Macrofaculty Course of Industrial and Engineering Chemistry

bistredingdongMechanics

Oct 31, 2013 (4 years and 2 months ago)

134 views

Silesian University of Technology
-

Faculty of Chemistry

offers 5
-
year full
-
time MSc studies in English


Macrofaculty Course of Industrial and Engineering Chemistry


In response to the mounting requests and the growing demand for professionals
prepared to

operate in a global environment, on October 1
st
, 2002 the Faculty of Chemistry of
Silesian University of Technology launched a new Macrofaculty Course of Studies
-

-

Industrial and Engineering Chemistry

lectured in English.

In concept this course aims to
form chemical engineers of a novel type, with integrated, solid
knowledge of fundamentals of the two principal lines of studies, i.e.
Chemical and Process
Engineering
and
Chemical Technology
, and hence capable to tackle diverse practical
problems of modern

chemical technologies and process engineering, well familiar with
computers and informatics and open to new developments and innovations.

To meet this objective the curricula of the two principal lines of studies were carefully
scrutinized to create the o
ne that includes courses of organic, inorganic, analytical and
physical chemistry, fluid mechanics, process kinetics, unit operations, reaction and reactors
engineering, industrial catalysis, bioprocess engineering and industrial equipment design.
Extensi
ve courses of economics and management are also envisaged as well as classes of
English or other modern languages to improve communication skills.

By the end of the third year the students will choose one of the specializations:



Technology and engineering
of fine chemicals and specialty materials



Process engineering in green chemical technologies.

In both specjalizations the compulsory core courses are supplemented with a number of
optional courses selected according to individual interests.

Alumnus of both

specializations acquire skills needed to solve practical problems from the
realms of chemical technology, process engineering and chemistry of materials and are well
prepared to work in industrial, research and marketing environments.

Alumnus of Macrofacu
lty is very well prepared to join the work market in large and small
enterprises thanks to the high professional qualifications, creativity, openness to new ideas
and skills in team work.

Study Schedule

Faculty of Chemistry

Program for Macrocourse

L
-

Lect
ure

Ex
-

Exercise


Lab.
-

Laboratory

Sem.
-

Seminary

P
-

Project

E
-
Exam


Industrial and Engineering Chemistry

I year

Term

Course description

hours / week

ECTS
pts.

1

No.

Subject’s name

hours
total

L

Ex

Lab.

Sem.

P

1.

Applied mathematics I

90

3
E

3




8

2.

Physics

60

2

2




6

3.

General & inorganic
chemistry

90

2
E

2

2



8

4.

Technical drawing

45





3

3

5.

Computer science

60

1


3



5

Total

345

23

30

2

1.

Applied mathematics I

90

3
E

3




8

2.

Physics

90

2
E

2

2



8

3.

General & inorganic
c
hemistry

45

2

1




4

4.

Fluid mechanics

45

2
E

1




4

5.

Technical mechanics

45

3





4

6.

English

30


2




2

7.

Sport

30


2





Total

375

25

30

Industrial and Engineering Chemistry


II year

Term

Course description

hours / week

ECTS
pts.

3

No.

Subject’s name

hours
total

L

Ex

Lab.

Sem.

P

1.

Applied mathematics II

60

2
E

2




6

2.

Physical chemistry

45

2

1




5

3.

General & inorganic
chemistry

90

2
E

1

3



7

4.

Analytical chemistry

60

1


3



4

5.

Organic chemistry

60

3

1




6

6.

English

30


2




2

7.

Sport

30


2





Total

375

25

30

4

1.

Physical chemistry

90

2
E

1

3



10

2.

Analytical chemistry

45

1
E


2



5

3.

Organic chemistry

105

2
E


5



10

4.

Transport phenomena

45

2

1




3

5.

English

30


2




2

6.

Sport

30


2





Tota
l

345

23

30

Industrial and Engineering Chemistry

III year

Term

Course description

hours / week

ECTS
pts.

5

No.

Subject’s name

hours
total

L

Ex

Lab.

Sem.

P

1.

Industrial equipment

75

3
E

2




7

2.

Chemical technology

30

2





2

3.

Transport pheno
mna

45

2
E

1




5

4.

Unit operations

75

3

2




4

5.

Process
thermodynamics

45

2
E

1




6

6

Industrial catalysis

45

2

1




4

7.

English

30


2
E




2

Total

345

23

30

6

1.

Chemical technology

75

3
E

2




6

2.

Unit operations

75

2
E


2


1

7

3.

Therma
l processes
engineering

30

2





3

4

Biotechnology

30

2





3

5.

Process dynamics &
control

45

2

1




3

6.

Electrical engineering
& electronics

30

2





2

7.

Bioprocess engineering

60

2
E

2




6

Total

345

23

30


Industrial and Engineering Chemist
ry


IV year

Specialization: Specialty Materials and Fine Chemicals

Term

Course description

hours / week

ECTS
pts.

7

No.

Subject’s name

hours

total

L

Ex

Lab.

Sem.

P

1.

Reactors & reaction
engineering

45

2

1




4

2.

Process dynamics &
control

30



2



2

3.

Economics

60

4

4

4.

Optional

60

4

4

5.

Separation processes

75

3
E


2



7

6.

Characterization of
chemical structures

75

2
E


3



7

7.

Membrane
technologies

30

2





2

Total

375

25

30

8

1.

Reactors & reaction
engineering

45

2
E

1




6

2.

General & technical II

60

4

6

3.

Optional

60

4

4

4.

Membrane
technologies

30



2
E



2

5.

Principles of polymer
chemistry

90

3
E


3



5

6.

Sol
-
gel materials

60

1
E


2

1


5

7.

Process safety and
wastes management

30

2





2

Total

375

25

30


Industrial and Engineering Chemistry


V year

Specialization: Specialty Materials and Fine Chemicals


Term

Course description

hours / week

ECTS
pts.

9

Lp.

Subject’s name

hours
total

L

Ex

Lab.

Sem.

P

1.

Humanites

30

2





2

2.

Economics

30

2





2

3.

Manufacturing
processing and
application of
polymers

105

3
E


4



8

4.

Fine chemicals

120

1


5

2


10

5.

Process safety and
wastes management

30

1
E



1


3

6.

Transfer thesis

45





3

5

Total

360

24

30


10

1.

M.Sc.Thesis

(200)






25

2

M.
Sc.thesis

45




3


5

Total

245

3

30



Industrial and Engineering Chemistry



IV year

Specialization: Process Engineering for Green Chemical Technologies

Term

Course description

hours / week

ECTS
pts.

7

No.

Subject’s name

hours
total

L

Ex

Lab.

Sem.

P

1.

Reactors & reaction
engineering

45

2

1




4

2.

Process dynamics &
control

30



2



2

3.

Economics

60

4

4

4.

Optional

60

4

4





5.

Separation processes

75

3
E


2



7

6.

Gas cleaning and water
treatment

45

2
E

1




4

7.

Membrane
technologies

30

2





2

8.

Environmental
protection

30

2





3

Total

375

25

30

8

1.

Reactors & reaction
engineering

45

2
E

1




6

2.

General & technical II

60

4

6

3.

Optional

60

4

4





4.

Process system
engineering

105

3
E

1

3



7

5.

Process eq
uipment
design

45

2

1




3

6.

Membrane
technologies
technologies

30



2
E



2

7.

Process safety and
wastes management

30

2





2

Total

375

25

30

Industrial and Engineering Chemistry



V year

Specialization: Process Engineering for Green Chemical T
echnologies


Term

Course description

hours / week

ECTS
pts.

9

No.

Subject’s name

hours
total

L

Ex

Lab.

Sem.

P


1.

Humanities

30

2





2

2.

Economics

30

2





2

3.

Process simulation,
optimization and
design

105

3

1

3



9

4.

Process systems
engine
ering

30





2

2

5.

Process equipment
design

30





2
E

3

6.

Bioprocesses for
environment
protection

30

2
E





2

7.

Process safety and
wastes management

30

1
E



1


3

8.

Mass crystallization

30

2





2

9.

Transfer thesis

45





3

5

Total

360

24

3
0

10

1.

M.Sc.thesis

(200)






25

2

M.Sc. seminar

45




3


5

Total

245

3

30

Applied mathematics I


Objectives of the course

The goal of the course is to discuss the main topics of Calculus and selected topics of
Algebra. The applications in physics a
nd chemistry are also included.


Course description

The course consists of lectures and classes.

The topics discussed during lectures are

1)

functions in one and many variables,

2)

all the main concepts of Calculus


limits, derivatives, integrals, differentia
l equations
and series,

3)

the selected concepts of Algebra


like complex numbers, vectors, linear geometry in R
2

and R
3
, matrices, determinants and systems of linear equations.

The outline of applications in psychics and chemistry is also given.

The aim of
the classes is to understand and apply the notions introduced on the lectures by
solving different types of exercises
-

basic and also more complicated.


References

1.

M.D. Weir, J. Hass, F.R. Giordano “Thomas’ Calculus. International Edition”,
Addison
-
Wesle
y, 2005.

2.

H. Anton, Ch. Rorres “Elementary Linear Algebra. Applications version”, John Wiley
& Sons, New York, 1994.

3.

E. Łobos, B. Sikora “Calculus and Differential Equations in Exercises”, Wydawnictwo
Politechniki Śląskiej, Gliwice 2004



Physics


Objective
s of the course

The two semester course provides the knowledge and understanding of basic laws of physics
and shows how physics can help in studying chemistry and chemical engineering. It tries to
proceed along the famous statement by Ostwald “there is no
good chemistry without excellent
physics”.


