Documents availablex

apprenticegunnerInternet and Web Development

Oct 22, 2013 (3 years and 10 months ago)

133 views

PRINTED
Amrein
, A.L.,
Berliner
, D. C. (2003).
The effects of high
-
stakes testing on
student motivation and learning.

Educational Leadership
, 60 (5), 32
-
38.


-
accessible through ERIC

PRINTED
Berliner, D.C. (1993).

The 100
-
year journey of Educational Psychology:
From interest, to disdain, to respect for practice. In T.K. Fagan and G.R. Vandenbos
(Eds.)
Exploring Applied Psychology Origins and Critical Analysis: Master Lectures in
Psychology.
Washington, D.C: APA.



accessible
on course website

PRINTED
Boekaerts, M. (2002).
Motivation to Learn.

Geneva, Switzerland:
International Bureau of Education Publications Unit.


-
accessible through ERIC

NOT ON ERIC
Brown, A.L. (1994). The advancement of learning.
Educational
Researcher, 23
(8), 4
-
12.


-
accessible through ERIC

Chance, P. (1992). The rewards of learning.
Phi Delta Kappan, 74

(3), 200
-
207.


-
accessible
on

course website

Chance, P. (1993). Sticking up for rewards.
Phi Delta Kappan, 74
(10), 787
-
790.


-
accessible
on

course website, included with Kohn (1993) article

NOT ON ERIC
Cohen, D.K. (1998). Dewey’s Problem.
The Elementary School
Journal, 98
(5), 427
-
446.


-
selection: read pages 427
-
437, until “Society and School”.


-
accessible through ERIC

PRIN
TED
Cohn, A. (2001). Positive Behavioral Supports: Information for Educators.
National Association of School Psychologists. Retrieved March 28, 2009 from:
http://www.nasponline.org/
resources/factsheets/pbs_fs.aspx


-
accessible
on course website

PRINTED
Heffner, C.L. (2001).
Psychology 101
. AllPsych Online. Retrieved March
28, 2009 from:
http://allpsych.com/psychology101/index.html

-
selection: Chapter 4: Learning Theory and Behavioral

Psychology (read all
three sections of this chapter)

-
accessible
on course website

Kamin, L. (1995). The pioneers of IQ testing. In R. Jacoby and N. Glauberman
(Eds.)
The Bell Curve Debate: History, Documents, Opinions.
New York: Times
Books



accessible

on

course website


Kohn, A. (1993). Rewards verses learning: A response to Paul Chance.
Phi Delta
Kappan, 74
(10), 783
-
787.


-
accessible
on

course website

PRINTED
Lave, J. (1985). Introduction: Situationally specific practice.
Anthropology and Education Quarterly, 16
(3), 171
-
176.


-
accessible
on

course website

PRINTED
McLeod, S.A.

(2007).
Simply Psychology. Retrieved March 28, 2008
from:
http://www.simplypsychology.pwp.blueyonder.co.uk/

-
selection 1: “Piaget's Theory of Child Development”


accessible
on course
website

-
selection 2: “Vygotsky's Theory of Social Development”


accessible
on
course website

PRINTED
Moran, S., Kornhaber, M.,
& Gardner, H. (2006). Orchestrating multiple
intelligences.
Educational Leadership, 64
(1), 22
-
27.


-
accessible through ERIC

PRINTED
Pugh,K. & Girod, M. (2007). Science, Art, and Experience: Constructing a
Science Pedagogy from Dewey’s Aesthetics.
Journal of Science Teacher Education,
18,
9
-
27.


-
accessible through ERIC

ALREAD READ
Skinner’s utopia: Panacea, or path to hell? (1971, September 20).
Time,
47
-
53.

-

accessible
on course website

Smith, M.K. (2009). Communities of practice.
The Encyclope
dia of Informal
Education.
Retrieved June 20, 2010 from
http://www.infed.org/biblio/communities_of_practice.htm
.


-
accessible
on course website


NOT ON ERIC
Tomlinson, S. (1997). Edwar
d Lee Thorndike and John Dewey on the
science of education.
Oxford Review of Education, 23

(3), 365
-
383.


-
accessible through ERIC

Vygotsky, L. (1978). In
Mind in Society
. (Trans. M. Cole). Cambridge, MA: Harvard
University Press.



selection: Chapter 4,
Interaction between Learning and Development (pp.
79
-
91)

-

accessible
on course website


Widmayer, S. (N.D.)
Schema Theory: An Introduction.
Retrieved
March 28, 2009
from:
http://www2.yk.psu.edu/~jlg18/506/SchemaTheory.pdf


-
accessible
on

course website

Willingham, D.T. (2008). What is developmentally appropriate practice?
American
Educator, 32

(2), 34
-
39

-

accessible
on

course website



http://www.nasponline.org/resources/factsheets/pbs_fs.aspx



Positive Behavioral Supports

Information for Educators

By
Andrea M. Cohn

What is Positive Behavioral Support?

Positive Behavioral Support (PBS) is an empirically validated, function
-
based approach to eliminate
challenging behaviors and replace them with prosocial skills.


Use of PBS decreases the need for more
in
trusive or aversive interventions (i.e., punishment or suspension) and can lead to both systemic as
well as individualized change.



PBS can target an individual student or an entire school, as it does not focus exclusively on the student,
but also include
s changing environmental variables such as the physical setting, task demands,
curriculum, instructional pace and individualized reinforcement.


Thus it is successful with a wide
range of students, in a wide range of contexts, with a wide range of behavior
s.

Blending behavioral science, empirically validated procedures, durable systems change and an
emphasis on socially important outcomes, PBS always involves data
-
based decision making using
functional behavioral assessment and ongoing monitoring of interve
ntion impact.



According to IDEA '97, PBS is the recommended form of intervention for dealing with challenging
behavior in children with disabilities.


In Fiscal Year 1999, the U.S. Department of Education's Office of
Special Education Programs in collabo
ration with Safe and Drug Free Schools supported a Center for
Positive Behavioral Interventions and Supports with a grant of almost $600,000.


Information from this
center is available at
www.pbis.org
.


Additionally, th
e U.S. government continues to support a project
at the University of Kansas (Beach Center on Families and Disability) to promote programs related to
the personal needs of infants, toddlers, children and youth with disabilities; this program supports the
u
se of PBS to help children with disabilities who demonstrate challenging behavior.

Why Do We Need PBS?



Problem behavior is the single most common reason why students are removed from regular
classrooms.


Even though students with extreme problem behavior r
epresent only 20% of school
enrollment, they can account for more than 50% of behavioral incidents.



Harsh punishment and zero tolerance policies have not been effective at either improving
behavioral climate in schools, or preventing students with problem
behaviors from entering the
juvenile justice system.



Three years after being excluded from school, almost 70% of these youth have been arrested.

Failure to implement IDEA, due to a lack of incentives or negative attitudes toward children with
challenging b
ehaviors by administrators, policy makers and school personnel, is unacceptable. Students
should
not

be excluded from school based solely upon inappropriate social behavior. Appropriate
services can readily address and modify many of these behaviors, leadi
ng to more positive outcomes
than simple punishment.

How is PBS Implemented in School Settings?

PBS is based on
behavioral theory
; problem behavior continues to occur because it is consistently
followed by the child getting something positive or escaping
something negative. By focusing on the
contexts

and
outcomes

of the behavior, it is possible to determine the
functions

of the behavior,
make the problem behavior less effective and efficient, and make the
desired behavior

more
functional.


This often invo
lves changing systems, altering environments and teaching new skills, as
well as focusing on the problem behavior.

The most crucial part of devising PBS plans is the
Functional Behavioral Assessment

(FBA), which
reveals information about the antecedents, consequences, and frequency of challenging behavior. FBAs
also help to identify any co
-
occurring variables.


Conducting FBAs doubles the success rate of an
intervention.

PBS plans are
individualized

and
data
-
based

and include procedures for monitoring, evaluating and
reassessing the process. PBS should be a
collaborative

effort among parents, school psychologists,
teachers, counselors and administrators; all partners should be committed to the plan an
d its
implementation.


PBS is more effective when it includes the target individual as well as other
significant individuals (i.e., peers, teachers, and parents).

High
fidelity

of implementation is required to maximize outcomes; therefore, interventions sh
ould be
applied by educators in the school environment. School psychologists are ideally qualified to conduct
FBAs, implement PBS plans and train other educators and parents in behavioral intervention
techniques.

What Are the Benefits of PBS?

All students,

both disabled and non
-
disabled, can benefit from PBS:



Research conducted over the past 15 years has shown that PBS is effective in promoting
positive behavior in students and schools.


Use of PBS as a strategy to maintain appropriate
social behavior will
make schools safer.


Safer schools are more effective learning
environments.



Schools that implement system
-
wide interventions also report increased time engaged in
academic activities and improved academic performance.



Schools that employ system
-
wide inte
rventions for problem behavior prevention indicate
reductions in office discipline referrals of 20
-
60%.



Appropriately implemented PBS can lead to dramatic improvements that have long
-
term
effects on the lifestyle, functional communication skills, and probl
em behavior in individuals
with disabilities.



A review of research on PBS effectiveness showed that there was over a 90% reduction in
problem behavior in over half of the studies; the problem behavior stopped completely in over
26% of the studies.

How Can
We Improve Implementation of PBS?

Although it is commendable that many states require functional behavior assessments before the
development of significant behavioral interventions, they often occur reactively, or after the behavior
has become a significan
t problem (i.e., after a student's behavior results in multiple suspensions or a
drug/weapons infraction).


After a crisis occurs, the focus is on punishment and exclusion.


Additionally, school
-
based interventions commonly consist of unproven strategies a
nd are implemented
by staff who lack the training to deal with the problems effectively.


When coordination is lacking
among schools and other agencies, the primary responsibility for behavior is placed on families, who
receive little support.


Effective i
mplementation of PBS includes:



An
FBA
, conducted when the problem behavior is first observed or as a
proactive

activity



Focus both on
prevention

of problem behaviors and
early access

to effective behavior
support.





Culturally competent, family
-
friendly

behavior support



Implementation with
sufficient intensity and precision

to produce behavioral gains that have
a significant and durable impact on the academic, social and living options available to the
student.



References

Carr, E. G., Horner, R. H., T
urnbull, A. P., Marquis, J. G., McLaughlin, D. M., McAtee, M. L., Smith, C.
E., Ryan, K. A., Ruef, M. B., Doolabh, A., & Braddock, D. (1999
).


Positive behavior support for people
with developmental disabilities: A research synthesis.


Washington, D.C.: Am
erican Association on
Mental Retardation.

Heumann, J., & Warlick, K. (2001).
Prevention research & the IDEA discipline provisions: A guide for
school administrators
.


Available
:
www.ed.g
ov/offices/OSERS/OSEP/adminbeh.web.pdf
.

Horner, R. H., Crone, D. A., & Stiller, B.


(2001, March). The role of school psychologists in establishing
positive behavior support: Collaborating in systems change at the school
-
wide level.


Communiqué,
29
(6), 10
-
12.

Skiba, R. J.


(2000, August).


Zero tolerance, zero evidence: An analysis of school disciplinary
practice.


(Policy Research Rep. No. SRS2).

Sugai, G., & Horner, R. (2001, June
).


School climate and discipline: Going to scale
.


The National
Summit on t
he Shared Implementation of IDEA, Washington, D.C. Available at:
www.ideainfo.org


U.S. Department of Education.


(2000).


Applying positive behavioral support in schools
:
Twenty
-
second Annual Report to Congress on t
he Implementation of the Individuals with Disability Act.


Washington, D.C.: Author.

Walker, H. Colvin, G., & Ramsey, E. (1995).
Antisocial behavior in public school: Strategies and best
practices.

Pacific Grove, CA: Brooks/Cole.

Andrea M. Cohn is a
doctoral student in the school psychology program at the University of Maryland;
this fact sheet was developed during her summer (2001) internship at NASP Headquarters.

©2001, National Association of School Psychologists

4340 East West Highway, #402, Bethe
sda, MD
20814


Are there any "ancient" ideas on the workings of learning that you feel still
hold true today? Berliner credits Thorndike with advancing Educational
Psychology while critiquing him for limiting it: what did Thorndike do right,
according to
Berliner, and what did he do wrong? How did Thorndike's views
differ from those of the other founders of the field, James, Hall, and Dewey?
Which of these theorists' ideas hold the most appeal for you, and why?

Based
on your experience, do you agree with B
erliner that Educational Psychology
has at times been greatly disconnected from schools? Do you see this
changing, as Berliner does, or do you believe that the theory/practice divide is
alive and well? How have you used Educational Psychology (or not!) in
your
own practice? How do you anticipate using it in the future?

What does the behaviorist account of learning look like? Which aspects of human learning, behavior, and
activity do behaviorists study, and which aspects do they ignore? Why do behaviorists adopt this narrow
view of human activity? How do classical and ope
rant conditioning differ from one another? Can you think
of some examples of both types of conditioning in classrooms? Does your classroom employ the
reinforcements and/or punishments of operant conditioning? The associations of classical conditioning?
Wha
t moral or philosophical issues might arise in the application of behaviorism to schooling? Where do
you stand on the use of behaviorist theory and practice in schools?

Behaviorist

learning is
to change something on the outside to cause an action inside.

Change

something in the
world around us to change something within us is the way I think about it. For
example, if I was not fed for two days
,
and a pizza was put in front of me, I would try a variety
of actions (e.g. sing, dance, sit, stand, etc) to ge
t the food. When one
(dancing)
worked, I would
do it again and again

to get more pizza
. Eventually, when I saw a pizza box

or a pizza delivery
person,
I would automatically
dance without
thinking. This is classical conditioning. We
develop responses
to

a stimulus

that are not normal.



I can relate to
classical learning. W
hen
I smell a
certain kind of cologne
,
I automatically think
back to an old boyfriend who I liked greatly and smile.

