qB: Spectroscopy of Gravity

blockmindlessUrban and Civil

Nov 16, 2013 (3 years and 11 months ago)

86 views






High Precision Experiments

with Cold and Ultra
-
Cold Neutrons






Hartmut Abele

Vienna, 1 December 2012

q
B
OUNCE
:
Spectroscopy of Gravity

|1 > 1.4
peV

|3 > 3.32
peV

a, A, B, C

DOKT
ORA
TSK
OLLEG
PI
Show Case I:

Test of Gravitation at Short Distances with Quantum I
nterference

Julio Gea
-
Banacloche, Am. J. Phys.1999

Quantum interference: sensitivity to fifth forces

Hartmut Abele, Atominstitut, TU Wien

Rafael Reiter, Bernhard Schlederer, David Sepp

Simulation:


Reiter,
Schlederer
,
Seppi

DOKT
ORA
TSK
OLLEG
PI
Key
Technique
:
Gravity
Resonance

Spectroscopy


3

E h

 


atomic

clocks



nuclear

magnetic

resonance

spectroscopy



spin

echo
technique



quantum

metrology



gamma

resonance

spectroscopy


T
est
Newton‘s

law

at

short

distances
:


String
Theories


Dark Matter


Dark
Energy


|1 > 1.4
peV

|3 > 3.32
peV

Nature
Physics
, 1 June 2011

High Precision
-

Low Energy

Hartmut

Abele,
Atominstitut
, TU Wien

Rabi
-
Gravity
-
Spectroscopy


GRS: T.J.,
H.A. et al
.,
Nature
Physics

2011


4

|1 > 1.4
peV

|3 > 3.32
peV

a 2
-
level
system

can

be

considered

as

a Spin ½
-

System

Vibrating

mirror

Alternating

Magnetic

gradient

fields

QS: V.N., H.A. et al.,

Nature
2002

Side
-
band
excitation

Gähler
, Felber,
Golub

et al.

5

The
kicked

rotor

M. Bienert, F. Haug
and

W. P. Schleich, Raizen


6

Hartmut Abele, Vienna University of Technology

Gravity
Resonance

Spectroscopy

-
Quantum
states

in
the

gravity

potential
of

the

earth

and

coherence

superposition

Search
for

deviations

from

Newtons
gravity

law

at

short

distances

-
Large extra
dimensions

-
Dark matter
particles

-
Dark
energy

Tests
of

weak

interaction

with

neutron

beta
-
decay

experiments

-
Experiment PERC

Scientific Programme
for

ESS /
Broad

overview

of

the

field


Outline

7

Spallation

Source

Reactor

source

Neutron
sources

9

Hartmut

Abele,
Technische

Universität

Wien



Neutron Production

10

10
-
7

Velocity

v [m/s]

The
future
: FRM2, ESS

11

Tool: Ultra
-
Cold

Neutrons




Strong Interaction: V ~ 100
neV



Kinetic

Energy
:
< 100
neV


3m/s < v < 20m/s


Magnetism
, Zeeman
splitting

: 120
neV
/T

Energy

in
the

earth‘s

gravitational

field
:

E
=
mgh

100neV/m

Hartmut Abele, Technische Universität München

13

Hartmut Abele

13

Quantum
Bounce

?

Cold
-
Source at 40 K

Hydrogen Atom

-
Electron

bound

in
proton

potential

-
Bohr
radius

<r> = 1 A

-
Ground

state

energy

of

13 eV

-
3 dim.

-
Schrödinger

Equ
.

-
Legrendre
Polynomials

System Neutron & Earth

-
Neutron
bound

in
the

gravity

potential
of

the

earth

-
<r> = 6 µm

-
Ground

state

energy

of

1.4
peV

-
1 dim.

-
Schrödinger

Equ
.