Course description

The first semester of the course starts by repetition of the basic mathematical tools, like vector
algebra and differential calculus. Then the students are taught about mechanics: kinematics,
d
ynamics and rigid body dynamics. Next, the mechanics and basic facts in fluid dynamics are
introduced. To complete the mechanical topics, harmonic oscillator theory is presented. After
this a short introduction to optics and diffusion starts. This complete
s the first semester.

In second semester, field theory and electromagnetism is introduced. After that, a set of
lectures on quantum mechanics and atomic physics starts. At the end of semester, some
flavour of special and general relativity theory is provid
ed. The course ends with chosen
problems on cosmology and elementary particles.


References

1.

H.D. Young, R. A. Freedman,
University Physics
, Adison
-
Wesley, 2000.

2.

D.C. Giancoli,
Physics for Sciencists and Engineers with Modern Physics
, Prentice
-
Hall, 1999.

3.

D.A. McQuarrie,
Quantum Chemistry
, University Science Books, 1983.



General and inorganic chemistry


Objectives of the course

The primary objective for the programme is to provide solid foundation knowledge in
chemistry, including substantial laboratory t
raining, particularly those needed in future
courses.


Course description

Laws of chemistry; periodic table and chemical periodicity; stoichiometry, nomenclature,
modern atomic theory and bonding; ionic and molecular compounds; molecular geometry;
oxidatio
n
-
reduction reactions; solutions and heterogeneous mixtures; gaseous state; states of
matter and intermolecular forces; thermochemistry; physical properties of solutions in
aqueous solution, chemical kinetics, chemical equilibrium, chemical thermodynamics
and
electrochemistry.

Introduction to symmetry, chemistry of the main group elements, coordination chemistry of
the transition elements, ligand field theory, organometallic chemistry, solid state chemistry,
bioinorganic chemistry, chemistry of the lanthani
de and actinide elements.

Laboratory includes some basic chemical reactions, qualitative methods in chemical analysis,
as well as selected experiments in general chemistry.


References

1.

R.H. Petrucci, W.S. Harwood, F.G. Herring,
General Chemistry: Principle
s and
Modern Applications
, Prentice Hall, New Jersey, 8
th

Ed, 2002.

2.

G.E. Rodgers,

Descriptive Inorganic, Coordination, and Solid State Chemistry
,

Brooks/Cole,
2
nd

Ed
,
2002.

3.

D.F. Shriver, P.W. Atkins,
Inorganic Chemistry
, Oxford University Press, 3
rd

Ed, 19
99.



Technical drawing


Objective of the course

The purpose
of the course is to present of basic engineering graphics, geometry of apparatus
envelopes and applications of Computer
-
Aided Design (CAD), to enable students to read and
to realize both construc
tion drawing and technical documentation.


Course description

The students will have the opportunity to realize the drawing works of selected chemical
apparatus elements (projection, elements of tanks, intersections of process apparatus,
technological diag
rams), taking advantage of the traditional method as well as the modern
computer software like A
-
CAD, CHEM
-
CAD and acquire the skills of using ploter, digitizer
and scaner.

The main intention will to teach the preparation of artworks, connected with engine
ering
studies, ilustrations and technical drawings.


Reference


1.

Thomas E. French, Charles J. Vierck,
The fundamentals of engineering drawing

& graphic technology
, 4
-
th. ed., McGraw


Hill Company 1978.

2.

A.R.Eide, R.D. Jenison, L.H.Mashaw,
Engineering Graphi
cs Problem Books
,

McGraw


Hill Company 1985.

3.

Piko
ń, J.Hehlmann, R.Janowicz, B.Sąsiadek,
Atlas konstrukcji aparatury chemiocznej,

wyd. II zmienione i rozszerzone,

PWN, Warszawa 1987



Computer science


Objectives of the course

The course provides a basic knowledge of computer hardware and softw
are, introduce the
functions to which computers are applied, and examine the ways in which they are integrated
into human life. The course will also provide sufficient training in using typical software as
word editor, spreadsheet and presentation graphics

in chemistry.


Course description

The course comprises of 15 hr of lectures and 45 hr of practical training (laboratory).

Lectures focus on general knowledge on computers basics from a short history of their
development, their taxonomy with the impact on

modern PC, hardware, operating systems,
software applications. Typical software applications as text editors, spreadsheets, databases,
computer graphics are reviewed. The basic ideas lying behind computer networking and
telecommunication are presented. Ex
ploring the Internet as a source of different kinds of
information, including chemical. Finally problems concerning computer security and risks as
well as legal problems concerning use of computers are discussed.

During practical training in computer labor
atory students can improve their skills in using
typical office applications as Internet browser, text editor, spreadsheet and presentation
graphics. The special attention is paid to solving different mathematical problems applicable
to chemical technology

and engineering with the use of Excel and accompanying tools.




References

1.

G.

Beekman, E.

Rathswohl, Computer Confluence IT Edition, 5 ed, Prentice Hall, New
Jersey 2003.

2.

L.

Long, N.

Long,
Computers
, 10 ed. Prentice Hall, New Jersey 2002.
N.

Bandy
o
-
padhyay,
Computing for Non
-
Specialists
, Addison
-
Wesley, Harlow 2000.



Fluid mechanics


Objectives of the course

An objective of the course is to acquaint first
-
year students with the fundamental principles
governing the gas and liquid behaviour. Solving

of simple practical problems should broaden
the theoretical knowledge.


Course description

The course is divided into two parts: fluid statics and fluid dynamics. The first one comprises
properties of fluid such as density, viscosity, surface tension and
capillarity. Then pressure
measurements by the use of a barometer, piezometer, U
-
tube, differential micrometer and
Burdon gauge are discussed. The equilibrium equation for fluids at rest is derived and its
selected applications including Pascal’s law are s
hown. Liquid action on immersed surfaces
and bodies are presented under Archimedes’ principle and hydrostatic thrust on a plain or
curved surface. The second part deals with laminar and turbulent flow of liquid. The letter is
described starting from the fa
mous Reynolds experiment and then introducing concepts of
deterministic chaos and the Kolmogorov microscale of turbulence. A beauty and precision of
fluid dynamics is shown in the form of continuity and momentum equations (Euler, Cauchy
-
Lagrange and Navier
-
Stokes). More practical aspects of liquid flow are given by pressure
losses calculations in smooth and rough pipes and the integral form of Bernoulli equation.
Also some typical local pressure losses in elbows, diffusers, confusors and valves are
consider
ed. Transportation of liquids by pumps is shortly discussed together with flow and
pump system characteristic for impeller pumps. Main dependencies for steady
-
state and
unsteady
-
state discharge of liquid from a tank are derived. At the end, main devices us
ed in
fluid flow rate measurements, such as the Prandtl tube, Venturi meter, orifice meter,
anemometer and rotameter are presented.


References

1.

Y. A. Çengel, J. M. Cimbala,
Fluid mechanics
.
Fundamentals and Applications
,
McGraw Hill Co., New York 2006.

2.

R.
L. Daugherty, J.B. Franzini,
Fluid Mechanics with Engineering Applications
,
McGraw
-
Hill Book Co., New York 1977.

3.

D. B. Marghitu (Ed.),
Mechanical Engineer's Handbook
, Academic Press, London
2001.



Technical mechanics


Objectives of the course

An objective

of the course is to acquaint first
-
year students with the fundamental principles
describing the effects of forces on a rigid solid body, behaviour of an elastic body under the
action of various loads and to recognise different machine elements. The theory

is illustrated
by easy computational problems.


Course description

The course is divided into three parts: statics of material systems, strength of materials and
basic machine elements. The first one comprises: the model of rigid body, external,
supportin
g and internal forces, couples, moments, axioms of statics, reduction of the system
of forces, equilibrium and non
-
equilibrium systems of forces and friction phenomenon. In the
letter, Coulomb’s experiment, slide, rolling and belt friction are presented. T
he second one
considers: a concept of the elastic body, stress and deformation, principle of solidification and
Hooke’s law. Then main mechanical properties of materials and their measurements including
tension, compression, hardness and impact strength te
sts and also creep and fatigue
phenomena are discussed. A basic part of the strength of materials comprises simple cases of
stresses such as axial tension, simple bending, torsion and shearing in straight bars. All cases
are treated as hyperstatic problems

and are solved employing a set of equilibrium equations,
geometrical relations and physical relations. The permissive stress method and its usage are
also described. Additionally, main methods showing how to deal with compound cases
together with a concep
t of reduced stress and basic strength hypothesis are presented. In the
third part of the course various types of fastenings, couplings, clutches, slide bearings, rolling
bearings, brakes and power transfer systems (gears) are presented. The working princi
ples of
machine elements are considered and shown in simple sketches.


References

1.

J. L. Meriam,
Engineering Mechanics, vol.1


Statics
, John Wiley & Sons, New York
1987.

2.

N. M. Belyaev,
Strength of Materials
, MIR Publishers, Moscow 1979.

3.

J. A. Collins,
Mech
anical Design of Machine Elements
, John Wiley & Sons, New York
2003.



Applied mathematics II


Objectives of the course

The lecture is concerned with development, analysis, and practical application of various
mathematical methods and numerical techniques
that can be adapted successfully for the
solution of problems in modern engineering. The lecture should give enough background for
the students to enable specialized journals to be consulted fruitfully.