It just happens involuntarily. In the
classroom, I play some sm
ooth jazz music during writing time to calm the students and turn the
lights off. This automatically quiets the class and
helps them
focus on
a
task.


Operant conditioning is our actions to continue [or not continue] are determined by how
someone reacts t
o our behavior. The behavior comes first and then the reaction. I

used this
method in my classroom last year.
When students walked down the hallway quietly, got a
compl
i
ment from a teacher, or were seated and ready within 2 ½ minutes, then I would put
m
arbles in a jar. Full jar=an ice cream party.


I think a lot of “educational” computer
/internet

games fall into this category. I see this in my
classroom on a website called MathWhizz which is used greatly in my school district. Students
get taught a
lesson and then do ten problems. If they get them all correct, they get points to buy
a virtual pet and accessories. If not, the lesson gets recycled through at another time.


We
, as educators,
use behavioral learning
techniques

all the time. “Praise
the good and ignore
the bad.” The bad actions will cease when they see they
see others get praised for positive
behaviors. I do it all the time. [works great for K
-
2] As parents, I think it comes with the child in
the delivery room and as educators, whe
n we get our first teaching license for TSPC.


Behaviorist learning
does not take into consideration
the
health of
the
body or mind, emotion,
upbringing,
and environmental

issues (e.g. religion, language, culture,
socioeconomic levels,
parental involvement
, etc.) It takes out the individuality and makes us machines.

It
dehumanizes us.



Piagetian theory and Schema theory are both aspects of Cognitive theory. In general, how does the learner (the
student) look different from a Cognitive perspective than f
rom a Behaviorist perspective? Looking at Piaget in
particular, how have his theories changed our thinking about child development? According to Willingham, how

has
developmental theory been updated since Piaget's time? How can developmental theory be put
to use in the
classroom, and how should it
not

be used?

According to Widmayer
, how

does

Schema theory

describe learning, and
what instructional strategies can be derived from

Schema theory?

In general, how

do the methods and outcomes of
these Cognitive

theories differ from the methods and outcomes associated with Behaviorism?

How
can a teacher
use the methods associated with each type of theory to

achieve different sorts of classroom outcomes?

Piaget brought a new approach to psychology world. The Behaviorists focused on changing the
environment to change the thought patterns ins
ide. No value was given to thought processes or
developmental changes. Piaget determined that humans go through stages of cognitive
development through his life, some never completing levels. As babies, they learn how to think
through movement, senses,

and trial and error. (Sensorimotor). Then move to preoperational
where the idea is that everyone sees, hears, and feels the same way as they do, and they cannot
see from other’s view. Language comes into play. Concrete operational takes place around 7
-
11
years old where thinking is done logically about concrete objects, and finally formal operational
is where abstract thinking, inferring, predicting, and other high
-
level thinking occurs.

Wellingham

refutes Piaget’s theory of schema and the four stages. He states that the
development depends on the task, the child, and the moment in time. A child can perform a task
two different ways on two different days. The proof depends what you ask to them to
understand
and how you want them to show how they understand it. If a child is not being able to show
proficiency, it may be they did not understand the concept or they could not show you their
knowledge in your desired way. He suggested not instructing
on developmental levels but
constantly change strategies and methods of presenting problems and solving problems.

Widmayer’s focus is schema. Schema is like the “building blocks” or the organization in your
head and its rules. It is organized by meaning
and experience to help a person predict and
understand. She encourages educators to activate prior knowledge, use preview strategies when
reading text, and make connections from current schema to the new schema being introduced.








What is the relati
onship between learning and development in Vygotsky's theories? How does language
acquisition demonstrate this relationship? How is this relationship different from that put forth by
Skinner (Behaviorist)

or Piaget (Cognitive)? What else is different about

Vyogotsky's ideas, and
his

picture of human nature, compared to the Behaviorist and Cognitive perspectives?

What is the Zone
of Proximal Development (ZPD), and how can this concept guide developmental research and
educational practice? What are some

clas
sroom practices associated with Vygotskian theory, and how
are they different from Behaviorist and Cognitive practices in terms of form and

of expected
results?

How does Lave describe the difference between her own Situative perspective and the
Cognitive i
deas that influence schooling? How might the adoption of Lave's perspective influence
classroom practice?


Vygotsky theory of Social Development Theory is quite different than Piaget’s theory of Stage
Theory of Cognitive Developmen
t. Piaget identified fou
r stages of cognitive development where
development precedes learning; on the other hand, Vgotysky’s theory states that social learning
precedes development. Humans learn from social interaction/culture and are born with the
foundation to for intellectual
development; whereas, Piaget states that motor reflexes and sensory
abilities start out the cognition journey.


Vygotsky’s
Zone of Proximal Development (ZPD) is an idea that is used as frequently as pencils
in the classroom. The Zone of Proximal Developme
nt is the area where students cannot learn
without the help of a peer/teacher/adult. It is basically the area between what a student knows
(can do independently) and what is not known (what a child can learn/do with assistance).
As
educators, we try to a
lways teach in the ZPD. For example, if a child can read independently at a
fourth

grade level, the teacher will teach that child using a fifth grade text or even a sixth grade
text with the use of scaffolding.


Scaffolding is taking high
-
level text/con
cepts and breaking it down, so children can understand
it. The idea is to “teach to the high and bring up the low.” Many teachers will group students
heterogeneously
, so advanced students can help the lower students make meaning of
a
concept.
(ZPD)


Thi
s is called collaborative learning. Scaffolding and collaborative learning relate to
Vygotsky’s theory of making meaning through social interaction. I use both of these techniques
when
using the
GLAD
(Guided Language Acquisition Model). I teach content

while drawing
pictures, use actions while singing songs, and meet with a person from each team and teach them
something, and they go back and teach their teams. These strategies are quite effective.



Brown

has a story

to tell about the development of ed
ucational theory. How does this story compare with
the narrative that has been developed through our readings in ED 611? How does Brown treat
Behaviorist, Cognitive, and Situative theories, and which theories does she think should be employed in
schools? W
hat are some of her specific recommendations involving classroom methods and the ideas of
learning and development that should be in schools? How do you see yourself employing these practices
or ideas? According to Smith, what are "communities of practice"

and how does they change how we
think about learning and about teaching? How do Smith's recommendations, based on various Situative
theorists, compare to Brown's? How could structuring your classroom as a "community of practice" (or,
perhaps, as multiple
and varied communities) change what teaching, learning, and achievement look
like? How could Smith's and Brown's recommendations increase the effectiveness of your teaching?





http://allpsy
ch.com/psychology101/learning.html


Chapter 4: Learning Theory and Behavioral Psychology


Introduction to Learning Theory and Behavioral Psychology



Learning can be defined as the process leading to relatively permanent behavioral change or potential
behavioral change. In other words, as we learn, we alter the way we perceive our environment, the way
we interpret the incoming stimuli, and therefore the

way we interact, or behave. John B. Watson (1878
-
1958) was the first to study how the process of learning affects our behavior, and he formed the school of
thought known as
Behaviorism
. The central idea behind behaviorism is that only observable behaviors

are worthy of research since other abstraction such as a person’s mood or thoughts are too subjective.
This belief was dominant in psychological research in the United Stated for a good 50 years.



Perhaps the most well known Behaviorist is B. F. Skinner
(1904
-
1990). Skinner followed much of
Watson’s research and findings, but believed that internal states could influence behavior just as external
stimuli. He is considered to be a
Radical Behaviorist
because of this belief, although nowadays it is
believed

that both internal and external stimuli influence our behavior.



Behavioral Psychology is basically interested in how our behavior results from the stimuli both in the
environment and within ourselves. They study, often in minute detail, the behaviors we

exhibit while
controlling for as many other variables as possible. Often a grueling process, but results have helped us
learn a great deal about our behaviors, the effect our environment has on us, how we learn new
behaviors, and what motivates us to chan
ge or remain the same.


Classical and Operant Conditioning

Classical Conditioning
.
One important type of learning, Classical Conditioning, was actually discovered
accidentally by
Ivan Pavlov

(1849
-
1936). Pavlov was a Russian physiologist who discovered this
phenomenon while doing research on digestion. His research was aimed at better understanding the
digestive patterns in dogs.

Dur
ing his experiments, he would put meat powder in the mouths of dogs who had tubes inserted into
various organs to measure bodily responses. What he discovered was that the dogs began to salivate
before the meat powder was presented to them. Then, the dogs
began to salivate as soon as the person
feeding them would enter the room. He soon began to gain interest in this phenomenon and abandoned
his digestion research in favor of his now famous Classical Conditioning study.

Basically, the findings support the idea that we develop responses to certain stimuli that are not naturally
occurring. When we touch a hot stove, our reflex pulls our hand back. It does this instinctually, no learning
involved. It is merely a survival ins
tinct. But why now do some people, after getting burned, pull their
hands back even when the stove is not turned on? Pavlov discovered that we make associations which
cause us to generalize our response to one stimuli onto a neutral stimuli it is paired wi
th. In other words,

hot burner = ouch, stove = burner, therefore, stove = ouch.

Pavlov began pairing a bell sound with the meat powder and found that even when the meat powder was
not presented, the dog would eventually begin to salivate after hearing the
bell. Since the meat powder
naturally results in salivation, these two variables are called the
unconditioned stimulus

(UCS) and the
unconditioned response

(UCR), respectively. The bell and salivation are not naturally occurring; the dog
was conditioned to respond to the bell. Therefore, the bell is considered the
conditioned stimulus

(CS),
and the salivation to the bell, the
conditioned response

(CR).

Many of our behaviors today are shaped by the pairing of stimuli. Have you ever noticed that certa
in
stimuli, such as the smell of a cologne or perfume, a certain song, a specific day of the year, results in
fairly intense emotions? It's not that the smell or the song are the cause of the emotion, but rather what
that smell or song has been paired with
...perhaps an ex
-
boyfriend or ex
-
girlfriend, the death of a loved
one, or maybe the day you met you current husband or wife. We make these associations all the time and
often don’t realize the power that these connections or pairings have on us. But, in fa
ct, we have been
classically conditioned.





Operant Conditioning
.
Another type of learning, very similar to that discussed above, is called Operant
Conditioning. The term
"Operant" refers to how an organism operates on the environment, and hence,
operant conditioning comes from how we respond to what is presented to us in our environment. It can be
thought of as learning due to the natural consequences of our actions.

Let's

explain that a little further. The classic study of Operant Conditioning involved a cat who was placed
in a box with only one way out; a specific area of the box had to be pressed in order for the door to open.
The cat initially tries to get out of the bo
x because freedom is reinforcing. In its attempt to escape, the
area of the box is triggered and the door opens. The cat is now free. Once placed in the box again, the
cat will naturally try to remember what it did to escape the previous time and will once

again find the area
to press. The more the cat is placed back in the box, the quicker it will press that area for its freedom. It
has learned, through natural consequences, how to gain the reinforcing freedom.

We learn this way every day in our lives. Ima
gine the last time you made a mistake; you most likely
remember that mistake and do things differently when the situation comes up again. In that sense, you’ve
learned to act differently based on the natural consequences of your previous actions. The same
holds
true for positive actions. If something you did results in a positive outcome, you are likely to do that same
activity again.


Classical and Operant Conditioning

Classical Conditioning
.
One important type of learning, Classical Conditioning, was actually discovered
accidentally by
Ivan Pavlov

(1849
-
1936). Pavlov was a Russian physiologist who discovered this
phenomenon while do
ing research on digestion. His research was aimed at better understanding the
digestive patterns in dogs.

During his experiments, he would put meat powder in the mouths of dogs who had tubes inserted into
various organs to measure bodily responses. What he

discovered was that the dogs began to salivate
before the meat powder was presented to them. Then, the dogs began to salivate as soon as the person
feeding them would enter the room. He soon began to gain interest in this phenomenon and abandoned
his dige
stion research in favor of his now famous Classical Conditioning study.

Basically, the findings support the idea that we develop responses to certain stimuli that are not naturally
occurring. When we touch a hot stove, our reflex pulls our hand back. It does this instinctually, no learning
involved. It is merely a survival ins
tinct. But why now do some people, after getting burned, pull their
hands back even when the stove is not turned on? Pavlov discovered that we make associations which
cause us to generalize our response to one stimuli onto a neutral stimuli it is paired wi
th. In other words,

hot burner = ouch, stove = burner, therefore, stove = ouch.

Pavlov began pairing a bell sound with the meat powder and found that even when the meat powder was
not presented, the dog would eventually begin to salivate after hearing the
bell. Since the meat powder
naturally results in salivation, these two variables are called the
unconditioned stimulus

(UCS) and the
unconditioned response

(UCR), respectively. The bell and salivation are not naturally occurring; the dog
was conditioned to respond to the bell. Therefore, the bell is considered the
conditioned stimulus

(CS),
and the salivation to the bell, the
conditioned response

(CR).

Many of our behaviors today are shaped by t
he pairing of stimuli. Have you ever noticed that certain
stimuli, such as the smell of a cologne or perfume, a certain song, a specific day of the year, results in
fairly intense emotions? It's not that the smell or the song are the cause of the emotion,
but rather what
that smell or song has been paired with...perhaps an ex
-
boyfriend or ex
-
girlfriend, the death of a loved
one, or maybe the day you met you current husband or wife. We make these associations all the time and
often don’t realize the power th
at these connections or pairings have on us. But, in fact, we have been
classically conditioned.





Operant Conditioning
.
Another type of learning, very similar to that dis
cussed above, is called Operant
Conditioning. The term "Operant" refers to how an organism operates on the environment, and hence,
operant conditioning comes from how we respond to what is presented to us in our environment. It can be
thought of as learnin
g due to the natural consequences of our actions.

