ppt file - Wissenschaft Online

velodromeryeΠολεοδομικά Έργα

15 Νοε 2013 (πριν από 3 χρόνια και 8 μήνες)

130 εμφανίσεις

Cosmic Jets

Andreas Müller


http://www.lsw.uni
-
heidelberg.de/~amueller/

12. 12. 2002

Theoriegruppe

Prof. Camenzind

Landessternwarte

Königstuhl, Heidelberg

as sources for
high
-
energetic

Neutrinos

Overview



Motivation



The AGN paradigm



Jet physics:


Formation, collimation, morphology



Particle acceleration



Jet simulations and sources



Relativistic leptonic and hadronic Jets



Ultra
-
relativistic GRB Jets



Cosmic Rays



Proton Blazars



AGN neutrino flux



Microquasars



Microquasar neutrino fluxes



Implications of UHE neutrino astronomy



Surprise!

p + p

_
p
+

+ X
CC



_
p
-


+ X
CC E
N

> 300 MeV



_
p
0

+ X
NC

p +
g


_
p
0

+ p

photopion production






(inelastic scattering)

p +
g


_
p
+

+ n

escape via isospin flip



p
-


_
m
-

+
n
m




p
+


_
m
+


+
n
m



p
0


_
g


+
g






m
-


_
e
-

+
n
e
+
n
m




m
+


_
e
+


+
n
e

+
n
m




Motivation

hadrons

neutrinos

Cosmic neutrino sources



Galactic sources:


Sgr A*


SN


SNRs


Microquasars





Extragalactic sources:


GRBs


GRBRs


AGN Jets


constraint:

AMANDA threshold 50 GeV










AGN type 1

multi
-
wavelength spectrum

IR

3 bumps

UV

opt

X
g

AGN taxonomy

Type

Host

Variability

Spectrum

Jets

Sources

Quasar

all

days

Optical: point source,
dichotomy in radio loud
and radio quiet,
emission lines, IR
-
, UV
-
excess, hard X
g

strong

3C 273, 3C 48,

SDSS 1030+0524
(z = 6.28)

Blazar

(+ BQ)

Elliptical

days

double
-
humped (SSA),
X
g
to TeV (IC of UV),
highest L
g
, small inc,
superluminal jets,
compact radio core

strong

Mrk 501, Mrk 421,

1219+285, 3C 279,
H1426+428

BL Lac

Elliptical

days

Optical variable, high L
b
,
no em./abs. lines, strong
in radio, max. in L
IR

no

BL Lac,

PKS 2155
-
304

Radio

Galaxy

Elliptical

months

Strong radio, core: flat;
jet, lobe and hot spots:
steep

strong

Cyg A, M87, M82,
3C 219

Seyfert

Galaxy

Spiral

months

Comptonized continuum,
warm abs., em. lines,
reflection bump

weak

NGC 1068,

NGC 4151,

MCG
-
6
-
30
-
15

LINER

all

yes

narrow emission lines,
O, S, N lines

yes

NGC 4258

ULIRG

merging
of all
types

yes

High L
IR

and L
X
, Fe K
complex,

yes

NGC 6240,

IRAS 05189
-
2524

Kerr black hole topology

Jet formation
-

theory

(
B. Punsly
, BH GHM, Springer 2001
)




Kerr

black hole vital:



frame dragging in ergosphere




ergospheric dynamo
:



creates and sustains
toroidal

magnetic


flux and currents




extraction

of rotational energy of Kerr hole




outgoing wind driven by
MHD Alfvén waves




reconnection
: plasma decouples from

magnetic field as approaching to horizon


(restatement of
No
-
Hair theorem
)




magnetized accretion disk: energy of

accreting plasma powers the wind

Jet formation
-

simulation

(
Koide et al.
, 2001
)

log(
r
) from 0.1 to 100 color
-
coded, arrows: velocity,

solid line: magnetic field

parameters:

a = 0.95, t = 65 r
S
, v
Jet

= 0.93c,
g

= 2.7

MHD
-
Jet

collimation and acceleration




Lorentz force
:


electric current


in jet plasma



toroidal mag. field B
F



F
II
: acceleration




total magnetic field B



F
I
: collimation


additional dependencies:



gas pressure



centrifugal forces



ambient pressure



Particle acceleration

(ApJS 141, 195
-
209, 2002,
Albuquerque et al.)