Course description

Ordinary differential equations (
ODE). Classification of ODE. Dimensions. Examples. Steady
state. General form of ODE. General integral. Particular solution. First order ODE. The
method of separation of variables. Linear ODE of first order. The homogeneous and
nonhomogeneous equation. B
ernoulli’s equation. Riccati’s equation. Coupled simultaneous
ODE. Second order ODE. The general solution. Two point boundary conditions. Danckwerts
conditions. Bolzman low of radiation.

Solution methods; method of undetermined coefficients, method of var
iation of parameters,
method of inverse operators. Developed slit flow. Heat exchanger parallel flow and counter
flow. Series solution methods and special Functions. Properties of infinite series. Legedre’s
equation. Bessel’s equation. Expansion of the con
tinuous function using orthogonal functions.
Numerical solution methods. Numerical integration (Trapezoid rule, Simpson’s rule). Error
control and extrapolation. Numerical solution of ODE ( Finite difference. Stability. Stiffness.
Explicit and implicit int
egration methods. Predictor
-
Corrector and Runge
-
Kutta methods. Step
size control). Numerical solution of ODE two point boundary value problem. Thomas
algorithm. Solution methods for nonlinear algebraic equations (Bisection method, Successive
substitution m
ethod, Newton
-
Raphson method). Partial differential equations (PDE). General
form of second order linear PDE in two independent variables. Types of PDE (parabolic,
hyperbolic and elliptic). Examples. Classical analytical methods of solving PDE (separation
of variables).

Numerical solution methods. Linear parabolic PDE (Forward difference equation, Backward
difference equation, Crank
-
Nicolson equation). Stability analysis. Linear hyperbolic PDE
(Lax method, Wendroff method, Split boundary value problems). Dy
namic behaviour of heat
exchangers. Method of characteristics. Elliptic and parabolic equations in two and three space
dimensions (Alternating
-
direction
-
implicit method ADI). Diffusion and dispersion. Nonlinear
parabolic equations (Iterating using old valu
e, Forward projection of coefficient of half level
in time, Backward and centered series projection).


References

1.

R.G. Rice and D.D. Do,
Applied Mathematics and Modeling for Chemical Engineers
,
Wiley, 1995.

2.

M.K. Jain,
Numerical Solution of Differential Equ
ations
, Wiley, 1984.



Physical chemistry


Objectives of the course

Description of the chemical systems that include reactants and products together with their
structure, state of the matter in their different stages of the reaction course is generally an
objective of the physical chemistry. This description covers phenomena and laws, which
using appropriate equations allow interpreting and predicting behaviour of the chemical
system at variety of physical conditions.


Course description

Equilibrium.
The pr
operties of gases, perfect and real gas, the gas laws. The First Law of
thermodynamics, thermochemistry, state functions. The Second Law, the direction of
spontaneous change, the efficiencies of thermal processes, the Helmholtz and Gibbs
functions, the che
mical potential. The change of state, phase diagrams, phase stability and
phase transitions. The thermodynamic description of mixtures, real solutions. The
electrochemical properties of ions in solution, electrochemical cells.
Change.

The kinetic
theory of

gases, the pressure of gas, collisions, transport properties, diffusion, thermal
conductivity, viscosity, ion transport. The rate of chemical reactions, empirical chemical
kinetics, accounting for the rate laws. The kinetics of complex reactions, chain re
actions,
polymerization kinetics, catalysis and oscillation. Reactive encounters, activated complex
theory. Processes at solid interfaces, the extend of adsorption, catalytic activity at surfaces.
Dynamic electrochemistry, the rate of charge transfer.
Calc
ulations in physical chemistry.

Thermodynamics, state of equilibrium, reactions kinetics, electrochemical cells.
Experimental
physical chemistry.

Partial molar entalphy of dissolution, heat of combustion, kinetics of
catalytic decomposition of hydrogen per
oxide, simulation of kinetics of complex reactions,
half
-
live of radioactive isotopes, measurements of dissociation constant and pH of solution,
EMF of galvanic cells and thermodynamic functions, isotherm of adsorption.


References

1.

P. W. Atkins, J. de Paul
a,
Atkins’ Physical Chemistry
, Oxford University Press, seventh
edition, 2002.

2.

R. A. Alberty, R.J. Silbey,
Physical Chemistry
, John Willey & Sons, Inc., 1992.



Analytical chemistry


Objectives of the course

The objective of this course is to present an in
tegrated approach of Analytical chemistry,
which incorporates the developments in basic chemistry, instrumentation and also considers
all aspects of data collecting and processing as well as the side effects of chemical
measurements.


Course description

T
his course will be divided into two parts. The first part will be devoted to the general aspects
of qualitative and quantitative analytical chemistry, definitions, sample preparations, stages of
analytical process, separation, concentration, measurements,
statistical evaluation of results,
errors, standards, reference materials and classical analytical techniques.

The second part will embrace instrumental methods of chemical analysis. The following
issues will be discussed: optical methods, atomic absorptio
n, liquid and TLC chromatography,
electrochemical methods, X
-
Ray, NMR, MS and hyphenated methods.

The essential application of instrumental methods in environmental protection, industrial and
pharmaceutical analysis will be presented.


References

1.

G.D. Chri
stian,
Analytical Chemistry
, New York, John Wiley & Sons,1994.

2.

K.A. Rubinson, J.F. Rubinson,
Contemporary Instrumental Analysis
, Upper Saddle
River: Prentice Hall, 2000.

3.

M. Valcarcel,
Principles of analytical chemistry
, Berlin, Springer 2000.

4.

G.W. Ewing,
I
nstrumental analysis
, McGraw Hill Book Company, New York 1985.



Organic chemistry


Objective of the course

The goal of this lecture is to give to students a background of organic chemistry. A student
who has completed this course should be able to approac
h the literature directly with
knowledge of modern basic organic chemistry.


Course description

The lecture is divided into three fundamental aspects of organic chemistry.

The first part is devoted to general organic chemistry: chemical bonding (localised

and
delocalised), reactive species (carbocations, carboanions, free radicals etc.), acidicity and
basicity or organic compounds, stereochemistry, effects of structure on reactivity. In the
second part organic reactions are discussed: aliphatic nucleophili
c and electrophilic
substitution, aromatic electrophilic and nucleophilic substitution, free radical substitution,
addition to carbon
-
carbon and carbon
-
hetero multiple bond, elimination and rearrangements.
The third part considers introduction to bioorgani
c chemistry. The chemistry of selected types
of biomolecules is presented, e.g. monosaccharides, nucleosides, and proteins. An application
of organic compounds in medicine will be also mentioned, particularly antitumor and antiviral
therapy.


References:

1.

F
.A. Carey,
Organic Chemistry
, 4
th

Ed., McGraw
-
Hill Higher Education, 2001.

2.

Marche’s Advanced Organic Chemistry
, 5
th

Ed., John Wiley & Sons Inc., 2001.

3.

J. McMurry,
Organic Chemistry
, Brooks Cole/Thomson Learning, London 2000.



Transport phenomena


Objectiv
es of the Course

Main objectives of the course are: (i) to provide students with the knowledge of heat and mass
transfer, (ii) to acquaint them with modelling and calculation of such processes, (iii) to teach
them how to design shell and tube heat exchange
r and packed column absorbers.


Course description

After introduction of the concepts of heat and mass transfer the following topics are
discussed: The Heat Diffusion Equation, Solutions Of The Heat Diffusion Equation, Overall
Heat Transfer Coefficient, Fo
uling Resistance, Heat Exchanger Design, Extended Use Of The
LMTD, Analysis Of Heat Conduction, The Well
-
Posed Problem, Dimensional Analysis, The
Buckingham Pi
-
Theorem, Transient And Multidimensional Heat Conduction, Convective
Heat Transfer, Laminar and T
urbulent Boundary Layers, Momentum Integral Method, Forced
Convection, Natural Convection & Film Condensation, Heat Transfer In Boiling, Dropwise
Condensation, Rate Laws and Transfer Coefficients, Types Of Diffusion, The Two Film
Theory, Overall Driving Fo
rces and Mass Transfer Coefficients, The Mass Balances,
Diffusion Coefficients, Transient Diffusion and Diffusion With Reaction, A Survey Of Mass
Transfer Coefficients, Phase Equilibria, Staged Operations, The Equilibrium Stage,
Continuous
-

Contact Operat
ions, Simultaneous Heat and Mass Transfer, Design of Mass
Transfer Equipment.


References

1.

T. Hobler,
Ruch ciepła i wymienniki
, WNT, Warszawa.

2.

T. Hobler,
Ruch masy i absorbery
,WNT, Warszawa.

3.

T. Hobler,
Mass Transfer and Absorbers
, Pergamon Press 1966.

4.

J. H. Lienhard IV, J. H. Lienhard V,
A Heat Transfer Textbook
, Phlogiston Press, 2003.

5.

Diran Basmadjian,
M
ass Transfer
, CRC Press, 2004.

6.

R. B. Bird, W. E. Stewart, E. N. Lightfoot,
Transport Phenomena
, John Wiley & Sons,
Inc., 2002.

7.

J. R. Welty, C. E. Wicks, R. E. Wilson,
Fundamentals of Momentum, Heat and Mass
Transfer
, John Wiley & Sons, Inc.

8.

Coulson and Ric
hardson,
Chemical Engineering
, Pergamon Press.



Industrial equipment


Objectives of the course

The course is focused on designing bases and selection of apparatuses and devices applied in
chemical and related industries. Special attention is put onto exac
t relationship among kinetics
of given process and functions fulfilled by designed apparatus.