Let's explain that a little further. The classic study of Operant Conditioning involved a cat who was placed
in a box with only one way out; a specific area of the box had to be pressed in order for the doo
r to open.
The cat initially tries to get out of the box because freedom is reinforcing. In its attempt to escape, the
area of the box is triggered and the door opens. The cat is now free. Once placed in the box again, the
cat will naturally try to remembe
r what it did to escape the previous time and will once again find the area
to press. The more the cat is placed back in the box, the quicker it will press that area for its freedom. It
has learned, through natural consequences, how to gain the reinforcing

freedom.

We learn this way every day in our lives. Imagine the last time you made a mistake; you most likely
remember that mistake and do things differently when the situation comes up again. In that sense, you’ve
learned to act differently based on the n
atural consequences of your previous actions. The same holds
true for positive actions. If something you did results in a positive outcome, you are likely to do that same
activity again.



http://www.simplypsychology.org/piaget
-
development.html

Piaget Stag
es of Development

by Saul Mcleod, published 2009

A child's cognitive development is about a child developing or constructing a mental model of
the world.

Imagine what it would be like if you did not have a mental model of your world.


It would mean
that y
ou would not be able to make so much use of information from your past experience, or to
plan future actions.

Jean Piaget

was interested both in how children learnt and in how they thought.

Piaget

studied children from infancy to adolescence. He used the following research methods:




Naturalistic observation
: Piaget made careful, detailed observations of children. These
were mainly his own

children and the children of friends. From these he wrote
diary
descriptions

charting their development.





Clinical interviews and observations
of older children who were able to understand
questions and hold conversations.

Piaget believed that c
hildren think differently than adults and stated they go through 4 universal
stages of cognitive development.


Development is therefore biologically based and changes as
the child matures.


Cognition therefore develops in all children in the same sequence
of stages.

Each child goes through the stages in the same order, and no stage can be missed out
-

although
some individuals may never attain the later stages.


There are individual differences in the rate at
which children progress through stages
-

Piaget
did not claim that a particular stage was reached
at a certain age
-

although descriptions of the stages often include an indication of the age at
which the average child would reach each stage.


Piaget believed that these stages are universal
-

i.e. that
the same sequence of development occurs in children all over the world, whatever their
culture.

Cognitive Stage of Development



Key Feature



Research
Study

Sensorimotor

0
-

2 yrs.

Object Permanence

Blanket &
Ball Study

Preoperational

2
-

7 yrs.

Egocentrism

Three
Mountains

Concrete Op
erational

7


11 yrs.

Conservation

Conservation
of Number

Formal Operational

11yrs +

Manipulate ideas in head, e.g.
Abstract Reasoning

Pendulum
Task

Evaluation of Piaget's Theory

Strengths



The influence of Piaget’s ideas in developmental psychology has been enormous. He
changed how people viewed the child’s world and their
methods of studying children
.
He was an

inspiration

to many who came after and took up his ideas.



His ideas ha
ve been of practical use in understanding and communicating with children,
particularly in the field of education (
Discovery Learning
).

Weaknesses



Are the stages real?
Vygotsky
and
Bruner
would rather not talk about stages at all,
preferring to see development as continuous.

Others have queried the age ranges of
the stages
.


Some studies have shown that progress to the form
al operational stage is not
guaranteed.



Because Piaget concentrated on the universal stages of cognitive development and
biological maturation, he
failed to consider the effect that the social setting

and culture
may have on cognitive development (re: Vygo
tsky).



Piaget’s

methods
(observation and clinical interviews)
are more open to biased
interpretation
than other methods, i.e. subjective (Piaget observed alone).



As several studies have shown Piaget underestimated the abilities of children because his
test
s were sometimes confusing or difficult to understand (e.g.
Martin Hughes, 1975
).



The
concept of schema is incompatible with the theories of Bruner and Vygotsky
.
Behaviorism

would also refut
e Piaget’s schema theory.



Piaget carried out his studies with a handful of participants


in the early studies he
generally used his own children (
biased sample
).



http://www.simplypsychology.org/vygotsky.ht
ml

Vygotsky

by Saul Mcleod, published 2007

The
work of
Lev Vygotsky

(1896
-
1934) has become the foundation of much research and theory
in cognitive development over the past several decades, particularly of what has become known
as
Social Development Theory
.

Vygotsky's

theories stress the fundamental ro
le of social interaction in the development of
cognition
(Vygotsky, 1978)
, as he believed strongly that community plays a central role in the
process of "making meaning."

Unlike Piaget's

notion that children's' development must necessarily preceed

their learning,
Vygotsky

argued, "
learning is a necessary and universal aspect of the process of developing
culturally organized, specifically human psychological function
" (1978, p. 90).


In other words,
social learning tends to precede (i.e. come before
) development.

Vygotsky

has developed a socio
-
cultural approach to cognitive development. He developed his
theories at around the same time as
Jean Piaget

was starting to develop his theories (192
0's and
30's), but he died at the age of 38 and so his theories are incomplete
-

although some of his
writings are still being translated from Russian.

No single principle (such as Piaget's equilibration) can account for development.


Individual
development cannot be understood without reference to the social and cultural context within
which it is embedded.


Higher mental processes in the individual have their origin in social
processes.

Vygotsky's theory differs from that of Piaget in a number o
f important
ways:


1
:
Vygotsky

places

more

emphasis on culture

affecting/shaping cognitive development
-

this
contradicts Piaget's view of universal stages and content of development. (
Vygotsky

does not
refer to stages in the way that Piaget does).

2
:
Vygo
tsky

places considerably
more emphasis on social factors

contributing to cognitive
development (Piaget is criticised for underestimating this).

3
:
Vygotsky

places more (and different)
emphasis on the role of language

in cognitive
development (again Piaget
is criticised for lack of emphasis on this).


Effects of Culture
:
-

Tools of intellectual adaptation

Like Piaget,
Vygotsky

claimed that infants are born with the basic materials/abilities for
intellectual development
-

Piaget focuses on motor reflexes and sensory abilities.

Vygotsky

refers to
Elementary Mental Functions



o
Attention

o Sensation

o
Perception

o
Memory

Eventually, through interaction within the socio
-
cultural env
ironment, these are developed into
more sophisticated and effective mental processes/strategies which he refers to as Higher Mental
Functions.

E.g. Memory. In young children this is limited by biological factors. However, culture
determines the type of mem
ory strategy we develop.


E.g., in our culture we learn note
-
taking to
aid memory, but in pre
-
literate societies other strategies must be developed, such as tying knots
in string to remember, or carrying pebbles, or repetition of the names of ancestors unt
il large
numbers can be repeated.

Vygotsky

refers to
tools of intellectual adaptation

-

these allow children to use the basic mental
functions more effectively/adaptively, and these are culturally determined (e.g. memory
mnemonics, mind maps).

Vygotsky

the
refore sees cognitive functions, even those carried out alone, as affected by the
beliefs, values and tools of intellectual adaptation of the culture in which a person develops and
therefore socio
-
culturally determined. The tools of intellectual adaptation

therefore vary from
culture to culture
-

as in the memory example.


Social Influences on Cognitive Development

Like
Piaget
,
Vygotsky

believes that young children are curious and actively involve
d in their
own learning and the discovery and development of new understandings/schema.


However,
Vygotsky

placed more emphasis on social contributions to the process of development, whereas
Piaget emphasised self
-
initiated discovery.

According to
Vygotsky

(1978), much important learning by the child occurs through social
interaction with a skilful tutor. The tutor may model behaviours and/or provide verbal
instructions for the child.
Vygotsky

refers to this as co
-
operative or collaborative dialogue. The
ch
ild seeks to understand the actions or instructions provided by the tutor (often the parent or
teacher) then internalises the information, using it to guide or regulate their own performance.

Shaffer (1996)

gives the example of a young girl who is given he
r first jigsaw. Alone, she
performs poorly in attempting to solve the puzzle. The father then sits with her and describes or
demonstrates some basic strategies, such as finding all the comer/edge pieces and provides a
couple of pieces for the child to put
together herself and offers encouragement when she does
so.


As the child becomes more competent, the father allows the child to work more
independently.


According to
Vygotsky
, this type of social interaction involving co
-
operative or
collaborative
dialogue promotes cognitive development.

In order to gain an understanding of Vygotsky's theories on cognitive development, one must
understand two of the main principles of Vygotsky's work: the
More Knowledgeable Other

(MKO) and the
Zone of Proximal Development

(ZPD).


More Knowledgeable Other

The more knowledgeable other (MKO) is somewhat self
-
explanatory; it refers to someone who
has a better understanding or a higher abi
lity level than the learner, with respect to a particular
task, process, or concept.


Although the implication is that the MKO is a teacher or an older
adult, this is not necessarily the case.


Many times, a child's peers or an adult's children may be
the
individuals with more knowledge or experience. (For example, who is more likely to know
more about the newest teen
-
age music groups, how to win at the most recent Playstation game,
or how to correctly perform the newest dance craze
-

a child or their paren
ts?)

In fact, the
MKO

need not be a person at all. Some companies, to support employees in their
learning process, are now using electronic performance support systems.


Electronic tutors have
also been used in educational settings to facilitate and guide
students through the learning
process.


The key to MKOs is that they must have (or be programmed with) more knowledge
about the topic being learned than the learner does.


Zone of Proximal Development


The concept of the More Knowledgeable Other is integrally related to the second important
principle of Vygotsky's work, the
Zone of Proximal Development
.

This is an important concept that relates to the difference between what a child can achieve
indepe
ndently and what a child can achieve with guidance and encouragement from a skilled
partner.

For example, the child could not solve the jigsaw puzzle (in the example above) by itself and
would have taken a long time to do so (if at all), but was able to s
olve it following interaction
with the father, and has developed competence at this skill that will be applied to future jigsaws.

Vygotsky

(1978) sees the
Zone of Proximal Devel
opment

as the area where the most sensitive
instruction or guidance should be given
-

allowing the child to develop skills they will then use
on their own
-

developing higher mental functions.

Vygotsky

also views interaction with peers as an effective
way of developing skills and
strategies.


He suggests that teachers use cooperative learning exercises where less competent
children develop with help from more skilful peers
-

within the zone of proximal development.


Evidence for Vygotsky and the ZPD

F
reund (1990)

conducted a study in which children had to decide which items of furniture
should be placed in particular houses of a dolls house.


Some children were allowed to play with
their mother in a similar situation before they attempted it alone (zon
e of proximal development)
whilst others were allowed to work on this by themselves (Piaget's discovery learning).


Freund
found that those who had previously worked with their mother (ZPD) showed greatest
improvement compared with their first attempt at t
he task.


The conclusion being that guided
learning within the ZPD led to greater understanding/performance than working alone (discovery
learning).


Vygotsky and Language

According to
Vygotsky

(1962)

language plays 2 critical roles in cognitive development:

1: It is the main means by which adults transmit info to children.

2: Language itself becomes a very powerful tool of intellectual adaptation.

Vygotsky

sees "private speech" as a means for children

to plan activities and strategies and
therefore aid their development. Language is therefore an accelerator to thinking/understanding
(
Bruner

also views language in this way).

Vygotsky

believed t
hat language develops from social interactions, for communication purposes.
Later language ability becomes internalised as thought and “inner speech”. Thought is the result
of language.


Current applications of Vygotsky's work

A contemporary application o
f Vygotsky's theories is "reciprocal teaching", used to improve
students' ability to learn from text. In this method, teacher and students collaborate in learning
and practicing four key skills: summarizing, questioning, clarifying, and predicting. The tea
cher's
role in the process is reduced over time.


Also,
Vygotsky

is relevant to instructional concepts
such as "scaffolding" and "apprenticeship", in which a teacher or more advanced peer helps to
structure or arrange a task so that a novice can work on it

successfully.

Vygotsky's theories also feed into current interest in collaborative learning, suggesting that group
members should have different levels of ability so more advanced peers can help less advanced
members operate within their
zone of proximal development
.

*********



http://www.infed.org/biblio/communities_of_prac
tice.htm

communities of practice

The idea that learning involves a deepening process of participation
in a
community of practice has gained significant ground in recent years.
Communities of practice have also become an important focus within
organizational development and have considerable value when thinking about
working with groups. In this article we
outline the theory and practice of such
communities, and examine some of issues and questions for informal educators
and those concerned with lifelong learning.


Many of the ways we have of talking about learning and education are based on the assumption
that learning is something that individuals do. Furthermore, we often assume that
learning

'has
a beginning

and an end; that it is best separated from the rest of our activities; and that it is the
result of teaching' (Wenger 1998: 3). But how would things look if we took a different track?
Supposing learning is social and comes largely from of our experience o
f participating in daily
life? It was this thought that formed the basis of a significant rethinking of learning theory in the
late 1980s and early 1990s

by two researchers from very different disciplines
-

Jean Lave and
Etienne Wenger. Their model of
situated learning

proposed that learning involved a process of
engagement in a 'community of practice'.


Jean Lave was (and is) a social anthropologist with a strong interest in social theory, bas
ed at
the University of California, Berkeley. Much of her work has focused on on the 're
-
conceiving' of
learning, learners, and educational institutions in terms of social practice. When looking closely
at everyday activity, she has argued, it is clear tha
t 'learning is ubiquitous in ongoing activity,
though often unrecognized as such' (Lave 1993: 5).

Etienne Wenger was a teacher who joined the Institute for Research on Learning, Palo Alto
having gained a Ph.D. in artificial intelligence from the University

of California at Irvine. (He is
now an independent consultant specializing in developing communities of practice within
organizations). Their path
-
breaking analysis, first published in
Situated Learning: Legitimate
peripheral participation

(1991) and later augmented in works by Jean Lave (1993) and Etienne
Wenger (1999; 2002) set the scene for some significant innovations in practice within
organizations and more recently within some schools (see Rogoff
et al

2001).