Lorentz forces and gas pressure in Jets



Fermi acceleration

I)
1
st

order:


relativistic shock waves propagate through
turbulent plasma accelerating charged particles

I)
2
nd

order:


stochastical acceleration of particles when diffusing
through turbulent plasma



macroscopic kinetic energy of plasma transfered to
few charged particles!



shock fronts


Jets
: internal shocks, bow shock


GRBs
: fireball shock


SNs/SNRs
: blast wave shock

Jet morphology

Jet simulation

M. Krause, LSW HD

t = 1.64 Myr

cocoon

shocked ext. medium

bow shock

r

Jet


emission knots

periodic bright knots associated with inner shocks

(rarefaction & compression)


complete linear size: 159 kpc z = 1.112

Radio Jet


Cyg A

jet and counter
-
jet, core, hot spots, lobes

Synchrotron emission in radio from relativistic e
-

false color image:
red

is brightest radio,
blue

fainter.

D ~ 200 Mpc

VLA

X
-
ray Jet


Cyg A

X
-
ray cavity formed by powerful jets

hot spots clearly visible in 100 kpc distance away from core

surrounding is hot cluster gas T ~ 10
7

to 10
8

K

resulting topology: prolate/cigar
-
shaped cavity

Chandra

Relativistic hadronic
and leptonic Jets

(
Scheck et al.
, 2002
)

log(
r
)



surprisingly similar


dynamic and morphology!




3 models:




BC


baryonic cold


LC


leptonic cold



LH


leptonic hot



leptonic species: e
-
e
+
(rel.)



hadronic species: p, He (th.)



Relativistic Hydrodynamics


(
RHD
) in 2D



NEC SX
-
5 Supercomputer



jet kinetic power:


10
44

to 10
47

erg/s



typical lifetime: 10 Myr

Relativistic hadronic and
leptonic Jets

(
Scheck et al.
, 2002
)

Lorentz factor
G

after 6.3 Myr

highest
G


lowest
G


1.8 s after explosion

G
= 10
a
v = 0.995c


axis unit: 100 000 km


contour:

v
r

> 0.3c

e
int

> 0.05 e
0


Jet:

8
°

opening angle


Jet core:

99.97% c


M.A. Aloy, E. Müller;
MPA Garching

Relativistic GRB
-
Jet

G

outer stellar
atmosphere

stellar surface

Cosmic Rays

(ApJ 425, L1
-
L4, 1995,
Waxman
;
Waxman & Bahcall
, 1999, 2001
)



ultra high
-
energy CR: 10
19

eV < E < 10
20

eV



1
st

reported by Fly‘s Eye, AGASA air shower detectors



CR sources: homogeneous distributed and cosmological



candidates:

GRBs

(cp. BATSE @ CGRO)



AGN Jets
: photo
-
produced
p
0

decay to
gg



CR sources generate
UHE protons



each has
power
-
law

differential proton spectrum:




dN/dE ~ E
-
a



spectrum
insensitive

to source evolution with z and


cosmological parameters (H
0
)



observable
constraint
: 1.8 <
a

< 2.8



often assumed:
a

= 2.0



neutrinos overtake
a
-
value if secondary from p
-
p reaction!



in p
-
g

reactions weighting with photon power law



WB limit:
neutrino flux limited

by parental proton energy!

CR spectrum

(astro
-
ph/0011524,
Gaisser)

E
CR

> 10
17

eV

Proton Jet reactions

Proton blazar model

(astro
-
ph/9306005, 9502085, 0202074,
Mannheim)





non
-
conservative approach! (alternative to IC of accretion

disk thermal UV emission on accelerated
electrons
)




proton acceleration in most powerful AGN Jets




power law distribution: n
p
(E
p
)~E
p
-
s




protons hit

-

p
-
target yields
n
: Q
pp
n
(E
n
)~ E
n
-
s
neutrino production rate



g
-
target yields:



CMB:
Greisen
-
Zatsepin
-
Kuz‘min

cut
-
off (1966):


E
p

< 10
19

eV „intergalactic proton“



Synchrotron spectrum with n
g
(E
g
)~ E
g
-
a
:




Q
p
g
n
(E
n
)~ E
n
-
(s
-
a
)




protons undergo
unsaturated synchrotron cascades


and emit X
g
, electrons: synchrotron contributions




drastic steepening of cascade spectrum above


E
g

~ 100 GeV: absorption of X
g

by host galaxy


IR
-
photons from dust




BUT:

neutrinos
not

dampend!

Proton blazar
1218+258

(astro
-
ph/9502085,
Mannheim)




fit parameters:


q
= 7
°


g
jet

= 5


g
p

= 2 x 10
9


d

= 7


B = 4 G

Data:

NED

Montigny et al. 1994

Fink et al.