-
Airy

Functions



Gravity
and

Quantum
Mechanics

14

)
(
)
(
2
2
2
2
z
E
z
mgz
z
m
n
n
n
















Schrödinger

equation
:

0
)
0
(

n

boundary

conditions
:

0
)
(

l
n

with

2nd
mirror

at

height

l
S
olutions
:
Airy
-
functions
: Ai & Bi

E
n

E
n

1
st

state

1.41peV

1.41peV

2
nd

state

2.46peV

2.56peV

3
rd

state

3.32peV

4.2
peV

V [peV]

Show Case I:
Rabi
-
type Spectroscopy of Gravity

15

Resonance Spectroscopy Technique to
explore gravity

T.
Jenke
, SPP1491
-
Treffen 2012,
Frauenchiemsee

neutron

mirror

UCN

State Selection

by a rough neutron mirror



4.5 days of beam time



3600 events


(background subtracted)



n
n
n
z
t
c
2
2
1
2
)
(
)
(


)
(
)
(
2
t
f
PSF
N







fit:




free parameters:




result:

0
2
1
,
,
,
)
(
z
N
l
t
c
n
track detector

00
,
0
)
(
30
,
0
)
(
70
,
0
)
(
2
1
3
2
1
2
2
1
1



t
c
t
c
t
c
rough

mirror

T.
Jenke
,
ÖPG 2012

6 m/s < v
x

< 7.2 m/s

Horizontal velocity

17

Hartmut Abele, Technische Universität München

T.
Jenke
,
Diploma

thesis
,
2008

Frequency

Reference
for

Gravitation

Hartmut Abele, Vienna University of Technology

18

|1 > 1.4
peV

|3 > 3.32
peV

3
/
2
0
4
1








n
E
n


p
q
p
q
pq
E
E








Based

on
natural

constants
:


Mass

of

the

neutron

m


Planck
constant

ħ


Acceleration

of

earth

g




Based

on
2
natural

constants
:


Mass

of

the

neutron

m


Planck
constant

ħ

Plus
Acceleration

of

earth

g


3
/
1
2
2
0
8
9










mg


Discoveries
:
t
he

dark

universe

Spectroscopy

of

Gravity

-
It

does

not
use

electromagnetic

forces

-
It

does

not
use

coupling

to

em

Potential


Hyothetical

gravity
-
like

forces

-
Axions
?

-
Chameleons
?






constraint on any
possible new interaction

19

Axion


10
-
14

eV
Scale

20

21

Felicitas
Pauss


The
cosmological

Parameters

Neutrons
test

Newton

Strength

a

剡湧攠
l

23

/
1 2
( ) (1 )
r
m m
V r G e
r
l
a


  
Hypothetical

Gravity
Like

Forces


Extra Dimensions:

The
string and
D
p
-
brane

theories predict the existence of extra space
-
time
dimensions

Infinite
-
Volume Extra Dimensions:
Randall
and
Sundrum


Exchange Forces
from n
ew
Bosons:
a
deviation from the ISL can be induced by the
exchange of new (pseudo)scalar and (pseudo)vector
bosons


Axion

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-


0.2 µm <
l


〮㈠捭


Scalar
boson. Cosmological
consideration


Bosons from Hidden
Supersymmetric

Sectors


Gauge
fields

in
the

bulk

(ADD, PRD 1999)
-

-

-

-

→10
6

<
a



9

Supersymmetric

large Extra
Dimensions

(B.& C.)
-

-

-

-


a

<
10
6

Chameleon

fields
-


Show Case:
Rabi
-
type Spectroscopy of Gravity

24


Rabi
-
type experiment:

Resonance Spectroscopy Technique to
explore gravity



realization of gravity
resonance



method
possible



simple setup, no steps



high(
er
) transmission




upper mirror introduces


2
nd

boundary

condition


Rabi
-
type experiment
with damping

T.
Jenke
, SPP1491
-
Treffen 2012,
Frauenchiemsee

Gravity Resonance Spectroscopy
2012

25


50 days of
beam
time
,


116
measurements

1 2, 1 3, 2 3 and 2 4
   


stat. Significance:



stat. accuracy:








contrast:

%
2
.
2
Hz
5
.
679
%
5
.
0
Hz
1
.
539
%
0
.
1
Hz
4
.
280
%
8
.
0
Hz
2
.
258
24
13
23
12