Communities of practice

The basic argument made by Jean Lave and Etienne Wenger is that communities of practice are
everywhere and that we are generally involved in a number of them
-


whether that is at work,
school, home, or in our civic and leisure interests. Etienne Wenger wa
s later to write:

Communities of practice are formed by people who engage in a process of collective learning in a
shared domain of human endeavour: a tribe learning to survive, a band of artists seeking new
forms of expression, a group of engineers workin
g on similar problems, a clique of pupils
defining their identity in the school, a network of surgeons exploring novel techniques, a
gathering of first
-
time managers helping each other cope. In a nutshell: Communities of practice
are groups of people who s
hare a concern or a passion for something they do and learn how to
do it better as they interact regularly. (Wenger circa 2007)

In some groups we are core members, in others we are more at the margins.

Being alive as human beings means that we are constant
ly engaged in the pursuit of enterprises
of all kinds, from ensuring our physical survival to seeking the most lofty pleasures. As we define
these enterprises and engage in their pursuit together, we interact with each other and with the
world and we tune
our relations with each other and with the world accordingly. In other words
we learn.

Over time, this collective learning results in practices that reflect both the pursuit of our
enterprises and the attendant social relations. These practices are thus th
e property of a kind of
community created over time by the sustained pursuit of a shared enterprise. It makes sense,
therefore to call these kinds of communities
communities of practice
. (Wenger 1998: 45)

The characteristics of such communities of practice

vary. Some have names, many do not.


Some
communities of practice are quite formal in organization, others are very fluid and informal.
However, members are brought together by joining in common activities and by 'what they have
learned through their mutu
al engagement in these activities' (Wenger 1998). In this respect, a
community of practice is different from a community of interest or a geographical community in
that it involves a shared practice.

The characteristics of communities of practice

Accordin
g to Etienne Wenger (c 2007), three elements are crucial in distinguishing a
community of practice from other groups and communities:

The domain
. A community of practice is is something more than a club of friends or a network
of connections between people
. 'It has an identity defined by a shared domain of interest.
Membership therefore implies a commitment to the domain, and therefore a shared competence
that distinguishes members from other people' (
op. cit.
).

The community
. 'In pursuing their interest in

their domain, members engage in joint activities
and discussions, help each other, and share information. They build relationships that enable
them to learn from each other' (
op. cit.
).

The practice
. 'Members of a community of practice are practitioners.

They develop a shared
repertoire of resources: experiences, stories, tools, ways of addressing recurring problems

in
short a shared practice. This takes time and sustained interaction' (
op. cit.
).

Relationships, identity and shared interests and repertoir
e

A community of practice involves, thus, much more than the technical knowledge or skill
associated with undertaking some task. Members are involved in a set of relationships over time
(Lave and Wenger 1991: 98) and communities develop around things that
matter to people
(Wenger 1998). The fact that they are organizing around some particular area of knowledge and
activity gives members a sense of joint enterprise and identity. For a community of practice to
function it needs to generate and appropriate a s
hared repertoire of ideas, commitments and
memories. It also needs to develop various resources such as tools, documents, routines,
vocabulary and symbols that in some way carry the accumulated knowledge of the community.
In other words, it involves practi
ce (see
praxis
): ways of doing and approaching things that are
shared to some significant extent among members.

The interactions involved, and the ability to undertake larger or more complex activit
ies and
projects though cooperation, bind people together and help to facilitate relationship and trust
(see the discussion of
community

elsewhere on these pages). Communities of practice can be
seen as self
-
organizing systems and have many of the benefits and characteristics of
associational life

such as the generation of what
Rob
ert Putnam

and others have discussed as
social capital
.


Legitimate peripheral participation and situated learning

Rather than looking to learning as the acquisition of certain forms of knowled
ge, Jean Lave and
Etienne Wenger have tried to place it in social relationships


situations of co
-
participation. As
William F. Hanks puts it in his introduction to their book: ‘Rather than asking what kind of
cognitive processes and conceptual structures
are involved, they ask what kinds of social
engagements provide the proper context for learning to take place’ (1991: 14). It not so much
that learners acquire structures or models to understand the world, but they participate in
frameworks that that have
structure. Learning involves participation in a community of practice.
And that participation 'refers not just to local events of engagement in certain activities with
certain people, but to a more encompassing process of being active participants in the
p
ractices
of social communities and constructing
identities

in relation to these communities' (Wenger
1999: 4).

Lave and Wenger illustrate their theory by observations of different apprenticeships (Yucatec
midwives, Vai and Gola tailors, US Navy quartermast
ers, meat
-
cutters, and non
-
drinking
alcoholics in Alcoholics Anonymous). Initially people have to join communities and learn at the
periphery. The things they are involved in, the tasks they do may be less key to the community
than others.

As they become
more competent they become more involved in the main processes of the
particular community. They move from legitimate peripheral participation to into 'full
participation (Lave and Wenger 1991: 37). Learning is, thus, not seen as the acquisition of
knowled
ge by individuals so much as a process of
social
participation. The nature of the
situation

impacts significantly on the process.

Learners inevitably participate in communities of practitioners and… the mastery of knowledge
and skill requires newcomers to move toward full participation in the socio
-
cultural practices of
a community. "Legitimate peripheral participation" provides a wa
y to speak about the relations
between newcomers and old
-
timers, and about activities, identities, artefacts, and communities
of knowledge and practice. A person’s intentions to learn are engaged and the meaning of
learning is configured through the proces
s of becoming a full participant in a socio
-
cultural
practice. This social process, includes, indeed it subsumes, the learning of knowledgeable skills.
(Lave and Wenger 1991: 29)

In this there is a concern with identity, with learning to speak, act and imp
rovise in ways that
make sense in the community. What is more, and in contrast with learning as internalization,
‘learning as increasing participation in communities of practice concerns the whole person
acting in the world’ (Lave and Wenger 1991: 49). The

focus is on the ways in which learning is
‘an evolving, continuously renewed set of relations’ (ibid.: 50). In other words, this is a relational
view of the person and learning (see the discussion of
selfhood
).

Situated learning

This way of approaching learning is something more than simply 'learning by doing' or
experiential learning
. As Mark Tennant (1997: 73) has pointed out, Jean Lave's and E
tienne
Wenger's concept of situatedness involves people being full participants in the world and in
generating meaning. 'For newcomers', Jean Lave and Etienne Wenger (1991: 108
-
9) comment,
'the purpose is not to learn
from

talk as a substitute for legitima
te peripheral participation; it is
to learn
to
talk as a key to legitimate peripheral participation'. This orientation has the definite
advantage of drawing attention to the need to understand knowledge and learning in context.
However, situated learning d
epends on two claims:



It makes no sense to talk of knowledge that is decontextualized, abstract or general.



New knowledge and learning are properly conceived as being located in communities of
practice (Tennant 1997: 77).

Questions can be raised about both of these claims. It may be, with regard to the first claim, for
example, that learning can occur that is seemingly unrelated to a particular context or life
situation.

Second, there may situations where the community of
practice is weak or exhibits power
relationships that seriously inhibit entry and participation. There is a risk, as Jean Lave and
Etienne Wenger acknowledge, of romanticizing communities of practice. However, there has
been a tendency in their earlier wor
k of falling into this trap. 'In their eagerness to debunk
testing, formal education and formal accreditation, they do not analyse how their omission [of a
range of questions and issues] affects power relations, access, public knowledge and public
accounta
bility'
(
Tennant 1997
:

79). Their interest in the forms of learning involved communities
of practice shares some common element with
Ivan Illich's

advocacy of learning webs and
informal education.
However, where Jean Lave and Etienne Wenger approached the area
through an exploration of local encounters and examples, Ivan Illich started with a macro
-
analysis of the debilitating effects of institutions such as schooling. In both cases the sweep of
the
ir arguments led to an under
-
appreciation of the uses of more formal structures and
institutions for learning. However, this was understandable given the scale of the issues and
problems around learning within professionalized and bureaucratic institutions

such as schools
their respective analyses revealed.



Learning organizations and learning communities

These ideas have been picked
-
up most strongly within organizational development circles. The
use of the apprenticeship model made for a strong set of con
nections with important traditions
of thinking about training and development within organizations. Perhaps more significantly,
the growing interest in '
the learning organization
' in the

1990s alerted many of those concerned
with organizational development to the significance of informal networks and groupings. Jean
Lave's and Etienne Wenger's work around communities of practice offered a useful addition. It
allowed proponents to argue th
at communities of practice needed to be recognized as valuable
assets.


The model gave those concerned with organizational development a way of thinking
about how benefits could accrue to the organization itself, and how value did not necessarily lie
prima
rily with the individual members of a community of practice.

Acknowledging that communities of practice affect performance is important in part because of
their potential to overcome the inherent problems of a slow
-
moving traditional hierarchy in a
fast
-
mo
ving virtual economy. Communities also appear to be an effective way for organizations
to handle unstructured problems and to share knowledge outside of the traditional structural
boundaries. In addition, the community concept is acknowledged to be a means

of developing
and maintaining long
-
term organizational memory. These outcomes are an important, yet often
unrecognized, supplement to the value that individual members of a community obtain in the
form of enriched learning and higher motivation to apply w
hat they learn. (Lesser and Storck
2001)

Lesser and Storck go on to argue that the
social capital

resident in communities of practice leads
to behavioural change

'change that results in greater

knowledge sharing, which in turn
positively influences business performance'. Attention to communities of practice could, thus
enhance organizational effectiveness and profitability.

For obvious reasons, formal education institutions have been less ready

to embrace these ideas.
There was a very real sense in which the direction of the analysis undermined their reason for
being and many of their practices. However,


there have been some significant explorations of
how schooling, for example, might accommod
ate some of the key themes and ideas in Jean
Lave's and Etienne Wenger's analysis. In particular, there was significant mileage in exploring
how communities of practice emerge within schooling, the process involved and how they might
be enhanced. Furthermo
re, there was also significant possibility in a fuller appreciation of what
constitutes practice (as earlier writers such Carr and Kemmis 1986, and Grundy 1987 had
already highlighted: see
curriculum

and
praxis
). Perhaps the most helpful of these explorations
is that of Barbara Rogoff and her colleagues (2001). They examine the work of an innovative
school in Salt Lake City and how teachers, stu
dents and parents were able to work together to
develop an approach to schooling based around the principle that learning 'occurs through
interested participation with other learners'.

Conclusion
-

issues and implications for educators and animateurs

Jean
Lave's and Etienne Wenger's concern here with learning through participation in
group/collective life and engagement with the 'daily round' makes their work of particular
interest to informal educators and those concerned with working with groups. These ar
e themes
that have part of the
informal education

tradition for many years
-

but the way in which Jean
Lave and Etienne Wenger have developed an understanding of the nature of learning within
communities of

practice, and how knowledge is generated allows educators to think a little
differently about the groups, networks and associations with which they are involved. It is worth
looking more closely at the processes they have highlighted.

The notion of commu
nity of practice and the broader conceptualization of situated learning
provides significant pointers for practice. Here I want to highlight three:

Learning is in the relationships between people.
As McDermott (in Murphy 1999:17)
puts it:

Learning traditionally gets measured as on the assumption that it is a possession of individuals
that can be found inside their heads… [Here] learning is in the relationships between people.
Learning is in the conditions that bring people together and orga
nize a point of contact that
allows for particular pieces of information to take on a relevance; without the points of contact,
without the system of relevancies, there is not learning, and there is little memory. Learning
does not belong to individual per
sons, but to the various conversations of which they are a part.

Within systems oriented to individual accreditation, and that have lost any significant focus on
relationship

through pressures o
n them to meet centrally
-
determined targets, this approach to
learning is challenging and profoundly problematic. It highlights just how far the frameworks
for schooling, lifelong learning and youth work in states like Britain and Northern Ireland have
dri
fted away from a proper appreciation of what constitutes learning (or indeed society).
Educators have a major educational task with policymakers as well as participants in their
programmes and activities.

Educators work so that people can become participa
nts in communities of
practice
.
Educators need to explore with people in communities how all may participate to the
full. One of the implications for schools, as Barbara Rogoff and her colleagues suggest is that
they must prioritize 'instruction that build
s on children's interests in a collaborative way'. Such
schools need also to be places where 'learning activities are planned by children as well as
adults, and where parents and teachers not only foster children's learning but also learn from
their own in
volvement with children' (2001: 3). Their example in this area have particular force
as they are derived from actual school practice.

A further, key, element is the need to extend
associational l
ife

within schools and other
institutions. Here there is a strong link here with long
-
standing concerns among informal
educators around
community

and participation and for the significance of the

group

(for
schooling see the discussion of
informal education and schooling
; for youth work see
young
people and association
; and for communities see
community participation
).

There is an intimate connection between knowledge and activity
.
Learning is part of
da
ily living as
Eduard Lindeman

argued many years ago. Problem solving and learning from
experience are central processes (although, as we have seen, situated learning is not the same as
‘learning by
doing’


see Tennant 1997: 73). Educators need to reflect on their understanding of
what constitutes
knowledge

and
practice
. Perhaps one of t
he most important things to grasp
here is the extent to which education involves informed and committed action.

These are fascinating areas for exploration and, to some significant extent, take informal
educators in a completely different direction to the

dominant pressure towards accreditation
and formalization.

Further reading

Jean Lave and Etienne Wenger (1991)
Situated Learning. Legitimate peripheral participation
,
Cambridge: University of Cambridge Press.

138 pages. Pathbreaking

book that first developed
the idea that learning 'is a process of participation in communities of practice, participation that
is at first legitimately peripheral but that increases gradually in engagement and complexity'.

Rogoff, B., Turkanis, C. G. and
Bartlett, L. (eds.) (2001)
Learning Together: Children and
Adults in a School Community
, New York: Oxford University Press. 250 + x pages. Arising out
of the collaboration of Barbara Rogoff (who had worked with Jean Lave) with two teachers at an
innovative

school in Salt Lake City, this book explores how they were able to develop an
approach to schooling based around the principle that learning 'occurs through interested
participation with other learners'.

