion
in Astronomy & Astrophysics, 2000, p. 35.




Sun, J. M. S., (1976):
Chaotic Formation on the Moon: Abstracts of
papers presented to the Symposium on Planetary Cratering
Mechanics. A Lunar and Planetary Institute Topica
l Conference held
13
-
17 September, 1976, at Flagstaff, AZ. Hosted by the U. S.
Geological Survey, Geologic Division Branch of Astrogeologic
Studies. LPI Contributing 259, published by the Lunar Science
Institute, 3303 Nasa Road 1, Houston, TX 77058, p.139.




Sussman and Wisdom, (1988):
Numerical evidence that the motion
of Pluto is chaotic: Science (ISSN 0036

8075),
vol. 241,
July 22,
p.433

437. DARPA

supported research.




Sussman and Wisdom, (1992):
Chaotic evolution of the solar
system: Science (ISSN 0036

8
075),
vol. 257,
no.5066, July 3, 1992,
p.56
-
62. Research supported by MIT and DARPA.




Symon, K. R. and Sessler, A. M., (1956):
Methods of radi
o frequency
acceleration in fixed field accelerators.
In Proc. CERN Symposium on
high energy accelerators and pion
physics , Geneva ,P.44
-
58.




Thompson, Wentworth d’Arcy, (1966):
On Growth and Form. 2ed..
Cambridge: Cambridge University Press.




Tittemore, (1990):
Chaotic motion of Europa and Ganymede and the
Ganymede

Callisto dichotomy: Science (ISSN 0036

8075),
vol.
250
,
Oct. 12,1990 , p.263

267.



206



Torbett, M.V., (1989):
Chaotic Motion in a Primordial Disk of
Comets Beyond Neptune and the Late Heavy Bombardment: Bulletin
of the American Astronomical Society,
Vol.21
, p.915.




Touma and Wisdom, (1993):
The chaotic o
bliquity of Mars: Science
(ISSN 0036
-
8075),
vol. 259
, no. 5099, p.1294
-
1297.




Touma, J., Wisdom, Jack, (1998):
Resonance’s in the Early
Evolution of the Earth
-
Moon System: The Astronomical Journal,
Volume 115,
Issue 4, pp.1653
-
1663.




Tsiganis and Varvogli
s, (2000):
Chaotic evolution of (719) Albert,
the recently recovered minor planet: Astronomy and Astrophysics,
v.361
, p.766
-
769.




Tsiganis, K., Varvoglis, H., Hadjidemetriou, J. D., (2002):
Stable
Chaos in High
-
Order Jovian Resonance’s: Icarus,
Volume 15
5,

Issue
2, pp.254
-
274.




Vakhidov, A. A., (2001):
Asteroid Orbits in mixed Resonance’s:
Some numerical experiments: Planetary and Space Science,
Volume
49
, Issue 8, p. 793
-
797.




Varadi, F., (1999a):
Periodic Orbits in the 3:2 Orbital Resonance and
Their
Stability: The Astronomical Journal,
Volume 118
, Issue 5,
pp.2526
-
2531.




Varadi, F., (1999b):
Resonant periodic orbits in the three
-
body
problem: American Astronomical Society, DDA meeting #31, #08.05
.




Varadi, Ghil and Kaula, (1997):
Jupiter, Saturn and t
he Edge of
Chaos: American Astronomical Society, 191
st

AAS Meeting, #69.01:
Bulletin of the American Astronomical Society,
Vol.29,
p.1314.




Vernant J.P. and Pierre Vidal
-
Naquet, (1988):
Myth and Tragedy
in Ancient Greece translated by Janet Lloyd. publish
ed by Zone
Books, New York, pp.95
-
7.




Von Neumann, John
, (1966):
Theory of Self
-
Reproducing Automata.
Edited by Arthur W. Burks. (Champaign
-
Urbana: University of
Illinois Press.