Whipple group

Quasar 3C273


predicted neutrino flux

(astro
-
ph/0202074,
Hettlage & Mannheim)




n
m

fluxes




compared with

SNRs and Coma

galaxy cluster




n

oscillations



neglected!

Microquasars

Chandra homepage

Microquasar

Cyg X
-
3




discovery in 1967 (
Giacconi et al.
)





companion: massive Wolf
-
Rayet as can be observed


from wind in I
-

and K
-
band (
van Kerkwijk et al., 1992
)




orbital period: 4.8 h derived from IR and X
-
ray flux

modulation via eclipses (
Parsignault et al, 1972;



Mason et al., 1986
)




TeV source!




optical observation possible (extinction in Galactic plane)




CO nature:


NS of ~ 1 M
8
with 10
-
7

M
8
/yr and WR with 15 M
8


(
Heuvel & de Loore, 1973
)


vs.


stellar BH with WR of 2.5 M
8


(
Vanbeveren et al., 1998; McCollough, 1999
)




1
st

only one
-
sided jet (
Mioduszewski et al., 1998
)

Microquasar

Cyg X
-
3




evolution sequence of



bipolar radio jet




binary system:



Wolf
-
Rayet
and

NS/BH




D

= 10 kpc




q


= 14
°




b


= 0.81


(Mioduszewski et al., 2001)

VLBA

Microquasar

GRS1915+105




evolution sequence of



one
-
sided radio blob




binary system:



normal star
and

BH



GBHC: M
BH

~ 14 M
8




D

= 12.5 kpc




q


= 70
°




b


= 0.92!


(Mirabel & Rodriguez, 1994)

VLA

SS 433
-

data



most enigmatic and still unique object in the sky!



CO: neutron star or black hole?



companion: OB star with 20 M
8



mass loss rate: 10
-
4

M
8
/yr (wind)



orbital period: 13.1 d



persistent source



1977 discovered, constellation
Eagle



d = 3 kpc



i = 79
°



b

= 0.26 (nearly const!)



no continuous jet:
bullets



slow wobbling period: 164 d



surrounded by diffuse nebular W50 (possible SNR)



jet: strong, variable H
a

line emission



emission lines doubled



estimated: L
jet

~ 10
39

erg/s

(ApJ 575, 378
-
383, 2002,
Distefano, Guetta, Waxman & Levinson)

SS 433

SNR W50A

~ 20 cm

SS 433 in X
-
rays

Chandra homepage 11.12. 2002

T ~ 5 x 10
7

K

d ~ 5 x 10
18

km

SS 433
-

theory




bullet ejection model




timescale: non
-
steady shocks in sub
-
Keplerian accretion flow




bullet shooting interval: 50
-
1000 s




donor matter rejection by
centrifugal force




radiation pressure supported Keplerian disk




15 to 20% of accreted matter is outflow:



mean outflow rate: 10
18

g/s




mean accumulated bullet mass 10
19
-

10
21

g (moon 10
21

g)




bullet formation by
shock oscillations

due to inherent



unsteady accretion solutions

(astro
-
ph/0208148,
Chakrabarti et al.)

Microquasars
-

parameters

(ApJ 575, 378
-
383, 2002,
Distefano, Guetta, Waxman & Levinson)

L
jet

G

S
n

i



all jets resolved in radio (~280 known XRBs, ~50 radio
-
loud)



SS 433 not present: more complicated model


Microquasars



m

敶敮琠灲敤楣瑩潮o

(ApJ 575, 378
-
383, 2002,
Distefano, Guetta, Waxman & Levinson)

strong

periodic

persistent:

1 yr integration time
D
t

pulse

Implications

of UHE neutrino astronomy




determination of two
-
component jet plasma:



fixing the ratio of leptonic to hadronic species


„Detection of
n

emitted by AGN would be a smoking gun

for hadron acceleration.“ (
Hettlage & Mannheim
)




deeper insight in Jet physics generally




better understanding of microquasar physics




detection of low
-
inclined radio
-
hidden microquasars




verification of neutrino oscillations on cosmological scales




clarification of neutrinos as Majorana particles




CR mapping




new issues for the origin of UHE cosmic rays

Most distant AGN

SDSS quasars in 13 billion lightyears distance

emission starts as Universe was 1 billion years old!

M
BH

~ 10
10

M
8
(
Brandt et al., 2002
)

Chandra