Etienne Wenger (1999)
Communities of Practice. Lear
ning, meaning and identity
, Cambridge:
Cambridge University Press. 318 + xv pages. Extended discussion of the concept of community
of practice and how it might be approached within organizational development and education.

References

Allee
, V. (2000) 'Knowledge networks and communities of learning',
OD Practitioner 32( 4),
http://www.odnetwork.org/odponline/vol32n4/knowledgenets.html
. Accessed December 30,
2002.

B
andura, A. (1977)
Social Learning Theory
, Englewood Cliffs, NJ: Prentice Hall.

Carr, W. and Kemmis, S. (1986)
Becoming Critical. Education, knowledge and action research
,
Lewes: Falmer.

Gardner, H. (1993)
Intelligence Reframed. Multiple intelligences for t
he 21st century
, New
York: Basic Books.

Grundy, S. (1987)
Curriculum: Product or praxis
, Lewes: Falmer.

Lave, J. (1982). A comparative approach to educational forms and learning processes.
Anthropology and Education Quarterly
, 13(2): 181
-
187

Lave, Jean (19
88).
Cognition in practice: mind, mathematics and culture in everyday life
. New
York: Cambridge University Press

Lave, Jean 'Teaching, as learning, in practice',
Mind, Culture, and Activity

(3)3: 149
-
164

Lave, Jean (forthcoming)
Changing Practice: The Poli
tics of Learning and Everyday Life

Lave, Jean and Chaiklin, Seth (eds.) (1993)
Understanding Practice: Perspectives on Activity
and Context
, Cambridge: University of Cambridge Press.

Lesser, E. L. and Storck, J. (2001) 'Communities of practice and organiza
tional performance',
IBM Systems Journal

40(4),
http://www.research.ibm.com/journal/sj/404/lesser.html
.
Accessed December 30, 2002.

Merriam, S. and Caffarella (1991, 1998)
Learning in A
dulthood. A comprehensive guide
, San
Francisco: Jossey
-
Bass.


Murphy, P. (ed.) (1999)
Learners, Learning and Assessment,
London: Paul Chapman.


See,
also, Leach, J. and Moon, B. (eds.) (1999)
Learners and Pedagogy
, London: Paul Chapman.


280


+ viii pages;

and McCormick, R. and Paetcher, C. (eds.) (1999)
Learning and Knowledge
,
London: Paul Chapman.


254


+ xiv pages.

Ramsden, P. (1992)
Learning to Teach in Higher Education
, London: Routledge.

Rogoff, Barbara and Lave, Jean (eds.) (1984)
Everyday Cognition:

Its Development in Social
Context
. Cambridge Mass.: Harvard University Press.

Salomon, G. (ed.) (1993)
Distributed Cognitions. Psychological and educational considerations
,
Cambridge: Cambridge University Press.

Smith, M. K. (1999) 'The social/situational

orientation to learning',
the encyclopedia of informal
education
,
www.infed.org/biblio/learning
-
social.htm
.

Tennant, M. (1988, 1997)
Psychology and Adult Learning
, London: Routledge.


Tennant, M. and Pogson, P. (1995)
Learning and Change in the Adult Years. A developmental
perspective
, San Francisco: Jossey
-
Bass.


Wenger, Etienne (1998) 'Communities of Practice. Learning as a social system',

Systems
Thinker
,

http://www.co
-
i
-
l.com/coil/knowledge
-
garden/cop/lss.shtml
. Accessed December 30,
2002.

Wenger, Etienne (c 2007) 'Communities of practice. A brief introduction'.
Communities of
practice

[
http://www.ewenger.com/theory/
. Accessed January 14, 2009].

Wenger, Etienne and Richard McDermott, and William Snyder (2002)
Cultivating communities
of practice: a guide to managing knowledge
. Cambridge, Mass.: Harvard Business School

Press.

Links

Etiene Wenger's homepage
: has some material on communities of practice.

Communities of Practice discussion group
: maintain
ed by John Smith at Yahoo.

Acknowledgements
: The picture 'Community of practice' is taken from sonson's photosream
at Flickr [
http://www.flickr.com/photos/sonson/422595428/
] and reproduced und
er a Creative
Commons Attribution
-
Non
-
Commercial
-
No Derivative Works 2.0 Generic Licence.

How to cite this article
: Smith, M. K. (2003, 2009) 'Communities of practice',
the
encyclopedia of informal education
,
www.infed.org/biblio/communities_of_practice.htm
.



Speaking from your experience, describe how the views of Dewey and
Thorndike have (or have not) made their way into today's schools. Do you
believe it is true, as Tomlinson maintains, that Thorndike's views have largely
taken precedence over Dewey's? Answe
r from your own schooling
experiences. Also from your own experiences, think about whether your vision
of education and teaching are closer to Dewey's ideas or to Thorndike's.
Finally, sketch out an "alternate path" that could have been taken in
educationa
l psychology, and in schools, if Thorndike's ideas had not taken
precedence over Dewey's. How would

teaching and learning

look different?

Thorndike and Dewey had contrasting views of education. Thorndike was more of grooming the
masses to perform a partic
ular function in society
,
and a few have the power. Learning is more
of a statistical and scientific approach. Efficiency rules individuality. Much of his thinking
came from his work with animals. Teaching was defined as “
the art of giving and withho
lding
stimuli with the result of producing or preventi
ng certain responses”. He was the founder of
standardized testing. Dewey
’s

thinking was more of
a
scientific inquiry approach
that
educators
use in science experiments. Determine the problem, make
a
hypotheses
, test
it

out and make a
conclusion. It is

more of a problem solv
ing

approach. Dewey believed in individuality and
democracy, even within the classroom.


As I look at these character
istics
, my mind goes in a few ways, so please b
ear

with me. I

t
hink of
the many students in our high schools today.
Students whose families have money and prestige
tend to lead the pack and have dominance in schools. I understand that there are many clubs that
embrace cultural identity or interests
,

but who has th
e say? Money speaks. (Look at the Salem
-
Keizer school district cutting librarians and not music teachers or PE teachers. Which had more
money and community involvement?) I understand that all students have an opportunity to attend
college, but those wit
hout citizenship documentation, who have to go to work right away to help
support the famil
y

or those who struggled with reading, writing and math aren’t the ones we see
walking down the college corridors. Those will an education are the ones who teach our

children,
become
doctors, j
udges
,
legislators, and leaders of our country.

The ethnic group with the
largest US population is not represented proportionately in our government entities. It goes back
to the elite ruling society.


I believe, at least at
the elementary level, that teachers veer towards Dewey’s ideas. I always try
to approach my teaching

the following way:
ac
tivating
pr
ior
knowledge, discuss and
write down
students’ q
uestions, and then teach and experiment, and then come back to our quest
ions and
answer them if possible. (like a K
-
W
-
L sort of thing). This way the students take ownership and
learn from their experiences and not from me or a book. I do allow the students to create their
own rules for the classroom and give their input for

what should be the consequences. I found
that if they
make decisions for themselves, they have an easier time following
accepting the
outcomes.
I think that Thorndike’s views do however exist in our school systems today (or at
least when I was in high s
chool in the nineties), especially in the higher levels. Many classes at
this level are “sit and get” which is very logical and scientific approach. Yes, there is some
debate but the approach of being a Dewey problem solver is not prominent.





ABSTRACT

At the beginning of this century the two most important theorists in the history of
American education, Edward Thorndike and John Dewey, formulated radically different visions
of how the art of teaching could be transformed into a science. Thorndike, comb
ining a strongly
hereditarian behavioural psychology with the newly
developed techniques of statistical analysis
,
showed how schooling could be
structured around the methods of industrial management
. By
atomising and standardising every aspect of the educa
tional process, a cadre of experts and
administrators would replace traditional rule
-
of
-
thumb methods with scientifically proven
practices dovetailed to the needs of a modern state. Although Dewey was also committed to the
value of science as a universal t
ool for human betterment, he completely rejected the
epistemological, psychological and sociological assumptions implicit in Thorndike's technocratic
vision. In contrast to Thorndike's mechanistic world view, Dewey formulated an organismic
ontology modelle
d on the process of adaptation and demonstrated that the scientific method
depends upon the
construction of a democratic community of problem solvers
. By evaluating
these theories of human nature and the social good, I discuss the failings of Thorndike's
p
rogramme within the American school and explain the implications of Dewey's more
sophisticated arguments for educational practice.

According to Francis Bacon, the discourses of the philosophers were like the stars, so high up
they shed little light [
1
]. The target of Bacon's criticism was scholasticism and its fusion of
Aristotelian science and Christian doctrine into a fixed religious text from which the nature and
purpose

of all events could be deduced [
2
]. Assuming the truth of Aristotle's insights, the
scholastics had turned science into a theoretical play of words, a spider's web of dedu
ctions,
beautiful in their complexity, but so removed from reality they had little or no practical value.
Moreover, by linking experimentation with dissent, the scholastics had undermined the free
inquiry necessary to fuel social progress. In an era of com
merce and discovery, Bacon
recognised that 'knowledge was power,' an instrument through which nature could be
manipulated to advance human well
-
being. Separating theology (and teleology) from natural
philosophy, Bacon envisioned the establishment of a rese
arch institute, a laboratory of learning
where, through open and cooperative inquiry, scientists could develop the technology necessary
to advance medicine, agriculture, manufacturing and numerous other arts. As John Dewey
recognised, although these plans
were not realised during Bacon's lifetime, this synthesis of
reason, freedom and progress made Bacon 'the great forerunner of the spirit of modern life ... the
prophet of a pragmatic conception of knowledge' [
3
].

More than any other country, the America Dewey lived in had been transformed by the
application of science to the problems of industry and society. But while welcoming the
experimental attitude and material rewards

of Bacon's utopia, Dewey was concerned that a new
form of technocratic scholasticism had emerged: employing the deterministic concepts of the
physical sciences, expert planners were developing social policies that reduced human beings to
objects, inert at
oms to be manipulated for external economic and political goals.
Individuality
and the quality of life were being sacrificed in the name of efficiency
. As Bacon had undermined
the Aristotelian division of theoria (the contemplation of eternal truths) and t
echne (productive
skill), so Dewey attacked its modern counterpart, the dualism between theory and practice.
Without its foundation in the stars, philosophy had to be reconstructed as an imminent critique of
experience, a guide to how human beings could em
ploy science to promote both the means and
the ends of life. Dewey's pragmatism was thus conceived as a science of praxis (prudent
conduct), an instrument for constructing and evaluating action in open
-
ended situations. Further,
in contrast to both Aristot
le and modern technocrats, Dewey rejected the authoritarian and elitist
social hierarchy imposed by the division of thinking and doing: the values implicit in science
demanded the construction of a democratic community of problem solvers. Nowhere did Dewey

promote this message of social intelligence more urgently than in the debates surrounding the
design of America's most important engineering project
--
the public school
.

THE TECHNOLOGY OF SCHOOLING

As many authors have argued, much of current American school practice and the prevailing
tradition of quantitat
ive educational research is grounded in the psychological and organisational
theories developed by social scientists of the Progressive Era [
4
]. In various fields, the foun
ders
of the twentieth century American school approached the myriad problems facing education in
an emerging industrial, urban, and multicultural society with the newly developed tools of
behavioural psychology, mental testing, and scientific management. A
ssuming that the methods
of the natural sciences can be applied to the control of human behaviour, they established
educational research as an applied science capable of yielding the value
-
free instruments and
practices necessary for manufacturing the futu
re citizens of a modern efficiently ordered state.
The familiar regime of behavioural objectives, drill, intelligence testing, achievement scales,
tracking, and vocational training are the direct legacy of this mechanical model of mind and
society.

While
popular critics, historians, and philosophers have analysed and debated John Dewey's
vision of progressive education, remarkably little attention has been paid to the thought and
influence exerted by Edward Lee Thorndike, the leading theorist at Columbia U
niversity's
Teachers College
--
America's most influential graduate school of education [
5
]. And yet, more
than any other person, it was Thorndike who, from this institutiona
l power base, shaped the
curriculum, pedagogy, and organisational structure of the American school as well as the basic
aims and methods of university
-
based inquiry. Indeed, broadly speaking, it is Thorndike's
conception of human nature and the social good
, rather than Dewey's, that permeates this
century's mainstream literature and continues to generate what Henry Giroux has called 'a culture
of positivism' within American educational thought and practice [
6
]. But, as critical theory and
other post
-
positivistic philosophies demonstrate, Thorndike's efforts to construct a science of
education rest upon a number of unwarranted psychological and epistemological assumptions.
By
seeking to emulate the quantitative techniques of the natural sciences, he and his followers
have frustrated a clear understanding of the complexity of the learning situation, systematically
ignoring the creative, sentient, and culturally embedded characte
r of human experience. And, by
imposing a hierarchical division of labour between experts and practitioners, they have fostered
an attitude towards scientific inquiry and the dissemination of knowledge that effectively reduces
the teacher to a technician i
mplementing research findings under the gaze of administrators and
standardised measures of student performance.

Dewey was well aware of the dehumanising effect of such instrumental rationality and
repeatedly
warned against the drive to mechanise and mana
ge all areas of life
. People, he argued,
cannot be treated as malleable components that may be fashioned for some fixed, externally
determined social goal: they are themselves planners with the power and moral right to construct
their own ends [
7
]. Even so, Dewey, no less than Thorndike, was passionately committed to
science as a universal tool of human betterment, and believed that when applied to any domain,
including educ
ation, it would bring haphazard and confusing events under intelligent control.
The crucial difference was that where
Thorndike saw educational science as a storehouse of
objective knowledge produced by experts in laboratories and controlled research proje
cts
, Dewey
viewed it as a
method of rational problem
-
solving that could and should be employed by
practitioners at all levels
. Moreover, if, as Robert Crunden suggests, progressivism must be
understood as a kind of 'displaced Protestantism', an effort to u
nderwrite the modern state with
traditional values, then Thorndike and Dewey presented two radically different social gospels [
8
]. Living amid the chaotic confluence of urb
an America and the intellectual riptide generated by
the Darwinian revolution, both men embraced the 'new psychology' as the instrument for
constructing a moral society. But where Thorndike developed a mechanistic ontology that
stressed inherited powers an
d the need to conform behaviour to fixed standards of truth and
goodness (a kind of secularised Calvinism in which social evil is constrained by the benevolent
stewardship of the biologically elect), Dewey formulated an organismic conception of life,
expla
ined mind through the process of social adaptation, and defended a 'common faith' in the
communal effort to face problematic situations.