Course description

The course brings near the practical principles of industrial designing. For this propose the
chosen mechanical and thermal operations like: s
olid materials transportation, liquids
pumping, gases transmission, vacuum making, liquid drops separation and liquids evaporation
in the industry scale are talked over, respectively. The mentioned issues are illustrated by
numerous practical examples. In
the light of a one thermal process the principles of material
as well as energy balance have been detailed presented. The differences of theoretical and real
balance as well as practical results presentation has been also shown. As a pendent in the
range o
f “thermal” topic, the possibilities of heat energy savings are discussed and illustrated
by definitely industrial examples.


Chemical technology (organic
)


Objective of the course

The course consists of lectures as well as seminars. It is especially focu
sed on the learning as
well as solving problems connected with the sources and application of raw materials as well
as unit operations used in organic chemical industry.


Course description

Teaching is especially focused on

organic primary building blocks,

intermediates, products
(bulk and fine chemicals) as well as industrial processes. Examples:

-

processing of crude oil and natural gas;

-

basic petrochemical products as fuels, raw materials and additives to polymers,
surfactants, drugs, pesticides and
dyes;

-

oxidation, hydrogenation, dehydrogenation, alkylation, halogenation, sulphonation,
nitration, esterification processes;

-

catalytic and non
-
catalytic processes in organic technology.

The thermodynamic, kinetic, economic, ecological and safety as
pects of technologies are
stressed.


References

1.

„Industrial Organic Chemistry
”,
K. Weissermel, H.
-
J. Arpe, Fourth Ed., Wiley
-
VCH
GmbH&Co. KgaA, Weinheim, 2003

2.


Petrochemical Processes;
Technical and economic characteristics
”,
A.Chauvel,
G.

Lefebvre, In
stitut Français du Pétrole Publications, TECHNIP, Paris, 1989

3.

Ullmann’s Encyclopedia of Industrial Chemistry
,
Fifth Ed., Wiley
-
VCH GmbH,
Weinheim, 1995



Chemical technology (inorganic
)


Objective of the course

The course consists of 3 parts: general, ino
rganic and organic. In general part the main stress
is laid on material and energy balances, in inorganic part the most important processes are
presented, the organic part is especially focused on the sources and application of raw
materials as well as uni
t operations used in organic chemical industry.


Course description

The course consists of lectures as well as seminars.

The idea of flowcharts is used for creating material and energy balances for selected systems
with and without chemical reactions.

The
best available technologies (BAT) for most important inorganic chemicals such as
ammonia, nitric acid, sulfuric acid and phosphoric acid, chlorine and caustic soda are
analysed with stress on ecological impact of each technology.

In organic part teaching i
s especially focused on organic primary building blocks,
intermediates, products (bulk and fine chemicals) as well as industrial processes. Examples:

-

processing of crude oil and natural gas;

-

basic petrochemical products as fuels, raw materials and addi
tives to polymers,
surfactants, drugs, pesticides and dyes;

-

oxidation, hydrogenation, dehydrogenation, alkylation, halogenation, sulphonation,
nitration, esterification processes;

-

catalytic and non
-
catalytic processes in organic technology.

The thermo
dynamic, kinetic, economic, ecological and safety aspects of technologies are
stressed.


References

1.

K. Weissermel, H.
-
J. Arpe,

Industrial Organic Chemistry
”,
Fourth Ed., Wiley
-
VCH
GmbH&Co. KgaA, Weinheim, 2003

2.

Ullmann’s Encyclopedia of Industrial Chemistr
y
,
Fifth Ed., Wiley
-
VCH GmbH,
Weinheim, 1995

3.

R.M. Felder, R.W. Rousseau,
Elementary Principles of Chemical Processes
, Third Ed.
John Wiley & Sons, New York 2000

4.

R. Turton, R.C. Bailie, W.B.Whiting, J.A.Shaeiwitz,
Analysis, Synthesis, and Design of
Chemical

Processes
, Prentice Hall, New Jersey 1998.


Unit operations


Objectives of the course

The two

semester course is divided into two parts: (1)


hydraulics of packed columns,
sedimentation, fluidization, dedusting, filtration and mixing, (2)


liquid extra
ction and
leaching. Fundamental principles of the operations, their similarities (analogies) and
distinctions, practical applicability, design methods, examples of individual constructions and
integrated technological systems are presented.


Course descrip
tion

Hydraulics of packed columns, sedimentation, fluidization, dedusting, filtration, mixing


process characteristics, main principles and their connection with actual environmental
problems, examples


practical application (e.g. thickeners, cyclones, f
ilters, mixers). Liquid
extraction


process characteristics, liquid equilibria, equipment and flowsheets (single
-
stage
extraction, multistage crosscurrent extraction, continuous countercurrent multistage
extraction, fractional extraction, economic balance
s, stage efficiency), constructions (agitated
vessels, mixer

settler cascades, spray and packed towers, mechanically agitated
countercurrent extractors). Leaching


process characteristics, initial preparation of the solid,
methods of operation and equipme
nt (
in

situ

leaching, percolation tanks, countercurrent
multiple contact


the
Shanks

system, filter

press leaching, agitated vessels, leaching during
grinding, continuous countercurrent decantation, leaching of vegetable seeds), stage
efficiency


practic
al equilibrium, single

stage leaching, multistage crosscurrent leaching,
multistage countercurrent leaching, rate of leaching.


References

1.

Kirk

Othmer Encyclopedia of Chemical Technology
, 4
th

Ed., Wiley


Interscience, New
York (1991).

2.

McKetta, J.J., Ed.,
Chemical Processing Handbook
, Marcel Dekker, New York (1993).

3.

McKetta, J.J., Ed.,
Unit Operations Handbook
, Marcel Dekker, New York (1993).

4.

Smith, J.C., Ed.,
Unit Operations of Chemical Engineering
, McGraw
-
Hill Education


Europe (2000).

5.

Perry, R.H., Green
, D.W., Ed.,
J. Perry’s Chemical Engineering Handbook
, McGraw
-
Hill, 7
th

Ed.
(1997).

Process thermodynamics


Objectives of the course

The course provides a modern approach to applied thermodynamics. After the course students
should possess a general underst
anding of the laws of thermodynamics and their
consequences for typical chemical systems. Gaseous systems, phase and chemical equilibria
in ideal and not
-
ideal systems are quantitatively treated with a number of worked examples.


Course description

The cou
rse comprises of 30 hr of lectures and 15 hr of classes.

The main topics which are covered are
:

1.

Process thermodynamics


basic concepts and definitions.

2.

Volumetric and thermodynamic properties of pure fluids: equations of state.

3.

The first law of thermodyna
mics: internal energy, enthalpy, energy balances.

4.

The second law of thermodynamics: entropy, Helmholtz energy, Gibbs energy, general
conditions of equilibrium.

5.

Open systems, the Gibbs
-
Duhem equation, chemical potential, fugacity and activity.

6.

Phase equilib
ria: the phase rule, the general equilibrium condition.

7.

Vapour
-
liquid equilibria.

8.

Solutions: partial molal properties, mixing and excess functions.

9.

Chemical equilibria: the equilibrium constant, equilibrium composition.

10.

Thermodynamic properties of electroc
hemical systems.


References

1.

P.

Infelta, Introductory Thermodynamics, Brown Walker Press, Boca Raton, Florida
2004.

2.

S.

I.

Sandler, Chemical and Engineering Thermodynamics, 3rd ed. John Wiley & Sons,
New York 1999.

3.

V. V. Nashchokin, Engineering Thermodynami
cs and Heat Transfer, Mir, Moscow
1979.

4.

W. R. Salzman, Chemical Thermodynamics, Dept. of Chemistry, University of Arizona,
Tucson, Arizona 85721, available at
http://www.chem.arizona.edu/~salzmanr

Indus
trial catalysis


Objectives of the course

Physicochemical background of catalysis, basic and most common catalytic transformations,
many applications of catalysis in heavy industry and in fine chemical production with
development and research in catalysis
.


Course description

The course consists of a lecture with a complementary seminar. The lecture encompasses
presentation of physicochemical basics of catalysis with both thermodynamic and kinetic
description. The basics are explained on homogeneous and he
terogeneous catalytic examples,
i.e.

hydrogenation of olefins. Further industrial catalytic processes are discussed:
esterification, Alkylation, Acylation, hydroformylation, carbonylation, Wacker process,
synthesis of sulphuric and nitric acids, synthesis
of ammonia, methanol, Fisher
-
Tropsch
process, oxidation of hydrocarbons leading to phenol, propylene oxide, synthesis of styrene,
electrocatalytic processes (fuel cells, etc.), phase transfer catalysis, catalytic petrochemical
processes (hydrotreating, ref
orming, MTBE synthesis, etc.) with some examples of enzymatic
processes as biocatalysis. On the seminars students present chosen topics from catalysis with
the most up
-
to
-
data news from technology and the development of catalysis together with
crucial rese
arch in this field.


References

1.

P. Atkins, J. de Paula,
Atkins' Physical Chemistry
,

Oxford University Press, Oxford
2002.

2.

G.W. Parshall, S.D. Ittel,
Homogeneous Catalysis
, Wiley Interscience, New York, 1992.

3.

N. Dorit, N. Herman,
Encyclopedic Dictionary of
Chemical Technology
, VCH Publ.,
New York, 1993.

Thermal process engineering


Objectives of the course

The course aims to acquaint students with the selected unit operations of thermal separation
methods, e.g. distillation, rectification and drying and als
o other issues of thermal engineering
of practical importance i.e. fuels and their combustion, fuel cells, heat recovery systems.