48
%
68
pq

T. Jenke, Dissertation (TU Wien, 2011)

T. Jenke et.al., arXiv:
1208.3875 (2012)

[data 2010]

pq

T.
Jenke
,
ÖPG 2012

10
-
14

eV
Scale


AXION: PDG
Exclusion

Ranges

26


PDG
Exclusion

Ranges on
Axion

masses

27

2 cm
l

0.2 µm
l





Applications I:

Spin
-
dependant short
-
ranged interactions

28










2
axion
1
1
8
r
r
n
c
m
g
g
V
n
p
s
l





days
c
g
g
p
s
16
10
3
/




discovery potential [Setup 2010]:



C.L.
%
68
,
µm
10

l
J.E. Moody, F. Wilczek, Phys. Rev. D30, 131
-
138 (1984)

3 days of
beamtime

T. Jenke et.al., arXiv:
1208.3875 (2012)

T.
Jenke
,
ÖPG 2012

Chameleon

fields
,
Brax

et al.
PR
D
70,
123518 (2004
)

2 Parameters

, n


Dark
Energy



Scalar

Fields

29

Mirrors

at

z ~
±

d/2

Fit
to

numerical

solution

q
Bounce

and

Chameleons

Bounds

on
coupling



-
By

comparing

transition

frequency

with

theoretical

expectation
:




-
a
s long as



> 10
5


-
C
ite as: arXiv:1207.0419v1

q
Bounce

and

Chameleons

Applications II:

Strongly coupled chameleons

32

A.N. Ivanov et.al., arXiv:1207.0419 (2012)

T. Jenke et.al., arXiv:
1208.3875 (2012)

2
2
2
2
Chameleon
2
2
2






















n
Pl
z
d
d
n
M
m
V

T.
Jenke
,
ÖPG 2012

Feedback from FUNDAMENTAL
PHYSICS







Convener
: T.
Soldner
, O. Zimmer, H. Abele



Chameleon

fields
,
Brax

et al.
PR
D
70,
123518 (2004
)

2 Parameters

, n


Dark
Energy



Scalar

Fields

34


Casimir Force

Atom

Example

Rb





r = 1
Micron


Neutron:

Casimir
force

absent

Polarizability

extremely

small
:

35



0
4
3
( )
2
c a
V r
r


 


peV
23
0
0
4
2,3 10
3
( )
2
0.6
a
c a
V r
r




 

 
  
 
 

fm
V
eV
m
peV
4 3
0
41
18
11.6 10
4
6 10
10
n
n
a
D a E
E
Grand
Challenges


36

Sensitive
to

any

force

Dark
energy

search

-
chameleon

fields

Dark matter
search

Large extra
dimensions


H
ypothetical

gravity

like

forces

Participating

Institutions
:


IST Braunschweig


Univ. Heidelberg


ILL


Univ. Jena


Univ. Mainz


Priority

Areas


CP
-
symmetry violation and particle physics in the early universe.


The structure and nature of weak interaction and possible extensions of
the Standard Model.


Tests of gravitation with quantum objects


Charge quantization and the electric neutrality of the neutron.



New Infrastructure (UCN
-
Source,
cold

Neutrons)

-
*
Coordinators

(S. Paul,
H.A.
)


DFG/FWF
Priority

Programme 1491




Exzellenzcluster ‚Universe‘ München



Techn. Univ.
München
*



PTB Berlin



Vienna University
of

Technology
*



Priority Programme 1491

Research Area A:
CP
-
symmetry violation and particle physics in the
early universe

-
Neutron
EDM

E = 10
-
23

eV

Research Area B:
The structure and nature of weak interaction and
possible extensions of the Standard Model