Ward, William R
., (2003):
The Kuiper Belt as a Resonant Cavity:
The Astrophysical Journal,
Volume 584
, Issue 1, pp. L39
-
L42.



207



Wiggins, (1988)
: Anal. Method, New York ,Berlin , Springer


Verlag.




Wiggins, (1990):
Introduction to Applied Non
-
Linear Dynamical
Systems and C
haos , Springer Verlag.




Winter, O.C, Murray, C.D., (1997):
Resonance and chaos. II.
Exterior Resonance’s and asymmetric liberation: Astronomy and
Astrophysics,
v.328,
p.399
-
408 .




Wisdom, J., (1981):
The origin of Kirkwood gaps: A mapping for
asteroidal
motion near the 3/2 commensurability 1. The resonance
overlap criterion and the onset of stochastic behavior in the restricted
three
-
body problem 2: Ph.D. Thesis California Inst. of
Tech.,Pasadena.




Wisdom, J., (1982):
The origin of Kirkwood gaps
-

A mappi
ng for
asteroidal motion near the 3/2 commensurability 1: Astronomical
Journal,
Vol. 87,
p. 577
-
593.




Wisdom, J., (1983):
Chaotic behavior and the origin of the 3/1
Kirkwood gap: Icarus (ISSN 0019
-
1035),
vol. 56
, p.51
-
74.




Wisdom J., (1985a):
Meteorites
may follow a chaotic route to earth:
Nature (ISSN 0028

0836),
vol. 315
, June 27, 1985, p. 731

733.




Wisdom, J., (1985b):
A Perturbative treatment of motion near the 3/1
commensurability. Icarus, 63, 272.




Wisdom, J., (1986):
Canonical solution of the two c
ritical argument
problem. Celest. Mech., 175
-
180.




Wisdom, J., (1987a):
Chaotic behaviour in solar system. Eds., Berry,
Percival and Weiss. Dynamical Chaos. Proc. Roy. Soc. London.,
A413, 109
-
129.




Wisdom, J., (1987b):
Chaotic Dynamics in the Solar Syste
m:
Bulletin of the American Astronomical Society,
Vol.19
, p.1106.




Wisdom, Peale and Mignard, (1984):
The chaotic rotation of
Hyperion: (IAU, COSPAR, NASA, et al., Colloquium on Natural
Satellites, 77
th
, Cornell University, Ithaca, NY, July 5

9, 1983)
Icar
us (ISSN 0019

1035),
vol. 58
, May 1984, p.137

152.



208



Wolfram, S., (1983):
"Statistical mechanics of cellular automata" in
Rev. Mod. Phys.
55:
601.




Wolfram, S., (1984):
"Universality and complexity in cellular
automata" in Physica
10D
:1.




Wolfram, S., (1986
):
Theory and Applications of Cellular Automata.
Singapore: World Scientific.






Yokoyama, T., Marinho, E.P., (1999):
Secular Resonance’s In
Planetary Satellites: American Astronomical Society, DPS meeting
#31, #06.04.




Yoneda, M. and Arita, S., (1998):
In
ternational Journal of Chaos
Theory and Applications Issue # 4, Regular paper, Prediction of
Blood Glucose Levels of Diabetes Mellitus Using Chaos Theory .




Ziglin, S.L., (1980):
Non

integrability of a problem on the motion of
four point vortices ,Trudy M
oscowMat.Obschch.,
vol.41
,p.287.




Ziglin, S.L., (1987):

Splitting

of separatrices and non
-
existance of
first integrals. Izv. Akad. Nauk. SSSR. Ser. Mat.,vol. 51, 1088
-
1103.




Zalatanstov, V.A., et. al., (1964):

Planar oscillations of a satellite in
an ellip
tic orbit.,Cosmic Research,
vol.2
,no.5




Zalatanstov. V. A., Markeev, A. P., (1973):
Stability of Planar
Oscillations of a Satellite in an Elliptic Orbit: Celestial Mechanics,
vol. 7
, p.31
.