Course description

The selected unit operations of thermal separation: distillation, rectification, drying are
presented. The

theoretical background and designing bases are explained. Regarding
distillation and rectification elaborated are the topics of physical bases of the process,
equilibrium state and diagrams for binary systems, continuous and batch systems. The drying
issu
es are focused on problems like: physical bases, definitions of wet gases state,
psychrometric chart and its practical application, drying curves, mass and energy balances.
The relationships between process kinetics, operation parameters, energy consumptio
n as well
as the algorithm of designing procedure and apparatus selection are also discussed. Discussed
are also the properties of liquid, gaseous and solid fuels, basis of combustion processes and
to
-
date combustions techniques: fluidised bed combustion a
nd suspension fireing, methods of
NOx emission control. Topics also include introduction to fuel cells
-

basis of operation,
types/classification and properties, and heat recovery


operation principles and systems.


References

1.

M.J. Lockett,
Distillation t
ray fundamentals
, Cambridge University Press 1986

2.

H.Z. Kister “
Distillation Design
” McGraw
-
Hill, Inc. 1992

3.

G. Nonhebel, A.A.H. Moss,
Drying of solids in the chemical industry
, Butterworths
1971

4.

H.J. Perry, D.W. Green,
Perry’s Chemical Engineers’ Handbook
,
7
-
th ed. McGraw
-
Hill, Inc. 1997

Biotechnology


Objectives of the course

The students will obtain the basic information from biology, biochemistry and technology,
which are parts of biotechnology. It should help them understand the selected problems of
con
temporary biotechnology.


Course description

The course contains a few parts. First of all the cell biology is presented including its
construction and mechanisms of cellular information transduction. Genome management and
tools for genetic engineering and

cloning are presented. The major metabolic pathways of
basic cell nutrients: saccharides and nitrogen are also discussed. The second important topic is
enzymes, their classification, kinetics of enzymatic reactions and manners of their
immobilization. Thi
rd part is devoted for engineering principles for bioprocesses including
cells grow and stoichiometry of microbial growth, and bioreactors. The basic technological
operations and control of bioreactors are presented. In the last part the practical applicat
ions
of bioprocesses for the production of amino acids, carboxylic acids, antibiotics and others are
presented.


References

1.

Biochemistry, G. Zubay,
Wm. C. Brown Publishers
, London 1998.

2.

The organic chemistry of enzyme
-
catalysed reactions, R. B. Silverman,

3.

Academic Press
, Londyn, 2000.

4.

Basic
\
biotechnology, C. Ratledge, B. Kristiansen,
Cambridge University Press,

2002.

5.

Bioprocess Engineering, Basic Concepts, M. L. Shuler, F. Kargi,
Prentice Hall PTR
,
New York, 2002.

Process dynamics & control

Specialities “
Fine Chemicals and Speciality Materials” and Speciality “Process Engineering
for Green Chemical Technologies"


Objectives of the course

The goal is to learn about: basic concepts in dynamics and dynamic modelling, basic concepts
in automatic control. Anoth
er goal is to become familiar with equipment needed for
implementation of control.


Course description

This course explains basic principles of process operation and importance of dynamic
modelling. The subject area of the course is divided into three sect
ions:

o

Dynamics and dynamic modelling

o

Concepts in automatic control and types of control

o

Instrumentation for control implementation.

The first section covers the topics of dynamic model creation, standard form of the model,
linearization of the model, Lapla
ce transform and transfer function form of the model. This
section also presents dynamics analyze path and its importance for control. In second section
students become familiar with basic concepts in automatic control, different types of control
and prope
rties of closed loop control. The last section covers the topics of control
implementation (sensors & transmitters, actuators, distributed control systems and smart
instrumentation).

The lecture notes for this course and other information could be found at
:

http://terminator.ia.polsl.gliwice.pl/dydaktyka/pdc/


References

1.

W.L. Luyben,
Process Modelling, Simulation And Control For Chemical Engineers
,
McGraw
-
Hill Publishing Company, 1996, (2nd ed.).

2.

DOE Fundamentals Handbook
-

Instrumentation And Control

(2 vo
lumes), U.S.
Department of Energy, Washington 1992.

3.

D.R. Coughanowr,
Process Systems Analysisand Control
, McGraw
-
Hill Publishing
Company, 1991, (2nd ed.).

4.

C.A. Smith, A.B. Corripio,
Principles and Practice of Automatic Process Control
, John
Wiley & Sons, I
nc., 1997 (2nd ed.).



Electrical engineering & electronics


Objectives of the course

The main goal of the course is to provide students with general knowledge concerning
principles of construction, operation and application of electrical and electronic de
vices.


Course description

Basic concepts, electrostatic field, potential, magnetic field, electromagnetic field. Elements
of a circuit, resistor, inductor, capacitor, resistance, conductance, inductance, capacitance.
Voltage, current, Ohm’s law, ideal so
urces, real sources, controlled sources, power,
Kirchhoff’s laws. Introduction to AC circuits, phasor method and its application, impedance
and admittance, resonance. Basic electronic devices, diodes, transistors, operational
amplifiers, integrated circuit
s.

Circuits with magnetic coupling, coupled inductors, principle of transformer operation.
Electrical machines. Classification and basic information about electrical motors. Application
of electrical machines in chemistry.

Power system. Electrical power de
livery to chemical plants. Safety rules. Three phase systems
and their classifications.

Meters and measurements of electrical and non
-
electrical quantities, noise in measurement
systems, measuring equipment in chemical industry. Industrial communication ne
tworks.
Supervision systems.

Principles of digital signal processing, sampling and reconstruction. Fourier series and
transform, frequency spectrum. DFT and FFT. Filtering, analog and digital filters.


References

1.

D.J. Shanefield,
Industrial Electronics for

Engineers
, Chemists and Technicians, Noyes
Publication, Norwich 2001.

2.

J.H. McClellan, R.W. Schafer, M.A. Yoder,
Signal Processing First
,

Prentice
-
Hall,
Upper Saddle River 2003.

3.

N. Morris,
Electrical and Electronics Engineering Principles
, Longman Scientif
ic and
Technical, Harlow 1994.



Bioprocess engineering fundamentals


Objectives of the course

The course aims to introduce students to the topics of bioprocess engineering and engineering
aspects of using biological materials in the process industries.


D
escription of the course

Balances: elemental material balances for growth, product formation stoichiometry, heat
-
balance equations. Constraints for the growth of biomass. Kinetics of enzyme
-
catalyzed
reactions: simple kinetics with one and two substrates,
activation, deactivation, inhibition,
effects of pH and temperature. Kinetics of substrate utilization by microorganisms, product
formation and biomass production. Identification of kinetic parameters. Nutrient media.
Macrokinetics in heterogeneous systems
. Bioreactors, types, properties, specific applications
and mathematical modelling. Upstream and downstream processing. Product recovery
operations. Biological wastewater treatment: activated sludge process and anaerobic
technologies, properties, operation

principles.
Computations and simulations of selected
situations.


References

1.

J Nielsen, J. Villadsen,
Bioreaction Engineering Principles
, Plenum Press, New York
1994.

2.

J.E. Bailey, D.F. Ollis,
Biochemical Engineering Fundamentals
, 2 ed., McGraw
-
Hill
Inc, N
ew York 1986.

3.

K. Schuegerl,
Bioreaction Engineering
, Vol.2. Characteristic Features of Bioreactors, J.
Wiley, New York 1991.

Reactors and reaction engineering

Specializations “Fine Chemicals and Specialty Materials” and “Process Engineering for
Green Chem
ical Technologies"


Objectives of the course

The lecture is concerned with the fundamentals of chemical reaction engineering and reactor
design. It is intended primarily for instruction at basic level with the emphasis on reactor
design. However substantia
l portion of the material deals with advanced problems and could
be a background for further study.


Course description

Introduction; Chemical treatment steps, Stoichiometry (independence of reactions,
concentration changes with a single reaction and with
several reactions, rate of reaction); The
reaction order; Elementary reactions and molecularity. Thermochemistry; Heat of reaction
and its variation; Rate of generation of heat by reaction: Chemical equilibrium; The
calculation of homogeneous equilibrium c
ompositions. Kinetics of homogeneous reactions;
Concentration and temperature dependent terms of a rate equation; Searching for a
mechanism.

Mass balances of different reactor types; Batch operation; Continuous stirred tank reactor
CSTR: Tubular plug flow
reactor; Cascade of CSTR’s.

Homogeneous reactor design; Design for a single reaction; Design for multiple reactions
(parallel and series reactions). Comparison and choice of reactors for a single homogeneous
reaction. Nonideal Flow; Residence time distribu
tion, Models for nonideal flow; Dispersion
model. Catalyst and characterization; definitions and catalyst properties. Kinetics of catalytic
reactions; Surface reactions; Mechanisms and Kinetic Models; Synthesizing a rate law.
Design of reactors for gas
-
sol
id reactions. Heterogeneous data analysis for reactor design;
Catalyst deactivation. External diffusion effects in heterogeneous reactions. Diffusion and
reaction in porous catalysts; Spherical catalyst pellets; Internal and external transport
processes; I
nternal effectiveness factor; overall effectiveness factor. Heat and Mass transfer
and reaction in a packed bed; Conservation equations and simplifications; Autothermic
reactors.


References

1.

R. Aris,
Elementary Chemical Reactor Analysis
, Dover Publications

1989.

2.

O. Levenspiel,
Chemical Reaction Engineering
, John Wiley, 1962.

3.

H.S. Fogler,
Elements of Chemical Reaction Engineering
, Prentice
-
Hall, 1986.