Ellen Condliffe Lagemann has argued that 'one cannot understand the history of education in the
United States during t
he 20th century unless one realises that Edward L. Thorndike won and
John Dewey lost' [
9
]. Accordingly, to appreciate the structured context in which children are
schooled,

parents, educators, indeed society at large, must recognise how Thorndike's synthesis
has developed into one of the most influential subtexts in educational thought and practice. We
should realise that the school's theoretical architecture, like its physi
cal structure, is an historical
construct crafted with a particular set of intellectual tools in response to social, political and
economic needs, and be alert to the fact that the common sense understandings this intellectual
blueprint sustains are inhere
ntly problematic. By the same token, a careful reading of Dewey's
more sub fie and sophisticated arguments on the nature of knowledge, mind and schooling will
help demonstrate the weaknesses in Thorndike's programme and encourage a more informed and
critic
al approach to the solution of educational problems
--
an approach, I shall argue, that
dovetails with and strengthens contemporary views of educational theory and practice developed
in the wake of Jurgen Habermas's influential critique of the social science
s [
10
].

EDWARD LEE THORNDIKE
The New Psych
ology

According to E.G. Boring, 'American psychology inherited its physical body from German
experimentalism, but got its mind from Darwin' [
11
]. In addition to ident
ifying its 'heredity',
Boring might have expanded on the role of nurture and the distinctive climate that promoted the
rise of the social sciences in the USA. For, if it is possible to trace the origin of American
psychology's scientific methodology to the

training that men such as G. Stanley Hall, William
James, and James Mckeen Cattell received in Wilhelm Wundt's laboratory at Leipzig, and its
genetic theory of mind to British evolutionary associationism, then it was the practical goals of
America's newly

founded research universities which contributed the environment in which
psychology would develop as an instrument of social control [
12
]. In particular, it was by
combi
ning methods of measurement styled on Wundt's 'psycho
-
physics' with the belief that
human beings share an underlying homogeneous nature that the majority of American
psychologists learned to construct their discipline as the categorisation and manipulation

of
group characteristics necessary for the bureaucratic management of large populations.

As Hall recognised, combining the genetic approach to human nature with the positivist
philosophy of German experimentalism provided an axis of theory and method tha
t would assure
psychology's professional and academic acceptance. Eager to demonstrate the practical
application of this union for education, Hall coordinated a two
-
pronged investigation into the
natural development of the child [
13
]. A central focus of these studies was to differentiate
instinctual from learned behaviours. But the first inquiry, a series of questionnaires designed to
reveal the content of children's minds
, was roundly criticised by Hall's peers as unscientific and
anecdotal; the second, Franz Boas's now famous anthropomorphic examination of local boys and
girls (in which he undermined the fixity of the Cephalitic index), created such a political storm
that

a moratorium was called on further child study within the Boston area [
14
]. This incident
was to prove pivotal for Thorndike, who, as a doctoral student in psychology at

Harvard, was
directed away from an experimental study of children to the investigation of inherited and
acquired behaviour in animals. Completed at Columbia under Cattell, Thorndike's description of
the puzzle
-
solving abilities of cats and dogs, later ela
borated and published as Animal
Intelligence, became an immediate classic and an impetus for the future development of animal
experimentation and learning theory [
15
]. Ab
ove all, by demonstrating how psychological laws
could be combined with methods of quantitative analysis, Thorndike provided what Hall could
not
--
a paradigm for the science of human engineering.

Education and the Manufacture of Virtue

As his biographer Geraldine Joncich Clifford acknowledges, the
re are few original ideas in
Thorndike's writings. Indeed, the central concepts of his life's work were all learned during his
undergraduate studies at Wesleyan University, where, guided by his first psychology teacher,
Andrew C. Armstrong, Thorndike was i
ntroduced to his future discipline through James Sully's
Outline of Psychology [
16
]. It was from this book, written from the perspective of British
evolutionary associati
onism 'with special reference to the theory of education,' that Thorndike
learned the practical value of genetic psychology for teachers and, as Clifford explains, the social
importance of measuring 'individual difference, ... the narrow spread of training
, and ... the
"stamping
-
in" force of impressions in learning' [
17
]. Even Thorndike's dissertation
--
when
viewed against the work of Herbert Spencer, George Romanes and Con
way Lloyd Morgan
--
appears to be little more than a simplified reading of Spencer's philosophy of mind and a
practical verification of Morgan's argument against Romanes that psychologists should avoid
anthropomorphising the animal mind. Morgan had suggested

that the apparently intelligent
behaviour of animals can be explained without assuming the imitative and reasoning capacities
of humans; acquired abilities, such as his own fox terrier's skill of opening the garden gate by
lifting its latch, were simply t
he product of trial
-
and
-
error learning, a process commonly known
as the 'Spencer
-
Bain' principle. In a number of similar tasks, Thorndike provided experimental
confirmation of Morgan's argument by recording the diminishing times in which cats and dogs
were

able to free themselves by releasing the door catches of several home
-
made cages. The
strong memory of his subjects, the smooth gradients of the resulting learning curves, and his own
observations of their behaviour, convinced Thorndike that these animals

did not reason the
method of escape or imitate the actions of others, but, as Morgan had suggested, simply learned
to associate correct actions with successful responses [
1
8
].

Combining this thesis of trial
-
and
-
error learning with a rather superficial reading of current ideas
on neural anatomy, again derived from Spencer, Thorndike cemented his findings in what was to
be the guiding metaphor of his life's work [
19
]. Following Karl Pearson, he argued that the
brain, like the wires in a telephone exchange, was a complex of specialised neural bonds which
predispose an organism to certain se
nsations, emotions or actions within a given situation [
20
].
Although many of these 'connections' between situation and response are determined by birth,
new associations

or habits could be 'stamped
-
in' according to just two principles of change: the
Law of Exercise ('exercise strengthens the bond between situation and response') and the Law of
Effect ('satisfying results strengthen, and discomfort weakens, the bond betwee
n situation and
response') [
21
]. By the time he completed Animal Intelligence in 1911,
Thorndike was
convinced that his model could explain all aspects of learning, inclu
ding the imitative and
reasoning abilities of humans. 'Higher animals, including man,' he confidently asserted, 'manifest
no behaviour beyond exception from the laws of instinct, exercise, and effect'

[
22
]. The gentle
inclines of his learning curves represented 'the wearing smooth of a path in the brain, not the
decisions of a rational consciousness' [
23
]. 'Learning is connecting. The mind is man's
connection system. Purposes are as mechanical in their nature as anything else.' [
24
].

Thorndike's thought and work have to be understood against the background of two institutional
struggles: the drive to gain academic recognition for psychology within the American university,
and the efforts at Teachers Col
lege to establish a corps of professionally trained educational
administrators [
25
]. In Thorndike's mind, the first task depended upon demonstrating that
psychology was a

science, the second that this science could provide a foundation for
educational practice. Both of these endeavors were implicitly tied to the basic project of positive
philosophy: the employment of science and technology to ensure progress and the recons
truction
of order eroded by the social, economic and intellectual upheavals of modern life. Meshing with
the broad tide of American progressivism, Thorndike, like many social scientists of the day, was
convinced that a meritocratic state free of waste, cor
ruption and privilege could be achieved only
when power was invested in men of superior intellect and virtue
--
a fusion of science, character
and social planning that resonated with the psychometric studies and eugenic doctrines of
Francis Galton [
26
].

In 1879 Galton had argued that 'until the phenomena of any branch of knowledge have been
submitted to measurement and number, it cannot assume the status and dignity of a science' [
27
]. Five years later, Galton took psychology a step closer to this goal by opening an
anthropomorphic laboratory at London's International Health Exhibition. For three pence he
measured a person's mental faculties, reducing, as phrenologists ha
d done, cognitive abilities to a
numerical scale. Not only did this transaction provide participants with an objective record of
their mental capacity
--
a valuable certificate in a growing market economy
--
it also helped Galton
build a data bank of some 9,00
0 subjects from which to study the range of intelligence within the
population [
28
]. By playing down the effect of the environment and sidestepping debates over
the mecha
nism of genetic inheritance, Galton and his followers Karl Pearson and Charles
Spearmann developed the basic tools of correlation and regression necessary to analyse the
variance of socially important traits such as intelligence [
29
]. In so doing, they not only laid the
foundation for modern statistical theory, but provided the basic instruments of testing and
measurement that would weigh each person's value to a scientifi
cally managed state. It was these
reformist ideals that Thorndike sought to develop and popularise through his theoretical writings
on research methods in education and his practical work on intelligence testing developed for the
American army during the F
irst World War and for the American school in the decades that
followed.

Thorndike, who dedicated his first book, The Human Nature Club, to Galton, shared the view
that science depends upon the quantification of phenomena [
30
]. He also accepted Galton's
social philosophy. Throughout his writings, the assumption that 'human ability is largely
determined by birth' acts as a theoretical premise from which he continuously dra
ws the practical
conclusion that 'progress depends on identifying and training each person for the social role to
which they are most suited'. In fact, because Thorndike believed that intelligence and virtue
varied directly with race and class, he fully em
braced the negative as well as the positive
doctrines of eugenics. As late as 1940, despite advances in anthropology (which demonstrated
the pivotal role culture plays in shaping human nature) and in post
-
Mendelian genetics (which
illustrated the complexit
y of the genotype) that had effectively undermined the theoretical pillars
of eugenics
--
notably the work of Franz Boas and T. H. Morgan, as well as faculty at Columbia
--
Thorndike was still prepared to argue that:

By selective breeding supported by a suita
ble environment we can have a world in which all men
will equal the top ten percent of present men. One sure service of the able and good is to beget
and rear offspring. One sure service (about the only one) which the inferior and vicious can
perform is to

prevent their genes from survival [
31
].

Like Galton, Thorndike saw no bounds to the mathematisation of experience. 'Whatever exists',
he claimed, 'exists in some amount
.' [
32
]. Echoing the themes of Spencer's famous essay, 'What
knowledge is of most worth', Thorndike maintained that far from destroying the qualitative,
quantitative meas
urements yield a degree of exactness and control that enhance our appreciation
of events [
33
]. Most importantly, to the objective eye, statistics provide the key to unrav
elling
the complexities of social phenomena:

Tables of correlations seem dull, dry, unimpressive things beside the insights of poets and
proverb
-
makers
--
but only to those who miss their meaning. In the end they will contribute
tenfold more to man's master
y of himself. History records no career, war or revolution that can
compare in significance with the fact that the correlation between intellect and morality is
approximately .3, a fact to which perhaps a fourth of the world's progress is due [
34
].

And yet, despite the sophistication of their statistical instruments, both Galton and Thorndike
showed considerable naivety in the application of this crude positivism. Galton,

for example,
constructed a beauty map of England based upon the frequency of pretty women he observed
during visits to different towns and cities, while Thorndike, obsessed with the fear of declining
intelligence and morals, employed indexes of class and
race to form a 'goodness' chart of the
USA. Not afraid to put a value on life,
Thorndike actually developed a calculus of human worth
.
In his last major work, Human Nature and the Social Order, he explained that if an ordinary
person's desires count for 10
0 units, then a genius's should be worth 2,000, an idiot's 1, domestic
animals 1/500, and other creatures 1/10,000 [
35
]. Son of a Methodist minister, Thorndike may
have g
iven up religion for psychology, but he never escaped the dismal world view of Calvin. If
the elect were now chosen by biology rather than God, virtue and achievement still remained
different sides of the same coin. Underwriting Thorndike's world view was
his basic
commitment to a Laplacian universe:

No response of any human being occurs without some possibly discoverable cause; and no
situation exists whose effect could not with sufficient knowledge be predicted. Things do not
happen by mere chance in hum
an life any more than in the fall of an apple or in an eclipse of the
moon.
The same situation acting on the same individual will produce, always and inevitably, the
same response. If on different occasions it seems to produce different responses, it is be
cause the
individual has changed in the meantime and is not the same creature that he was
. At the bottom
of the endless variety of human nature and circumstance there are laws which act invariably and
make possible the control of human education by reason.

So the general rule of reason applies to
education: To produce a desired effect, find its cause and put that into action [
36
].

By affirming the existence of a fixed und
erlying causal order, Thorndike's scientism dovetailed
perfectly with the central goal of scientific management: determining the most efficient system
of production for any process.
For example, since he defined teaching as simply 'the art of giving
and wi
thholding stimuli with the result of producing or preventing certain responses', Thorndike
maintained that educational research must identify those methods that are most effective in
bringing about the social goals of schooling

[
37
]. Such scientifically proven practices, when
combined with a system of training and supervision, could then replace the traditional rule of
thumb strategies employed by the average teacher.

For

Thorndike, as for other efficiency theorists, there was a fundamental difference between the
mind of the worker and that of the expert. Where the thought of the former was grounded in
perception and coloured by opinion, the latter was able to generate obj
ective judgments based on
facts.
On the whole, Thorndike cautioned, ordinary people were better off not thinking for
themselves but following the wisdom of their intellectual superiors
. Social progress depended
upon the creation of a paternal society, ceme
nted by sentiments of stewardship and deference, in
which the cognitive elite were vested with the power to direct the masses towards the common
good. In the case of schooling, this natural order was reflected in a system where researchers and
administrato
rs provided scientific knowledge and organisational control while teachers
contributed their labour and unconditional loyalty.

