pg. 52 58

clattergumneckBiotechnology

Oct 23, 2013 (3 years and 10 months ago)

99 views

2.1: A Microscopic Look at Life’s Organization



pg. 52


58


Key Terms
:
Virus, capsid, replication, lytic cycle, lysogenic cycle, and prion.


Introduction:


Prokaryotes and Eukaryotes


-

Bacteria and Archaea are prokaryotes, lacking a true membrane bound
nucleus.

-

Protista, Fungi, Plants, and Animals are eukaryotes, large and more
complex with membrane organelles and a nucleus
.




Table 2.1: Two Types of Cells


pg. 53








Viruses


Virus: a structure that contains strands of DNA or RNA surrounded by a
protective protein coat; it cannot live independently outside of cells.


Viruses are different from prokaryotes and eukaryotes in many ways:


Viruses are functionally dependent on the internal workings of host cells,
either prokaryotic or eukaryotic. Considered non
-
living when found outside
of a cell and lie dormant.
Viruses m
ust invade a host cell to re
produce. They
are not cellular
therefore d
o not contain organelles, cytoplasm, or a cell
membrane.


Viruses do affect cells. Viruses cause diseases in plants, animals,
populations, species and ecosystems. (plants


wheat, oats, and barley,
animal


polio, HIV, and H1N1) Scientists develop vaccines

and new
treatments to fight viral infections


Viruses can be used in biotechnology research, as a viral vector or gene
cloning.



Classifying Viruses


Capsid
: the outer protein layer that surrounds the genetic material of a virus
.


Replication
: the fundam
ental process of all cells, in which the genetic
material is copied before the cell reproduces.


Lytic Cycle
: the replication process in viruses in which the virus’ genetic
material uses the copying machinery of the host cell to make new viruses
.


Lysogeni
c Cycle
: the replication process in viruses, in which the viral DNA
enters the host cell’s chromosome; it may remain dormant

and later activate
and instruct the host cell to produce more viruses.


Although a virus does not express all the characteristics o
f life (considered
non
-
living), they do contain genetic material (either DNA or RNA) and
reproduce (host cell’s machinery) which allows a consideration for living.


Viruses can be classified by their size and shape of the capsid. They can also
be classifie
d by what disease they cause.


Viruses that affect humans are divided into 21 groups, which differ in their
genomes, and method or replication.








Figure 2.2: viral shapes.

Pg. 54







Reproduction in Viruses


The virus uses the host cell and its
machinery to produce multiple copies of
its self. The copies are built, assembled inside the cell, and released


Lytic Cycl
e
:


1.

Attachment: proteins on the surface of the virus bind to protein
receptors on the surface of the host cell’s membrane.

2.

Entry: th
e virus injects the genetic material (RNA or DNA) into the
host cell.

3.

Replication: the host cell makes more viral DNA or RNA and proteins.

4.

Assembly: new viral particles are assembled.

5.

Lysis and Release: the host cell breaks open and releases new viral
part
icles.


Lysogenic Cycle
:


1.

Attachment: proteins on the surface of the virus bind to protein
receptors on the surface of the host cell’s membrane.

2.

Entry: the virus injects the genetic material (RNA or DNA) into the
host cell.

3.

Provirus Formation: viral DNA
becomes part of the host cell’s
chromosme.

4.

Cell Division: provirus replicates with host’s chromosome.

5.

*Provirus Release: the provirus leaves the host’s chromosme.

6.

Replication: the host cell makes more viral DNA or RNA and proteins.

7.

Assembly: new viral part
icles are assembled.

8.

Lysis and Release: the host cell breaks open and releases new viral
particles.




Figure 2.3 Lytic/Lysogenic Cycles


pg. 55

Viruses and Diseases


During the lytic cycle, the viruses that are released form the host cell also
kill the
cell by destroying the cell membrane. These new viruses are free to
infect other neighbouring cells, in multicellular organisms.


During the lysogenic cycle, affects are delayed as the provirus is replicated
as the cells replicate, and is known as a Retrov
irus, for example HIV.
Retroviruses contain an enzyme known as transcriptase. The enzyme causes
the host cell to copy the viral RNA to be converted into DNA
, allowing it to
combine with the cell’s DNA strand. During Mitosis the viral DNA is
replicated alon
g with the cells DNA. This process can continue for years
before the provirus separates and assembles new viruses. Since the viral
DNA is part of the host cell’s DNA it can not be detected.


Patterns of Disease


pg. 56


The replication of viruses can expla
in the patterns of diseases.


Virus, such as; the herpes virus for cold sores comes and goes. This is
because it appears during the viral cycle as cells die, but lies dormant when
it enters the provirus stage.


The HIV virus enters the provirus stage, and
still produces viruses, as the
cell functions normally.


Retroviruses carry RNA and an enzyme called
reverse transcriptase

that
causes the host cell to copy the viral RNA into DNA. Then it embeds into
the host’s chromosomes and becomes a provirus. Every descendent cell then
has HIV DNA copied within its genome.


Prions: Non
-
viral Disease
-
causing Agents


pg. 57


Prion



an infectious particle that causes damage to nerve cells in the brain,
and that appears to consist mostly or entirely of a single protein.


Stanley Prusiner discovered an entirely new type of disease
-
causing agent
called a prion.

Prions are proteins fou
nd normally in the body.

Prions do not have RNA or DNA.

Diseases are caused when the prions change from a non
-
harmful form to a
harmful form.

May cause many different types of brains diseases, such as; Creutzfeldt
-
Jacob disease (CJD). In sheep, scrapie
and cows bovine spongeiform
encephalopathy (BSE). (Mad cow disease)





Activity 2.1: Comparing Prion Diseases



Viruses and Biotechnology


Viruses can be useful tools for genetic engineers. Genetic engineers will
remove th
e

viral DNA and insert a genetic

code they wish to reproduce. The
virus can be used as a viral vector to deliver genetic information to be copied
in a host cell. Viruses are high specific to the type of cell they interact with.


Learning Check: questions 1


6


pg. 55


Section 2.1
Review: questions 1


15


pg. 58