Power Electronics Notes 30H Power Electronics Notes 30H Magnetic Fields from Power Cables (Case Studies) (Case Studies)

brothersroocooElectronics - Devices

Oct 18, 2013 (4 years and 25 days ago)

116 views

PowerElectronicsNotes30H
Power

Electronics

Notes

30H
Magnetic Fields from Power Cables
(CaseStudies)
(Case

Studies)
Marc T. Thompson, Ph.D.
Thompson Consulting, Inc.
9 Jacob Gates Road
Harvard, MA 01451
Phone: (978) 456-7722
Fax: (240) 414-2655
Email: marctt@thompsonrd.com
Web: http://www.thompsonrd.com
Magnetic Fields from Power Cables1©M. T. Thompson, 2009
© Marc Thompson, 2009
Ampere’s Law

Flowingcurrentcreatesamagnetic
Flowing

current

creates

a

magnetic

field
AdE
dt
d
AdJldH
o
v
r
v
v
v
r
⋅+⋅=⋅



ε
•In magnetic systems, generally there
ishighcurrentandlowvoltage(and
dt
SSC



is

high

current

and

low

voltage

(and

hence low electric field) and we can
approximate for low d/dt:
∫∫
⋅≈⋅
SC
AdJldH
v
v
v
r
•In words: the magnetic flux density
integrated around any
closed contour
e
q
uals the net current flowin
g
throu
g
h
Magnetic Fields from Power Cables2©M. T. Thompson, 2009
qgg
the surface bounded by the contour
André-Marie Ampère
Faraday’s Law

Achangingmagneticfluximpingingon
A

changing

magnetic

flux

impinging

on

a conductor creates an electric field
and hence a current (eddy current)
d

Theelectricfieldintegratedarounda
∫∫
⋅−=⋅
SC
AdB
dt
d
ldE
v
r
v
r

The

electric

field

integrated

around

a

closed contour equals the net time-
varying magnetic flux density flowing
through the surface bound by the
contour

Inaconductorthiselectricfieldcreates

In

a

conductor
,
this

electric

field

creates

a current by:
EJ
r
r
σ
=
Michael Faraday
Magnetic Fields from Power Cables3©M. T. Thompson, 2009•Induction motors, brakes, etc.
Gauss’ Magnetic Law
G'tilthtth
B
1
,
A
1
B
2
,
A
2

G
auss
'
magne
ti
c
l
aw says
th
a
t

th
e
integral of the magnetic flux density over
an
y
closed surface is zero, or:

1
,
1
2
,
2
y
•T桩猠污眠業灬楥猠瑨慴慧湥瑩挠晩敬摳⁡牥f
摬idh

=

S
dAB0
B3, A3
d
ue to e
l
ectr
i
c currents an
d
t
h
at
magnetic charges (“monopoles”) do not
exist.
221133
A
B
A
B
A
B
+
=
•Note: similar form to KCL in circuits !
(We’ll use this analogy later…)
Magnetic Fields from Power Cables4©M. T. Thompson, 2009
Carl Friedrich Gauss
Gauss’ Law ---Continuity of Flux Lines
123
0
φ
φφ
+
+=
Magnetic Fields from Power Cables5©M. T. Thompson, 2009
Finite-Element Analysis (FEA)
•Very useful tool for visualizing magnetic fields
•FEA is often used to simulate and predict the performance
ofmotors,etc.
of

motors,

etc.
•Following we’ll see some 2-dimensional (2D) FEA results to
help explain Maxwell’s equations
Magnetic Fields from Power Cables6©M. T. Thompson, 2009
Example 1: Circular Current Loop (Dipole)
CillidilithdiltIA(I

Ci
rcu
l
ar
l
oop
i
s a
di
po
l
e w
ith

di
po
l
e momen
t

IA

(I
=
current, A = loop area)
Magnetic Fields from Power Cables7©M. T. Thompson, 2009
Example 1: Field From Current Loop, NI = 500 A-
Turns
Turns

•Coil radius R = 1”; plot from 2D finite-element analysis
Magnetic Fields from Power Cables8©M. T. Thompson, 2009
Example 2: Isolated Wire, Return Far Away
Thiiilld

Thi
s one
i
s eas
il
y so
l
ve
d
Magnetic Fields from Power Cables9©M. T. Thompson, 2009
Example 3: Magnetic Dipole, 2D
Wilit

Wi
res are
l
ong
i
n
t
o page
•What’s the magnetic flux density Bfar away?

A
ssume I = 15A; wire-wire s
p
acin
g
d = 10 mm;
r
wire
=2 mm
pg
wire
Magnetic Fields from Power Cables10©M. T. Thompson, 2009
Example 3: Magnetic Dipole, 2D
Magnetic Fields from Power Cables11©M. T. Thompson, 2009
Example 3: Magnetic Dipole, 2D
Fild1t(d)dilt

Fi
e
ld
r =
1
me
t
er away
(
r >>
d)
, ra
di
a
l
componen
t
Magnetic Fields from Power Cables12©M. T. Thompson, 2009
Example 3: Magnetic Dipole, 2D
Fild1tthtt

Fi
e
ld
r =
1
me
t
er away,
th
e
t
a componen
t
Magnetic Fields from Power Cables13©M. T. Thompson, 2009
Example 4: Magnetic Quadrupole, 2D
AI15Ad10
2

A
ssume
I
=
15A
;
d
=
10
mm;
r
wire=
2
mm
•Note orientation of + and -currents
Magnetic Fields from Power Cables14©M. T. Thompson, 2009
Example 4: Magnetic Quadrupole, 2D
Magnetic Fields from Power Cables15©M. T. Thompson, 2009
Example 4: Magnetic Quadrupole, 2D
Fild1tdiltFildd

Fi
e
ld
r =
1
me
t
er away, ra
di
a
l
componen
t
.
Fi
e
ld
s
d
ecay
as 1/r3
Magnetic Fields from Power Cables16©M. T. Thompson, 2009
Example 4: Magnetic Quadrupole, 2D
Fild1tthttFildd

Fi
e
ld
r =
1
me
t
er away,
th
e
t
a componen
t
.
Fi
e
ld
s
d
ecays
as 1/r3
Magnetic Fields from Power Cables17©M. T. Thompson, 2009
Example 5: Twisted Pair
Fild1tthttFildd

Fi
e
ld
r =
1
me
t
er away,
th
e
t
a componen
t
.
Fi
e
ld
s
d
ecays
as e-kr
Magnetic Fields from Power Cables18©M. T. Thompson, 2009
AC Magnetic Shielding
•Flux densit
y

p
lots at DC and 60 Hz
yp
•At 60 Hz, currents induced in plate via magnetic induction
create lift force
DC
60H
DC
60

H
z
Magnetic Fields from Power Cables19©M. T. Thompson, 2009
Good Reference
Magnetic Fields from Power Cables20©M. T. Thompson, 2009