Separation processes

Specializations “Fine Chemicals and Specialty Materials” and “Process Engineering for

Green Chemical Technologies"


Objectives of the course

Main objectives of the course are: (i) to provide students with the knowledge of solvent
extraction, leaching and supercritical extraction techniques, (ii) to acquaint them with
modelling and calculat
ion of such processes, (iii) to practice design of selected systems:
absorbers and continuous tray fractionation columns.


Course description

After introduction of the concepts of solvent extraction, leaching and supercritical extraction
the following topi
cs are discussed: liquid equilibria, prediction of the distribution, selection of
solvent and solvent recovery, methods of calculation of stagewise contact ternary systems
with one solvent, continuous contercurrent contact, laboratory equipment, pilot plan
t
acquisition data. Apparatus, equipment for stagewise contact, equipment for differential
-

continuous contact, issues of extractor economics, liquid extraction processes; petroleum
refining; fat, oil and similar processes; coke
-
oven processes; pharmaceut
icals; inorganic
processes; leaching, supercritical extraction.

Problems of mass diffusion and transfer are only noted outlined to consolidate the knowledge
and understanding of the processes and design.


References

1.

Diran Basmadjian,
Mass Transfer
, CRC Pre
ss, 2004.

2.

R. E. Treybal,
Liquid extraction
, Mc Graw
-
Hill, 1963.

3.

T. C. Lo, M. H. I. Bird, C. Hanson,
Handbook of Solvent Extraction
, John Willey, 1983.

4.

R. D. Noble, P. A. Terry,
Principles of Chemical Separations with Environmental
Applications
, Cambridge U
. P., 2004.

5.

E. L. Cussler, Diffusion, Mass Transfer In Fluid Systems, Cambridge U. P., 2003.



Gas cleaning and water treatment

Specialization “Process Engineering for Green Chemical Technologies"


Objectives of the course

Presentation of any waste treatme
nt systems and basic understanding of the fundamental
methods for gas cleaning and wastewater treatment.


Course description

The course is divided into two parts: gas cleaning and wastewater treatment. Water and air are
essential for life. If they become p
olluted its loses theirs values and can become a threat to
health. Some kinds of pollution can occur through natural process, however it is mostly
a

result of human activity. Therefore, as an introduction the laws and the regulations of the
country are dis
cussed. In the first part chemical engineering unit operation, commonly used
for the control of gases emission, are presented. The science and technology of settling
chambers, cyclones, inertial dust collectors, wet scrubbers, fluidized
-
bed, dust collector
s,
cloth filters and electrostatic precipitators are studied. It covers topics a type, performance,
sizing procedure, practical considerations, scientific principles and mechanisms. Additional,
three unit operations becoming more and more popular in the re
cent years: biofiltration,
membrane filtration and selective combustion methods are presented. The aim of the second
part is to provide the initial perspective of treatment, disposal and reuse of wastewater, brief
review of the historical background, curre
nt status and expected new trends of wastewater
engineering. Also the subject of source control, collection transmission and the units
operations: primary, secondary and advanced (tertiary) treatment of a typical wastewater plant
are presented. In the prim
ary treatment (physical removal of floatable and settleable solids)
physical operations such as screening, sedimentation and flotation are studied. During
secondary treatment (the biological removal of dissolved solids) biological and chemical
process incl
ude activated sludge, tricking filters and lagoons are described. Nowadays, an
increasing number of wastewater facilities employ tertiary treatment. Therefore this process is
also discussed during this course. Tertiary treatment may include processes to re
move
nutrients such as nitrogen and phosphorus, and carbon adsorption to remove chemicals. These
processes can be physical, biological, or chemical.


References

1.

K. Wark, C. F. Warner, W. T. Davis,
Air Pollution, Its Origin and Control
, Addison
Wesley Longm
an 1998.

2.

G. Tchobanoglous, F. L. Burton, Wastewater Engineering,
Treatment Disposal and
Reuse
, McGraw
-
Hill Inc. 1991.

3.

E. D. Schroeder,
Water and wastewater treatment
, McGraw
-
Hill 1977.



Membrane technologies

Specializations “Fine Chemicals and Specialty M
aterials” and “Process Engineering for
Green Chemical Technologies"


Objectives of the course

This course will enable students to understand and solve membrane
-
based separation/reaction
problems by acquiring in
-
depth knowledge in the area of membrane separ
ation mechanisms,
transport models, membrane permeability, membrane types and modules, and membrane
reactors.


Course description

Classification of membranes and membrane processes. Pressure driven membrane processes,
electro membrane processes. Driving fo
rces and mass transfer mechanisms. Polarization
phenomena and membrane fouling. Aspects of the design of membranes, membrane modules
and membrane systems. Operating principles of major membrane processes. Microfiltration
and ultrafiltration. Vapor permeati
on. Reverse osmosis and nanofiltration. Pervaporation.
Electrodialysis and related processes. Liquid membranes. Membrane bioseparations.
Membrane contactors. Membrane permeators for gas separation. Catalytic membrane
reactors. Selected applications and eco
nomic aspects of membrane technology in the fields of
biotechnology, controlled release, chemical and food processing, electrical power generation,
water and wastewater treatment, desalination. Hybrid and integrated processes. Future
progresses in membrane

engineering.


References

1.

R. W. Baker,

Membrane Technology and Applications,
John Wiley and Sons,
2004.

2.

M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,
1996.



Environmental protection

Specialization “Process Engineering for

Green Chemical Technologies"


Objective of the course

The main goals of this class are better understanding of the cost
-
benefit ratio of various
alternative energy sources. The main problems (acidic rain, ozone hole and greenhouse effect)
which have a gre
at impact on environment is discussed.


Objective of the course

Alternative energy refers to energy sources which are not based on the burning of fossil fuels
or the splitting of atoms. The renewed interest in this field of study comes from the
undesirable

effects of pollution (as witnessed today) both from burning fossil fuels and from
nuclear waste byproducts. Fortunately, there are many means of harnessing energy which
have less damaging impacts on our environment. This course deals with the issues of
al
ternative energy sources and sustainable energy sources. The intent is to perform an
objective cost
-
benefit analysis on each form of alternative energy in order to determine what
is practical on a large scale, as well as on the scale of the individual home
owner. Particular
attention is paid to the efficiency of each alternative energy source as well as what limitations
exist in terms of extracting useable energy. The course starts out with solar energy but then
moves to other alternative energy sources such

as, wind, tides, hydroelectric, ocean currents,
geothermal and biomass. During this course students also receive information about actual
global problems such as acid rain effect, greenhouse effect and ozone hole. Causes, effects,
and possible solutions a
re discussed. At the end, solid waste management (generation,
storage, collection, transportation and disposal) is presented.


References

1.

M. L. McKinney, R. M. Schoch,
Environmental Science
, Jones & Bartlett Publishers
2003
.

2.

J. R Fanchi,
Energy in the 21st

Century
, World Scientific, 2005.

3.

Maureen Christie,
The Ozone Layer
, Publisher Cambridge University Press, 2001.



Characterization of chemicals & materials structure & properties

Specialization “Fine Chemicals and Specialty Materials”


Objectives of the c
ourse

The course aims to acquaint students with modern spectroscopic and other instrumental
techniques employed in characterization of chemical compounds and manufactured out of
related materials, e.g. plastics, ceramics, composites and other specialty mat
erials.


Course description

The course consists of lectures and labs. The content of the course, especially the labs
programme, is limited to the techniques which are available at the Faculty of Chemistry of the
Silesian University of Technology. Theretofo
re, some important modern techniques will be
temporarily omitted due to their inaccessibility on the site. However, those included into the
course, compose themselves a representative set of the most important and widely used
nowadays instrumentation aimed

as above.

The course comprises: mass spectrometry (MS), UV, VIS and IR spectrophotometry, NMR
spectroscopy, gas and liquid chromatography (GC and HPLC), X
-
ray difractometry,
differential scanning calorimetry (DSC) and atomic force microscopy (AFM).
The le
cturers
are selected from among staff members having a long
-
term experience in using of given
techniques and capable of teaching both a good theoretical background and a practical use of
particular instrumentation.


References

1.

E. Derome,
Modern NMR Techniq
ues for Chemistry Research
, Pergamon Press, Oxford
1987.

2.

R. M. Silverstein, F. X. Webster,
Spectrometric Identification of Organic Compounds
,
6
-
th ed., J Wiley & Sons, New York, 1998.

3.

Uwe D. Neue,
HPLC Columns. Theory, Technology and Practice
, John Wiley &

Sons,
New York 1997.

4.

D. E. Sands,
Introduction to Crystallography
, Dover Publ. Inc., New York, 1993.

5.

S. N. Magonov, M.
-
H. Whangbo,
Surface Analysis with STM and AFM
, VCH
Weinheim , New York Basel, 1996.

6.

T. Hatakeyama, F. X. Quinn,
Thermal analysis. Fundam
entals and Applications to
Polymer Science
, John Wiley and Sons, West Sussex 2000.



Basic bioorganic chemistry

Optional course


Objectives of the course

The course is addressed to students interested in knowledge of chemical reactions occur at
molecular l
evel. The actual trends of investigation in molecular biology and biochemistry are
presented.


Course description

The course consists of lectures and seminars. The particular topics for lectures covered
receptor theories, drug


receptor interactions, the
structure of cell membranes and forms of
trans membrane transport. The special attention is paid for selected problems in chemistry of
nucleosides, nucleotides and nucleic acids, including methods for synthetic nucleic acids
preparation. Chemistry and form

of action of selected types of bioactive compounds including
antiviral, antibacterial and antineoplastic drugs are also discussed. The aspects of biogenetic
processes, prebiothic synthesis including key substrates and biomimetics are also mentioned.
Lectu
rer suggests the subjects for seminar but students can propose they individual topics.
The students prepare their own presentation using available sources: scientific papers, books
and information available by Internet.