Thorndike's views of learning, intelligence and scientific management provided the
bureaucratically
-
minded educators of the era
-
-
the men David Tyack and Elizabeth Hansot have
called the 'administrative progressives'
--
with the tools necessary to atomise, sequence and
monitor every aspect of schooling [
38
]. As Herbert Kliebard observes, for curriculum designers
such as Frank Bobbett and W. W. Charters, Thorndike's concept of the mind as a mass of
localised stimulus
-
response bonds operated like a blueprint, justifying the breakdown of studies
into the

elemental components that would prepare each individual with 'the exact skills for the
tasks that lay before them in life' [
39
]. Indeed, it was Thorndike's own research
into the basic
tenets of faculty psychology that provided the scientific efficiency movement with its most
effective argument for undermining the traditional humanist curriculum. In two celebrated
experiments, Thorndike showed that there is little or no tr
ansfer of learning between domain
specific tasks and that no subject is more effective than any other in developing a child's
intelligence [
40
]. The classics had no speci
al value in disciplining the intellect, and a general
education, in contrast to Charles Eliot's famous claim, was not the best preparation for life. What
really mattered was the student's native ability, the most able pupils in his tests showing 'large
gai
ns in intellect' irrespective of the 'studies they take' [
41
]. These results confirmed Thorndike's
personal conviction that extended schooling was simply wasted on the av
erage child, who, by
occupying the teacher's time, diverted attention from the important task of educating the most
intelligent. Interestingly, Thorndike also undermined the received opinion that adults are less
able to learn than children [
42
]. And yet, while supporting adult education, he remained
convinced that such schemes should be reserved for superior minds. Unlike many of his
followers, Thorndike did not view lifel
ong education as a mechanism for combatting the
inequalities of schooling and society.

Thorndike's own contribution to the industrialisation of education was prodigious.
He devised
rating scales to standardise and measure children's proficiency in handwri
ting, spelling, drawing,
history and English comprehension, and sold millions of arithmetic textbooks that stressed drill,
repetition and the 'overlearning' of basis skills
. In part, the attraction of these books lay in
Thorndike's rejection of 'mental gym
nastics'; every exercise, and there were thousands of them,
was keyed to vocational and life needs. Nor was there any fat on this practical diet. Not wishing
children to form superfluous bonds, he made sure that his books used only the most common and
easi
ly comprehensible words. While Thorndike's study of vocabulary proved extremely valuable
to teachers and publishers, culminating in the justly celebrated Thorndike
-
Century dictionaries,
one can only marvel at his mind
-
numbing ten
-
year study of popular lite
rature in which he
singlehandedly recorded the frequency of words in approximately a quarter of a million pages of
text [
43
]. These projects, along with his marketing of
vocational and intelligence tests, made
Thorndike a considerable fortune.

But even more than these practical instruments, it was through his vast theoretical oeuvre of
more than 400 publications that Thorndike shaped his discipline. His magnum opus, the t
hree
-
volume Educational Psychology, along with his Introduction to the Theory of Mental and Social
Measurements provided definitive guides to improving classroom instruction and objectively
assessing the results of learning [
44
]. It is from these texts that the first generation of American
educational researchers learned about operational definitions, the concept of innate intelligence,
laws of learning, correlations, expe
rimental design, treatment groups, hypothesis testing and
factor analysis [
45
]. As Henry Suzzallo explained:

More than any of the other educational psychologists, [Thorn
dike] sponsored statistical method,
redivised it for a hundred variable types of inquiry, taught it to his students and headed with a
professional associate or two, the whole movement to give educational thought and practice a
scientific and dependable tec
hnique [
46
].

It was this understanding of the methods and content of educational theory that was disseminated
throughout the American university and school system by the

army of administrators and
superintendents that Thorndike helped to graduate during his 40
-
year tenure at Teachers College.

But Thorndike's vision of an educational science cannot be captured in any catalogue of his
technical innovations and practical co
ntributions, for the central and sustaining core of his work
was not a set of abstract principles, but a moral commitment to the Puritan life ethic he had
imbibed during his youth. If religion could no longer sustain such values, Thorndike, like many
of hi
s peers, was convinced that psychology could be used to reconstruct a virtuous and rational
society free of the political corruption and haphazard practices that had infected American life.
While such a scientifically organised community could arrest moral

decay and eliminate
inefficiency, it did not hold out the promise of democratic reform. Grounded in a mechanistic
understanding of human nature, the concept of growth was simply not part of Thorndike
vocabulary.

JOHN DEWEY
Organicism and the Adaptive Mind

Like Thorndike, Dewey also wrote a classic in the history of psychological thought. Published in
1896, 'The reflex arc
concept in psychology' marked a watershed in Dewey's thinking [
47
].
From a crucible of conflicting ideas
--
his early philosophical commitment to Hegelianism,
contemporary
attacks on mechanism within the life sciences, the influence of Darwin, and the
psychological writings of William James
-
Dewey forged an organismic ontology to replace both
the traditional Cartesian dualism of mind and body and its contemporary parallel, ad
vocated by
Thorndike, the physical dualism of stimulus and response. For Dewey, mind was not a spiritual
entity existing over and above the material world
--
a spectator reacting to physical events. Nor
was it an epiphenomenon generated by the brain. In Dewe
y's new synthesis, mind was to be
understood as a functional product of the evolutionary process: it was a person's collective
dispositions to act, the 'system of beliefs, desires, and purposes which are formed in the
interaction of biological aptitudes wi
th a social environment' [
48
]. Accordingly, while Dewey
defended efforts to establish a naturalistic psychology, he rejected the passive and atomistic
picture of mind pre
sented by associationist learning theories such as Thorndike's in which the
traditional triad of sensation, thought and action was replaced with a causal chain
--
modelled on
the physiological reflex
--
that linked sensory input via neural pathways to distinct

behavioural
responses. As Dewey saw it, this mechanism fragmented action and failed to capture the central
role that consciousness plays in human life.
Men and women, he maintained, do not simply
respond to the world; they strive, struggle and plan, and i
n so doing transform their spontaneous
energies into the habits and behaviours necessary to achieve their goals. The problem of life,
therefore, was not to explain how either thought or experience initiates action, but how action
generates thought in the c
ourse of adaptation.


As Dewey's analysis of a basic act demonstrates, even the simplest movements have a holistic,
dynamic and developmental quality. Just as physiological systems maintain an equilibrium
between the organism and its environment, so, Dewey

argued, every action must be understood
as a series of adjustments in which compensating processes resolve an initial nervous irritation.
Thus, whereas William James attempted to identify the separate components of the reflex arc in
his famous picture of
a child reaching for a candle
--
the sight of the flame (stimulus) causing the
movement of the arm (response)
--
Dewey offered a more subtle description in which seeing and
reaching were interpreted as coordinated acts: vision guiding the hand as the hand dire
cts the eye
toward the goal of the light [
49
]. In contrast to the mechanical character of the reflex, Dewey's
analysis of action thus stressed both the purposive nature o
f human behaviour and the complex,
modifiable 'circuits' behind even the simplest movements. For Dewey the real beginning of the
child's behaviour is the act of seeing, 'it is looking, and not a sensation of light' [
50
]. Moreover,
he argued, stimulus and response should not be viewed as 'separate and complete entities in
themselves, but as divisions of labor, functioning factors within the single concrete whole'
--
a
system
of compensating behaviours in which the coordinated hand
-
eye action would be
transformed into the mediated circuit 'seeing
-
of
-
a
-
light
-
that
-
means
-
pain
-
when
-
contact
-
occurs' [
5
1
]. It is this model of unified, adaptive and integrated transactions in the balancing exchange
between internal and external conditions that underwrites the organic understanding of life
permeating Dewey's mature work, an understanding which, by affirm
ing the primacy of activity,
led Dewey to reformulate the central questions of philosophy. Where previous thinkers had
sought secure foundations from which to justify reason and conduct, Dewey examined how
people could develop the intelligent habits and ch
aracter necessary to gain rational control of
experience.

Science and the Democratic Life

At a time when the majority of American social scientists, Thorndike included, promoted the
concept of a biologically fixed human nature, usually with an attendant hierarchy of race and
gender, Dewey showed that gen
etic psychology must abandon its physiological basis and
view
the mind as a product of social adaptation.

Dewey's argument is perhaps best understood when
set against the work of Wilhelm Wundt [
52
]. Although usually remembered in Anglo
-
Saxon
scholarship for his experimental analysis of 'inner perceptions', Wundt always maintained that
introspective reports could not explain higher mental processes: Naturwissenschaften mere
ly
revealed the psychic equivalents of basic physical stimuli. Like his German contemporary
Wilhelm Dilthey, Wundt recognised that because human beings are historically embedded in the
language, religion and customs of culture, the mind must be understood
through
Geistwissenschaften
--
a project he pursued through the ten volumes of his massive
Volkerpsychologie [
53
]. While such considerations were alien to Thomdike's atomis
tic view of
individuals and society, Dewey fused his organic theory of activity with the teachings of Wundt's
former student, his colleague and closest friend at the University of Chicago, George Herbert
Mead. It was Mead's psychology, Dewey later confesse
d, 'that worked a revolution in my own
thinking', and led to the recognition that 'all human experience is essentially social' [
54
].

Dewey's focus on the cultural
determinates of thought can be seen in 'Interpretation of savage
mind', where he argues that the intelligence of native peoples can only be appreciated once it is
understood how their traditions and practical occupations have developed to satisfy their dai
ly
needs

[
55
]. But, while recognising that men and women are historically situated creatures whose
thought and values are shaped by social institutions, Dewey was careful

to avoid Marxism. In
contrast to both biological and social determinists, he was adamant that 'the possibility of
freedom is deeply ingrained in our very beings' [
56
]. G
iven the appropriate economic and
political conditions, all individuals can acquire the critical habits necessary to gain rational and
reflective control of their lives. Clearly, Dewey conceded, in primitive cultures
--
as in modern
totalitarian states
--
wher
e thought is constrained by religious and political orthodoxy to accept the
wisdom and dictates of a ruling elite, men and women can be molded into passivity. But such
authoritarian visions of the social good could no longer be sustained. Since Darwin, bel
ief in
universal truths and values had crumbled before the reality of a precarious and uncertain world:
change and adaption were now the facts of life. Without the guidance of such fixed ends,
progress depended upon society's ability to harness the most ef
ficient system of problem solving.
In Dewey's mind this implied a form of community life in which all citizens participated in the
experimental determination of social policies. Ideas had to be evaluated by their consequences
not their authorship.

Dewey s
pent a great deal of time trying to clarify the process of scientific reasoning and
determine how it might be taught to children. Applying his organismic model of experience, he
defined science, intelligence or reflective thought as the systematic method o
f resolving doubt,
the controlled transformation of a troubling situation into a unified and satisfying whole. As he
explains in How We Think, five distinct stages can be identified in the formation of any belief [
57
].
Starting from a felt difficulty, a problem is articulated, hypotheses are suggested, their
implications are considered, and experiments are conducted to determine their truth.
What turned
this general scheme

into science was simply the careful regulation of thought to ensure the full
and objective consideration of all the conditions that surround judgment. In other words, science
was the exercise of those cognitive virtues such as honesty, fairness, openness,

and thoroughness
that are implicit in the toleration of different viewpoints, the fostering of public criticism, and the
willingness to share ideas. Where Thorndike presented science as a technical pursuit limited to
superior minds, Dewey saw it as a univ
ersal method of deliberation everyone could and should
employ. Indeed, Dewey observed, the rational values implicit in the scientific method were
nothing less than the moral norms of democratic life.

Because Dewey defined democracy as a form of life rathe
r than a set of government institutions,
he was convinced that social reform could be achieved only when individuals were educated in
the intellectual skills and social virtues necessary for democratic citizenship. And yet the
traditional school, with its
economy of abstract learning, punishment and competition, had
generated a mentality of fear, greed, selfishness and individuality. The social spirit and abilities
that Dewey prized demanded a radically different form of organisation that would utilise dive
rse
talents and promote cooperation in joint problem
-
solving activities.
To this end he proposed that
schools be set up as embryonic democracies, where, through participation in shared tasks, the
crude and immature powers of children would be honed into th
e social skills demanded by the
scientific method.

A democratic counterpart of Plato's utopian state, Dewey's organic society,
like the idealised New England community of his youth, rested upon two goals: achieving the
full realisation of each person's pow
ers and ensuring the participation of all 'in proportion to
capacity in shaping the aims and policies of the group' [
58
]. As such, the common criticism that
Dewey promote
d laissez
-
faire policies of child
-
centred education is thus totally misplaced [
59
].
His vision of schooling was no more an exercise in romantic pedagogy than it was a pre
paration
for a life of compliance under a heterogeneous authority, as Clarence Karier has claimed [
60
].
Neither the open nor the traditional classroom
--
individualism nor
collectivism
--
would serve the
needs of Dewey's social ideal. Reformulating the educational debates of his day, Dewey showed
that the aims of self
-
realisation and socialisation were one
-
sided abstractions generated by the
theoretical separation of the child

and the curriculum. True, to be meaningful, learning must start
from the spontaneous interests of the student
--
the spirit of the scientific mind so often destroyed
by traditional methods
--
but equally, schooling should also lead to the development of what
Dewey termed social intelligence: the ability to employ the tools of thought constructed in
society's historical struggle to gain control of experience. As Dewey explained to the teacher,
these were simply the psychological means and logical ends of a sing
le process:

Such and such are the capacities, the fulfilments, in truth and beauty and behaviour, open to
these children.
Now see to it that day by day the conditions are such that their own activities
move inevitably in this direction, toward such culmin
ation of themselves. Let the child's nature
fulfill its own destiny, revealed to you in whatever of science and art and industry the world now
holds as its own

[
61
].

Suc
h an education, of course, would demand a new kind of teacher and a new kind of school.