-
Neutron


摥捡c

V


A
Theory

Research Area C:
Relation between gravitation and quantum theory

-
Neutron
bound

gravitational

quantum

states

Research Area D:
Charge quantization and the electric neutrality of
the neutron

-
Neutron
charge

Research Area E:
New measuring techniques

-
Particle detection

-
Magnetometry

-
Neutron optics



DOKT
ORA
TSK
OLLEG
PI
39

Parameters


Strength
:
G
F



Quark mixing
:
V
ud


Ratio
:
l

=
g
A
/
g
V


5 4
1 2 2 2
3 7
(1 3 )
2
ud
R
e
F
f
V
m
G
c
h
l



 
Observables

Lifetime


Correlation A

Correlation B

Correlation C

Correlation a

Correlation D

Correlation N

Correlation Q

Correlation R

Beta Spectrum

Proton Spectrum

Polarized Spectra

Beta
Helicity

Electron

Proton

Neutrino

Neutron Spin

A

B

C



a

D

R

N

Neutron Alphabet
deciphers

the

SM

High Precision
-

Low Energy


Hartmut

Abele,
Atominstitut
, TU Wien

R

Q

DOKT
ORA
TSK
OLLEG
PI

v
-

selector

Spin
flipper

Polarizer

Decay

Volume, 8m

Chopper

Beam
stop

Analyzing

area

A
clean, bright and versatile source of neutron decay products

Univ.Heidelberg

& TU Wien, Mainz, ILL,FRM2,TU
Munich


n
-
guide + solenoid: field
B
0

polarized, monochromatic

n
-
pulse

n + γ
-
beam stop

solenoid, field
B
1


solenoid, field
B
2

p+ + e−

window
-
frame

p+ + e−

beam

B
.
Maerkisch


talk Berlin 2012



Key Instrument:
PERC


High Flux
:


= 2 x 10
10

cm
-
2
s
-
1




Decay
rate of
1 MHz /
metre


Polarizer:


99.7
±

0.1 %


Spin Flipper:

100.05
±

0.1 %


Analyzer:


100 %
3
He
-
cells

41

41

Origin of nature’s
lefthandedness

Standard Model:

Elektroweak

interaction 100%
lefthanded


Grand unified theories:

Universe was left
-
right symmetric at the beginning

Parity violation = 'emergent' Order parameter <100%






Neutron decay: Correlation B + A:


Mass right handed W
-
Boson:
m
R

> 280
GeV
/c
2


P
hase:



-
0.20 <

< 0.07


W
L

W
R

Grand
Challenges


42

Sensitive
to

any

theory

beyond

the

Standard Model

Left

Right

S
ymmetry

Supersymmetry

Tensor
or

scalar

interactions


GUT

Priority Programme 1491

Research Area A:
CP
-
symmetry violation and particle physics in the
early universe

-
Neutron EDM

Research Area B:
The structure and nature of weak interaction and
possible extensions of the Standard Model

-
Neutron


摥捡c

Research Area C:
Relation between gravitation and quantum theory

-
Neutron
bound

gravitational

quantum

states

Research Area D:
Charge quantization and the electric neutrality of
the neutron

-
Neutron
charge

Research Area E:
New measuring techniques

-
Particle detection

-
Magnetometry

-
Neutron optics



The Future: Ramsey
-
Method

Hartmut Abele, Vienna University of Technology

44

Since

the

Standard
Model value for
q
n

requires extreme fine
tuning, the
smallness of this value may be considered as a hint for
GUTs, where
q
n

is equal to zero.

Improve limit by two orders of magnitude



Charge quantization and the electric neutrality of the neutron.




Progress Report
with

Galileo in Quantum Land

-
q
Bounce
:
first

demonstration

of

the

quantum

bouncing

ball

-
Dynamics: time
evolution

of

coherent

superposition

of

Airy
-
eigenfunctions

-

Realization

of

Gravity
Resonance

Spectroscopy
:

-
Coherent

Rabi
-
Transitions
,

-
|1>

|2>

-
|1>

|3>,
see

Nature
Physics
, 1 June 2011

-
|2>


|3
>, |2>


|4>

-
New Tool
for


-
A
Search

for

a
deviation

from

Newton‘s

Law
at

short

distances
,
where

polarizability

effects

are

extremely

small

,


see

H.A. et al., PRD 81, 065019 (2010) [arXiv:0907.5447 ]

-
A
quantum

test

of

the

equivalence

principle

-
D
irect

limits

on
axion

coupling

/
chameleons

at

short

distances
,

q
B
OUNCE

Summary

46

Hartmut Abele, Vienna University of Technology