References

1.

R. B. Silverman,
The Org
anic Chemistry of Drug Designe and Drug Action
, Academic
Press 1992.

2.

J. H. Block, J. M. Beale,
Organic medicinal and pharmaceutical chemistry
, Lippincott
Williams & Wilkins 2004.

3.

G. Zubay, Wm. C,
Biochemistry,

Brown Publishers, London 1998.

4.

R. B. Silverman
,
The organic chemistry of enzyme
-
catalysed reactions,

Academic Press,
Londyn, 2000.



General chemical technology II

Specializations: “Fine Chemicals and Specialty Materials” and “Process Engineering for
Green Chemical Technologies"


Objectives of the cou
rse

The laboratory course is especially focused on the learning as well as solving problems
connected with the main unit operations used in organic and inorganic chemical industry.


Course description

Part of the course, connected with organic industrial c
hemistry, allows students to recognize
and perform processes widely applied in industry (alkylation, oxidation, esterification, etc.).
The integration of some processes e.g. alkylation, oxidation, acid decomposition helps to
learn how to choose proper raw
materials, catalysts, reaction system and reaction conditions
(temperature, concentration, residence time and mixing) to obtain desired product with
a

highest selectivity or yield. The second part of the course acquaints students with inorganic


heterogen
eous (gas
-
liquid
-
solid) and catalytic processes (e.g. carbonisation of ammoniacal
brine and contact oxidation of sulphur dioxide).

Discussion about advantages and disadvantages of each system is also involved.
Thermodynamic, kinetic, economic, ecological a
nd safety aspects are stressed.


References

1.

K. Weissermel, H.J. Arpe,
Industrial Organic Chemistry
, Fourth Ed., Wiley
-
VCH
GmbH&Co. KgaA, Weinheim, 2003.

2.

A. Chauvel, G. Lefebvre,
Petrochemical Processes; Technical and economic
characteristics
, Institut Fran
çais du Pétrole Publications, TECHNIP, Paris, 1989.

3.

Ullmann’s Encyclopedia of Industrial Chemistry
,

Fifth Ed., Wiley
-
VCH GmbH,
Weinheim, 1995.



Principles in polymer chemistry

Specialization “Fine Chemicals and Specialty Materials”


Objectives of the cou
rse

The course aims to introduce undergraduate students to the field of polymer chemistry,
acquaint students with techniques of molecular weight determination and modern
spectroscopic techniques applied in the characterization of macromolecules.


Course de
scription

The course consists of lectures and labs. The content of the course includes the general
considerations of addition and step
-
growth polymerizations. The polyreactions will be
defined in the terms relating to reactions involving, organic compound
s with C=C or C=O
bond, heterocyclic compounds, the nature of the initiation, characteristics depending on which
of three initiation steps in polymerisation (mechanism of propagation


radical, cationic
anionic), and the termination of growing chains, and

copolymerisation.. Another route for the
preparation of polymers starts with the polycondensation (step
-
growth polymerisation). The
lecture also consists characterization of linear polycondensation, definitions of extent of
reaction p, number average degr
ee of polymerisation as a function of conversion, non
-
stoichiometric equivalence of bifunctional monomers, molecular weight distributions,
cyclization versus linear polycondensation.

The course comprise: osmometric, ebuliometric and cryoscopic methods, vis
cosity
measurement, end
-
group assay, size exclusion chromatography, light scattering method and
ESI
-
MS , MALDI
-
ToF


methods for molecular weight determination.


The labs programme, is limited to the experiments of radical polymerisation and
copolymerisat
ion, linear and crosslinked structure polymers, cationic polymerisation of
oxiranes and determination of kinetics of polycondensation.

.

Reference

1.

G. Odian,
Principles of Polymerization
, 3
-
th ed., J Wiley & Sons, New York, 1991.



The sol
-
gel and nanostru
ctured materials

Specialization “Fine Chemicals and Specialty Materials”


Objectives of the course

The course aims to introduce undergraduate students to the field of colloids applied to obtain
nanostructured materials, known as the sol
-
gel processing, and

also the use of liquid crystal
templates as the structure directing agents.


Course description

The course is divided into three parts: lectures, labs and seminars, to provide students with a
sound knowledge of both fundamental and practical issues of the

sol
-
gel processing.

Lectures provide an outline of the principal sol
-
gel processing issues, i.e. chemistry of
precursor solutions, colloidal particles and sols, gelation, ageing, gels. Classification and
properties of wet gels, drying, properties of dry g
els. Characterisation of sol
-
gel materials.
Metal
-
oxide gels and hybrid organic
-
inorganic materials. Ordered mesoporous materials made
with surfactant templates. Sintering of sol
-
gel ceramics. The seminars focus on the application
of sol
-
gel processing to
obtain advanced materials: coatings and thin films, microfibers, micro
-

and nanoparticles, monoliths.

Lab works aim to consolidate the knowledge of the method by carrying out practical synthesis
and characterisation of selected materials.


References

1.

A.C.

Pierre,
Introduction to sol
-
gel processing,
Kluver, Dodrecht 1998.

2.

J.D. Wright, N.A.J.M. Sommerdijk,
Sol
-
gel materials. Chemistry and application,
Gordon & Breach, Amsterdam 2001.

Process safety & wastes management

Specializations: “Fine Chemicals and Spe
cialty Materials” and “Process Engineering for
Green Chemical Technologies"


Objectives of the course

The objectives of the course are: (i) to give students the knowledge about Process Safety and
Waste Management, (ii) to form thinking in terms of safety a
nd environmental protection, (iii)
to practice the above by analysis of the major case history studies.


Course description

After an introduction to the problems of Process Safety and Waste Management, the
following topics will be considered: legislation o
f EU, USA, and Poland; hazard incident and
loss. Major hazard control, economics and insurance, management and management systems,
reliability engineering, hazard identification, reactive chemicals, hazard assessment, plant
sitting & layout, process design
, pressure system design, control system design, human factor
& human error, fire & explosions, toxic release, plant commissioning and inspection, plant
operation, accident research, waste management.


References

1.

C. Ray Asfahl,
Industrial Safety and Health

Management
, Prientice Hall, 2003
.

2.

J. P. Seiler,
Good laboratory Practice
, Springer, 2001
.

3.

R. E. Sanders,
Chemical Process Safety
, Learning from Case histories, B.H., 1999
.

4.

V. Marshall, S. Ruhemann,
Fundamentals of Process Safety
, IChemE, 2002
.

5.

S. Mannan,
Lee's Loss Prevention in the Process Industries
, Elsevier, 2005
.



Process system engineering

Specialization “Process Engineering for Green Chemical Technologies"


Objectives of the course

Fundamental introduction to the design of chemical processes. The b
asic procedures are
presented and explained in detail. Practical problems are solved to illustrate the usefulness of
provided rules. Selected modern CAD programs are presented to demonstrate their functions
and possibilities.


Course description

The desig
n process


its objectives, basic steps in designing and retrofitting the chemical
processes, creation of the new process concept, development of base case, detailed process
synthesis using algorithmic methods, detailed design, equipment sizing, cost estim
ation,
profitability analysis, optimization. Plantwide controllability assessment. Environmental
protection


environmental factors in process design. Safety considerations, design
approaches toward safe chemical plants.

Application of computers


basic sp
readsheets, mathematical packages, process simulators
(
ASPEN PLUS
,
HYSYS, PREO/II, CHEMCAD
, computational guidelines. Principles of
flowsheet simulation.

Detailed process creation


database preparation, thermophysical property data, role of
experiments, p
reliminary process synthesis


continuous/batch processing, chemical state of
the substance, synthesis steps


unit operations, synthesis tree, heuristics for process
synthesis.

Detailed process flowsheet, process integration, process simulation and pilot
plant testing.

Interaction of process design and automatic process control. Profitability analysis.


References

1.

J.M., Douglas,
Conceptual Design of Chemical Processes
, McGraw

Hill, New York
(1988).

2.

A.L. Myers, and W.D. Seider,
Introduction to Chemical Engi
neering and Computer
Calculations
, Prentice

Hall, Englewood Cliffs, NJ (1976).

3.

G.D. Ulrich,
A Guide to Chemical Engineering Process Design and Economics
, Wiley,
New York (1984).



Process equipment design

Specialization “
Process Engineering

for Green Chem
ical Technologies"


Objectives of the course

In the course the selected issues of process design like: (i) common presentation of mass end
energy balances (ii) optimum parameters of selected operations, (iii) block and flow
-
sheets
drawing, (iv) scale up, a
re discussed, respectively. The classes are focused on practical
designing of each operation.


Course description

The issues have been applied to the chemical and related industries and their specific
requirements. The selected topics of process equipment

design like: (i) common presentation
of mass and energy balance results in the form of figures and tables, (ii) optimum parameters
of selected operations, (iii) block and flow
-
sheets preparation for processes in chemical
industry, (iv) scaling up problems
, are presented, respectively. The practical backgrounds of
designing bases are mainly emphasised, as the concrete examples of engineering in the
domain of chemical industry are prepared for discussion. The proper apparatus selection is
also taken into con
sideration as well as the relationship among operation parameters, energy
consumption, and production economy.


References

1.

H.J. Perry,
Chemical Engineers’ Handbook
, 5
-
th ed. McGraw
-
Hill, Inc. 1973.

2.