Dewey was well aware that philosophical arguments alone would not challenge the entrenched
assumptions of American educators. An alternative paradigm had to be constru
cted in order to
demonstrate how the school could be transformed from an instrument of social reproduction
--
reinforcing the divisions and inequalities of a fractured state
--
into the 'midwife' of a more just
community. Not only did this involve rethinking t
he curriculum; it also meant reformulating the
tasks of research, administration and teaching according to Dewey's concept of democratic
organisation. It was to further these goals that Dewey established the laboratory school at the
University of Chicago.
Modelled on the chemistry and physics laboratory, Dewey attempted to
construct a controlled environment for the development of educational knowledge. If staff,
students, and material conditions varied from those found in the public system, he nonetheless
b
elieved they were similar enough to provide 'an experimental station for the testing and
development of methods, which when elaborated, may be safely and strongly recommended to
other schools' [
62
].

Central to Dewey's project was the rejection of any effort to turn education into a science by
grounding its practices in the laws of some foundational discipline, as Thorndike had done with
psychology. For while Dewey certain
ly believed that practitioners should draw upon all useful
scientific findings, he emphasised that such knowledge would only become part of an
educational science when it was shown to solve educational problems. Practice was 'the
beginning and close' again
st which all experimental thought had to be judged [
63
]. 'The
beginning, because it sets the problems which alone give to investigations educational point and
quality; th
e close, because practice alone can test, verify, modify and develop the conclusions of
these investigations. The position of scientific conclusions is intermediate and auxiliary' [
64
]. As
with arts such as engineering or medicine, Dewey believed that teaching would only become
scientific when educators learned to replace their naive and uncritical assumptions with informed
and intelligent habits. Such knowledge would not
be 'found in books, nor in experimental
laboratories, nor in class
-
rooms where it is taught, but in the minds of those engaged in directing
educational activities' [
65
].
Teachers were not technicians following the dictates of university
-
based experts, as Thorndike had argued, but problem solvers who must inevitably generate their
own practices.

As Dewey explained, 'enlightenment, clarity and progress can come about only as

we remember that [disciplines such as psychology and sociology] are sources to be used, through
the medium of the minds of educators, to make educational functions more intelligent' [
66
].

While agreeing with Thorndike about the universality of the scientific method, Dewey had a
more sophisticated understanding of the complexity of educational phenomena. He recognised
that because human beings are purposive, conscious sub
jects, who create meaning and organise
behaviours in order to secure their needs within multilayered social and historical fields, basic
experience was not quantifiable, as Thorndike had argued, but irreducibly qualitative and
rational. Of course, the arti
ficial and abstract conditions of the psychology laboratory can yield
law
-
like regularities, but such situations are so remote from real life that Dewey thought they
would be of little use to the teacher. Research had to be conducted within a school where
children could be studied as social beings. If this increased the dimensionality of the situation,
Dewey was convinced that the scientific method, as he defined it, would yield practical and
generalisable results. Most importantly, in contrast to Thorndike

concern with instrumental
means
--
end questions, the laboratory school would also contribute to the experimental
determination of educational aims. Techne, praxis and theoria had to be brought under scientific
control.

For Dewey, science was first and for
emost a form of social activity. This can be seen most
clearly in the curriculum of his laboratory school. Based upon the reconstruction of social skills,
Dewey organised his students' work around the occupations that have maintained communities
throughout

history. While these activities reflected vocational tasks, Dewey's goal was not to
prepare children for participation within the existing economy, but rather to show them how
social progress depends upon the cooperative division of labour.

Where Thorndik
e advocated
specialised training combined with indoctrination in attitudes of obedience, Dewey envisioned a
non
-
hierarchical community of learners working on the joint solution of practical problems. Not
only would this process demonstrate the unity and me
aning of knowledge in relation to its social
function, it would also help students develop the intellectual habits and virtues necessary for the
proper employment of the scientific method.

The logic behind the organisation

of children's work also applied to the tasks of the school
faculty. A great believer in workplace democracy, Dewey, unlike Thorndike, was convinced that
'upon the whole, through the free and mutual harmonising of different individuals, the work of
the wor
ld is better done than when planned, arranged, and directed by a few' [
67
].
Just as
students were expected to participate in organising their own studies, so teachers wer
e fully
engaged in the running of their school.

In weekly meetings, all members of the staff met to
assess students' progress, design the curriculum, and discuss new teaching methods; cooperation,
personal initiative, and joint reflection replaced the top
-
down management of efficient
-
minded
principals and superintendents. Of course certain administrative tasks demanded specialised
skills, but such divisions of labour were achieved without creating an autocratic structure.
Integration and the exchange of ide
as replaced supervision and control. Indeed, seeking to extend
this cooperative network, Dewey encouraged teachers to form associations both within the
broader community and with university faculty. As a result, parents, academics and local
tradespeople be
came active participants in the life of the school, promoting the fuller
involvement of the community in the education of its youth. Dewey also showed how teachers
could contribute to the development of knowledge by recording and even publishing the result
s
of their pedagogic observations and experiments.

Where Thorndike put his faith in experts, Dewey exalted teachers, for theirs was the supreme
task of crafting the scientific mind from the immature powers of the child. Not only did this
require a knowled
ge of subject matter and a practical understanding of psychology; it also
demanded a sense of mission: the recognition that teaching was the agency by which a more
democratic community could be engineered. Like Thorndike, Dewey had reconstructed an early
c
risis of faith through a scientific morality. But where Thorndike secularised the conservative
values of the Puritan world view in his vision of a technocratic society managed by superior
men, Dewey transformed his reverence for God into a natural piety fo
r the ethical ideals that
regulate the democratic life. It was the teacher, not the psychologist, who became the prophet of
Dewey's social philosophy, 'the usherer in of the true kingdom of God' [
68
].

INSTRUMENTALISM: T
HEORY AS PRACTICE

At the beginning of this century, a time of immense social and intellectual upheaval, Edward Lee
Thorndike and John Dewey formulated two distinct visions of the American school. Employing
radically different psychologies, both men pro
mised educational reform through the application
of science. In Thorndike's conservative synthesis, where ability and character were thought to be
determined largely by birth, this amounted to the construction of a hierarchical society governed
by an intel
lectual and moral elite. Schooling, like manufacturing, was the means
--
end process of
selecting and shaping raw material to meet social needs according to the laws of psychology and
the principles of scientific management. In a more liberal and optimistic
assessment of human
abilities, Dewey argued that men and women could utilise the scientific method and work
cooperatively toward the ethical and spiritual ideal of the democratic life. While employing a
number of similar terms
--
situation, habit, intelligen
ce, and so on
--
Thorndike and Dewey were
thus guided by completely different ontologies and divergent views of human nature and the
social good. But where Dewey's synthesis of organicism and anthropology led to the
examination of these moral assumptions, Th
orndike's fusion of mechanism and physics, by
divorcing fact and value, presented technology as a neutral instrument for achieving externally
determined goals.

In Knowledge and Human Interests Jurgen Habermas argues that far from emancipating men and
wome
n from oppression and dogma, the philosophy of science Thorndike endorsed has led to a
new and more insidious form of enslavement
--
insulated from normative criticism, it has evolved
into a bureaucratically situated, technologyspawning ideology that renders

people powerless and
apathetic objects of state control [
69
]. It is not that Habermas rejects science per se, rather the
scientism of the positivist movement. Indeed, pa
ralleling Dewey's effort to reconstruct reason in
the modern world, Habermas attempts to reformulate the Aristotelian division of techne, praxis
and theoria in order to map out the various ends that knowledge should serve. Consequently, he
explains, while
society has progressed through the increasing command of nature afforded by
science, this technical interest does not encompass the whole of life. Men and women, as Dewey
recognised, are also social animals whose well
-
being or practical interest is conting
ent upon their
ability to communicate within the webs of meaning and significance that comprise a culture
--
a
form of rule
-
governed understanding that cannot be captured in the nomological net of positive
science. Combining work and language, Habermas then
describes how the economic forces
which generate institutionalised power relations systematically distort communication and
solidify contours of social domination that frustrate the inherent emancipatory interest of all
human beings to achieve free and rat
ional self
-
determination. Therefore, like Dewey, Habermas
outlines a reflective social science
--
informed by ideology critique and the concept of an ideal
speech community
--
that will lead men and women to a progressively more democratic and
meaningful socie
ty.

Although Habermas has not written on education, as Gerry Ewert demonstrates, his analysis of
knowledge has had an enormous influence on educational theorists around the world [
70
]. On
one hand, his powerful expose of technological rationality has demonstrated the dangers of
scientism and revealed the extent to which positivist assumptions have permeated schooling and
mainstream educational research. On the other hand,

by defining the proper role of empirical,
interpretative and reflective inquiry, he has shown educators how to reconcile quantitative and
qualitative research while re
-
invigorating efforts, notably by Wilfred Cart and Steven Kemmis,
to establish a critica
l science of education
--
developments Dewey surely would have applauded [
71
]. Indeed, following Habermas, Cart and Kemmis develop criteria for a practitioner
-
based,
democr
atically ordered science of education that could have been written by Dewey himself.

A critical educational science ... has a view of educational reform that is participatory and
collaborative; it envisages a form of educational research that is conducted

by those involved in
education themselves. It takes a view of educational research as critical analysis directed at the
transformation of educational practices, the educational understandings and educational values of
those involved in the process, and th
e social institutional structures which provide frameworks
for their action. In this sense, a critical educational science is not research on or about education,
it is research in and for education [
72
].

But while agreeing with them on the goals for educational reform, Dewey's focus on the
scientific method yields a number of important insights that can enhance Cart and Kemmis's
program. For example, where Carr and Kemmis

follow Habermas's analysis of human interests
to chart the territory of educational research, Dewey, retaining Aristotle's functional perspective,
examines the process of solving educational problems. Since Dewey held that knowledge,
whether science, art
or common sense, is simply an instrument for the control of experience, he
maintained theory must be understood as a form of practice: an abstract intellectual construction,
which, by generalising particular actions, permits public criticism, the formation

of new ends
and, through the requalification of concrete situations, the enrichment of meaning. Indeed,
Dewey claimed, 'theory is with respect to all other modes of practice the most practical of all
things, the more impartial and impersonal it is, the mo
re truly practical it is' [
73
]. As such, rather
than 'Theorising Educational Practices', Dewey, using his laboratory school as an experimental
station for the creation of

educational knowledge, focused on developing the practice of
educational theorising [
74
]. Second, where Carr and Kemmis follow Habermas's reformulation
of techne and pra
xis in order to undermine instrumental rationality, Dewey develops a positive
critique of technology. He rightly observes that all our transactions with experience are
fundamentally open
-
ended. The scientist, the poet and the carpenter each solve problems
by
formulating 'ends
-
in
-
view', guiding constructs that direct the creative, experimental and
evaluative interplay between human goals and the world. Progress is not achieved by turning
teachers into technicians who follow the kind of means
-
end routines Tho
rndike advocated, but,
as with other professions, ensuring that practitioners acquire the intellectual tools necessary to
solve the problems of their field. In an open universe empirical, interpretative and critical
reasoning have to be brought under scien
tific control. Third, while Carr and Kemmis, following
Habermas, recognise that notions such as freedom, truth and justice are united in the concept of
an ideal speech group, Dewey demonstrates the essential relationship between knowledge and
community thr
ough his analysis of problem solving [
75
]. In Aristotle's scheme theoria, praxis,
techne and ponos (the labour and suffering of the slave) were not only different forms o
f
knowledge, but also referred to distinct stations in life and thus served as indexes of virtue.
Turning this social hierarchy on its head, Dewey argues that without the foundational insights of
an intellectual elite, knowledge must be built by educationa
l workers from the bottom up [
76
].
Intelligence is not an individual possession but a social tool which can only be fully realised
within democratically organised groups.

Finally, the central role of the aesthetic in Dewey's logic
adds an important dimension to standard criticisms of positivism [
77
]. For, in contrast to
empiricist epistem
ologies, Dewey's instrumentalism assumes that experience is primarily non
-
cognitive: first and foremost life is something human beings suffer, endure and enjoy [
78
].
Thou
ght only arises when the unity of this felt immediacy is disturbed. However, if inquiry
resolves this tension, restoring the qualitative wholeness of the situation, then the resulting
consummatory fulfilment becomes a source of meaning and value within exp
erience. On this
account, perhaps Dewey's greatest criticism of technological reason is the sheer dulling of life
that results from the mechanistic routine of industrial labour. Thorndike's economy of rote
learning, drill and standardised outcomes effectiv
ely reduces schooling to ponos, a monotonous
regimen devoid of intellectual satisfaction that kills the inherent curiosity and inventiveness of
childhood
--
the creative spirit of the scientific mind.

Bolstered by social and economic crises, the American un
iversity and the American school have
become increasingly invested in Thorndike's research and development model in the hope that an
expert knowledge base can be constructed for the scientific solution of educational problems. But
insofar as it remains com
mitted to global top
-
down strategies, to a naive equation of science with
quantification, to the objectification of human nature, and to conservative notions of intelligence
and morality as fixed biological traits, then educational theory will be of little

practical value in
solving the problems of the 1990s. Rather than reducing teachers to instruments of theory,
Dewey, like Carr and Kemmis, demonstrated that we must learn to see theory as an instrument
which teachers can use to improve their understanding

of the educational process. Not only does
this change of focus require a greater appreciation of the qualitative dimensions of experience
and the nested complexity of educational phenomena, it also implies a basic reorganisation of the
educational communi
ty. For embracing Dewey's vision of science as the method of rational
deliberation involves committing oneself to a form of cooperative activity in which, through
experimental and self
-
critical inquiry, all participants combine in the democratic constructi
on of
both the means and the ends of education
--
a goal of social intelligence and public virtue that will
never be attained until 'the spirit of free intelligence pervades the organization, administration,
studies, and methods of the school itself' [
79
].