W.L. McCabe, J.C. Smith,
Unit Operations of Chemical Engin
eering
, McGraw
-
Hill,
Inc. 1976.



Process simulation optimization and design

Specialization “
Process Engineering

for Green Chemical Technologies"


Objectives of the course

The main objective of the course is the introduction to up
-
to
-
date routines, procedu
res and
then computational systems (software), enabling simulation and optimisation of major
processes within the field of chemical engineering, followed by more detailed practical course
on selected engineering cases. A general knowledge, gained by the th
eoretical part of the
course, will be successively enhanced by the detailed discussion and practice of selected
engineering cases/processes by means of both, universal and highly specialised software
solutions.


Course description

Current state of art wit
hin the field of process simulators significantly enhance the process
design which leads to the work yield increase, hence more and more interest is found within
this specific field of technical solutions. As such this sub
-
discipline is found among the
imp
ortant ones for modern chemical and process engineer. Therefore the course will be
focused on both, theoretical background and the practical use of selected tools commonly
used in practice. A general introduction to principles and types of computational si
mulation,
optimisation and design of basic process within the field of chemical engineering will be
carried out. Selected unit operations and their more complex assemblies will be discussed in
view of the potential use of either universal software, like Ma
thCAD, and more complex
solutions such as very advanced process simulators, namely ChemCAD.

Theoretical part of the course will comprise of the following, key issues:

-

brief introduction to selected major process,

-

standard routines of process simulation, op
timisation and design (general overview),

-

general introduction to process automation,

-

theoretical background of modern solutions;

o

implementation of simple tools e.g. Excel worksheets and their capabilities,

o

more advanced computational systems e.g. MathCAD,

o

high
-
end solutions like ASPEN, HYSYS and ChemCAD.

Successive practical part of the course will include:

-

examples of design routines enhancement by means of simple tools like own
-
developed
worksheets,

-

practicalities relevant to MathCAD system, enabling use
r friendly implementation of more
advanced mathematical engines within the engineering design procedure,

-

the practical use of ChemCAD system for simulation, optimisation and design of selected
unit operations and more complex systems.

Economical aspects of

process optimisation will be also addressed to during both parts of the
course. Each part of the theoretical course will be reflected by the relevant practice scope.


References

1.

R.H. Perry, D.W. Green,
Perry's Chemical Engineers' Handbook
, (7th Edition),
McGraw
-
Hill, (1997).

2.

A.L. Myers, W.D. Seider,
Introduction to Chemical Engineering and Computer
Calculations
, Prentice
-
Hall, Englewood Cliffs, NJ (1976).

3.

G.D. Ulrich,
A guide to Chemical Engineering Process Design and Economics
, Wiley,
New York (1984).

4.

Che
mCAD 5 Manual, ChemCAD 5 Example Book, ChemCAD 5 Training Book
.
(available from lecturers).



Manufacturing, processing and application of polymers

Specialization “Fine Chemicals and Specialty Materials”


Objectives of the course

The course aims to introdu
ce undergraduate students to basics of industrial methods of
manufacturing of polymers, their basic use properties and processing as well as the scope of
their conventional and uncommon applications related to the properties of selected specialty
polymers.



Course description

The course consists of lectures and labs. The lectures introduce the students into industrially
important methods of manufacturing of polymers and resins illustrated by technology of
selected commodity polymers, such as PE, PS, PVC, P
ET, PC, and EP. Basic properties of
plastics and relation with their application are discussed. Methods of tailoring their properties
by chemical or physical modification are presented as well. Main methods of processing of
plastics, both thermoplastic an
d thermoset ones are presented too. Introduction in basic
practical problems of manufacturing, processing and application of the polymers is followed
with presentation of the polymers and polymeric materials displaying special properties and
purposed for
special applications, such as resins for coatings, high performance polymers
including LC ones, stimuli sensitive polymers, shape memory polymers etc.

Students will verify their theoretical background concerning polymers and resins during
laboratory exerci
ses based on preparation, characterization and processing of epoxy resins.


References

1.

C.D.Craver, C.E.Carraher, Jr.,
Applied Polymer Science. 21
st

Century
, Elsevier,
Amsterdam 2000.

2.

C.A.Harper, E.M.Petrie,
Plastics Materials and Processes: a Concise Encyc
lopedia
,
Wiley, 2003.

3.

D.Rosato,
Plastics Processing Data Handbook
, Chapman & Hall, London 1997.

4.

D.Stoy (Ed.),
Paints, Coatings and Solvents
, VCH, Weinheim 1993.

5.

T.Brock, M.Grotelklaes, P.Mischke,
European Coatings Handbook
, C.R.Vincentz
Verlag, Hanover 200
0.



Fine chemicals


synthesis and application

Specialization “Fine Chemicals and Specialty Materials”


Objectives of the course

The goal of the course is to introduce some theoretical and practical problems connected with
fine chemicals. It concerns synt
hesis of different groups of fine chemicals, process
development, environmental factor and registration.


Course description

The course consists of lectures, seminars and labs. Lectures provide the information
concerning production of fine chemicals, prod
uct life cycle, registration problems and
environmental factor as well as principles of development of processes. Examples of
production of the particular groups of fine chemicals will also be given. The laboratory course
focuses on the practical applicati
on of knowledge about synthesis of fine chemicals using
different methods, catalysts and systems e.g. phase transfer catalysis as well as ionic liquids.
Syntheses of plasticizers, dyes, intermediates, cosmetics ingredients and others as well as their
appli
cation are also part of the lab course. Seminars introduce discussion about other groups
of fine and specialty chemicals like plant protection products, biocides, pharmaceuticals,
vitamins, etc.


References

1.

N. G. Anderson,
“Practical Process Research and D
evelopment”,
Academic Press,
New York, 2000.

2.

D.F. Williams, W.H. Schmitt, "
Chemistry and Technology of the Cosmetics and
Toiletries Industry"
, Blackie Academic & Proffessional, New York 1996.

3.

Sheldon R.A., van Bekkum H.,
Fine Chemicals through Heterogeneou
s Catalysis,

Wiley
-
VCH, Weinheim, 2001.

4.

Peter Wasserscheid, Tom Welton (Eds.)

Ionic Liquids in Synthesis

, WILEY
-
VCH
2003.

5.

Ullmann's Encyclopedia of Industrial Chemistry,
Vol.
A20, 193, VCH
Verlagsgesellschaft, Weinheim 1994.



Bioprocesses for environmen
tal protection

Specialization “Process Engineering for Green Chemical Technologies"


Objectives of the course

The course aims to acquaint students with the applications of bioprocesses to tackle major
issues of environmental protection, i.e. wastewater, ai
r, land and waste treatment.


Course description

Regulations and monitoring parameters. Wastewater treatment


general background, primary
and secondary pollutants. Review of the methods
-

aerobic and anaerobic processes
-

typical
parameters, selection of
the method. Activated sludge process


balances, kinetics of
digestion. Nitrogen and phosphorous removal. Nitrification and denitrification. Contact
stabilisation. Modelling and scale up. Selection of aerators. Anaerobic treatment


process
fundamentals, k
inetics of digestion, production of biogas, modelling and scale up. Removal of
VOC on biofilters. Composting of solid wastes. Typical set ups and plant configurations.


References

1.

H.
-
J. Rehm, G. Reed, eds.,
Biotechnology
, vol. 11a. J. Winter , ed, Environm
ental
Processes I, VCH
-
Wiley, Weinheim 1999.

2.

K. Schruegerl,
Bioreaction Engineering
, J.Wiley, Chichester 1991.

Mass crystallization

Specialization “Process Engineering for Green Chemical Technologies"


Objectives of the course

Fundamental introduction to t
he mass crystallization problems. Process design and
overcoming the possible operation problems. Crystallization kinetics and its interaction with
side

phenomena. Mathematical models of the process. Practical applicability of mass
crystallization operation
.


Course description

Fundamentals of mass crystallization from solution. Mass crystallization as a unit operation.
Definition of crystal size and shape. Solubility and supersaturation. Nucleation phenomena


their mechanisms and possible sources of nuclei

in industrial crystallizers. Primary nucleation


homogeneous and heterogeneous. Origin of secondary nuclei. Crystal growth


mass
transport through the film, surface integration processes and their kinetics. Size dependent
crystal growth. Growth rate dis
persion. Crystal growth rate expressions. Mathematical
modeling of the crystallizing systems. Population balance concept. General population
equation. Moments of the distribution. Average sizes. Coefficient of variation


CV. An
MSMPR crystallizer model


an idealized configuration concept. Population balance for
MSMPR configuration. Population density distribution function


for size independent and
size dependent growth kinetics. Selected more complex population functions


deviations
from MSMPR crystalli
zer configuration, internal classification of solids, external
classification, attrition, agglomeration. Derivation of pure crystallization kinetics. Derivation
of crystallization kinetics from distributions affected by population functions. Physical
trans
port phenomena in mass crystallization


influence of hydrodynamics on the system’s
performance and crystal product’s quality. Sampling and analyzing the crystallizing systems.
Crystallizer design (batch and continuous). Reaction

crystallization (precipita
tion) systems


their design and practical application.


References

1.

S.J. Jančić, P.A.M. Grootscholten,
Industrial Crystallization
, Delft University Press, D.
Reidel Publishing Company (1984).

2.

J. Nývlt,
Industrial crystallization


the present state of the
art
, Verlag Chemie,
Weinheim


New York (1978).

3.

J. Nývlt, O. Söhnel, M. Matuchová, M. Broul,
The kinetics of industrial crystallization
,
Elsevier, Amsterdam

Oxford

New York

Tokyo (1985).