INFLUENCE OF DESIGN PARAMETER VARIABILITY OF THERMOPLASTIC HONEYCOMB SANDWICH PANELS ON THEIR DYNAMIC BEHAVIOUR

tickbitewryΜηχανική

30 Οκτ 2013 (πριν από 3 χρόνια και 11 μήνες)

82 εμφανίσεις

16
th International Conference on Composite Structures

ICCS 16

A. J. M. Ferreira (Editor)



FEUP, Porto, 2011

INFLUENCE OF DESIGN
PARAMETER VARIABILIT
Y OF
THERMOPLASTIC HONEYC
OMB SANDWICH PANELS
ON THEIR
DYNAMIC BEHAVIO
U
R

Stijn Debruyne

,
Dirk Vandepitte

, Loujaine Mehrez

, Eric Debrabandere
*


Department of Mechanical Engineering

Katholieke Universiteit Leuven
(KUL)





Celestijnenlaan 300b, 3001 Heverlee, Belgium

e
-
mail:
stijn.debruyne@khbo.be
,
dirk.vandepitte@mech.kuleuven.be
,loujaine.mehrez@mech.kuleuven.be


*

Department of Industrial Science

Katholieke Hogeschool Brugge Oostende

Zeedijk 101, Oostende, Belgium

e
-
mail:
eric.debrabandere@khbo.be



Key words:

Thermoplastic
honeycomb panels
,

e
xperimental modal analysis
,
f
inite element
modelling
, design parameter variability
.

Summary.

This
paper deals with design parameter variability of thermoplastic honeycomb
sandwich panels and how this reflects on the dynamic behavio
u
r of
rectangular panels with
free boundary conditions.




1

INTRODUCTION





Honeycomb panels are sandwich structures. Their high specific strength and stiffness
together with a low areal mass makes them ideally suited for ground transportation vehicle
purposes. They are complex but regular structures.

Already a lot has been studi
ed about the static properties of sandwich beams and plates.

Gibson and Ashby [1]
describe analytically the static elastic behaviour of sandwich materials
with a honeycomb core. Also Zenkert [2] treats this subject in detail.

However fewer studies treat t
he dynamic behaviour of honeycomb beams and plates in an
analytic
al

way. Interesting work in this area has been presented by Nilsson and Nilsson [3].
They analytically predict natural frequencies of
honeycomb sandwich beams and plates. In
that work the con
cept of a frequency dependent bending stiffness is used. Liu [6], [7] and [8]
Stijn Debruyne
,
Dirk Vandepitte,

Loujaine Mehrez

and
Eric Debrabandere
.


2

uses high order core shear deformation models to calculate the vibrational behaviour of
sandwich beams and panels.


















REFERENCES

[1]

L.J. Gibson & M.F. Ashby,
Cellula
r solids
,

Pergamon Press, 1988.

[2]

Referentie van Zenkert


[3]

E. Nilsson & A.C. Nilsson,
Prediction and measurement of some dynamic properties of
sandwich structures with honeycomb and foam cores
, Journal of sound and vibration,
(2002) 251(3), 409
-
430.


[4]

R.D. Blevins,
Formulas for natural frequency and mode shape
, Krieger Publishing
Company 1984.


[5]

P. Topdar,
Finite element analysis of composite and sandwich plates using a continuous
inter
-
laminar shear stress model,

Journal of sandwich structures and materials, 2003, 5,
207.


[6]

Qunli Liu,
Role of anisotropic core in vibration properties of honeycomb sandwich
panels,

Journal of thermoplastic composite materials, 2002, 15;23.


[7]

Qunli Liu,
Effect of soft honeycomb core on
flexural vibration of sandwich panel using
low order and high order shear deformation models,
Journal of sandwich structures and
materials, 2007; 9; 95.

Stijn Debruyne
,
Dirk Vandepitte,

Loujaine Mehrez

and
Eric Debrabandere
.


3

[8]

Qunli Liu,
Prediction of natural frequencies of a sandwich panel using thick plate theory,
Journal of s
andwich structures and materials, 2001;3;289.


[9]

D. Moens, D. Vandepitte,
A survey of non
-
probabilistic uncertainty treatment in finite
element analysis
,
Computer Methods in Applied Mechanics and Engineering,

Vol.
194
,
Nos.
12
-
16, P
ages
1527
-
1555
,
2005.


[10]

Tom
Louwagie,
Vibration


based methods for the identification of the elastic properties
of layered materials,
Doctoraatsproefschrift

D/2005/7515/80, 2005.


[11]

R.G. Ghanem,
Stochastic Finite Elements, a Spectral approach,
Johns Hopkins
University, Springer, New
York, 1991.


[12]

A.Schenk, G.I. Schuëller,
Uncertainty assessment of large finite element systems
,
Springer, Innsbruck, 2005.


[13]

C. Soize,
Identification of high
-
dimension polynomial chaos expansions with random
coefficients for non
-
Gaussian tensor
-
valued random fields using partial and limited
experimental data,
Computer methods in applied mechanics and engineering, (2010) doi:
10.1016/j.cma
.2010.03.013.


[14]

C. Desceliers, C. Soize, R. Ghanem,
Identification of chaos representations of elastic
properties of random media using experimental vibration tests,
Computational
Mechanics, (2007) 39;831
-
838.


[15]

Xinyu Fan,
Investigation on processing and m
echanical properties of the continuously
produced thermoplastic honeycomb,
Doctoraatsproefschrift D/2006/7515/14, 2006.


[16]

Roger G. Ghanem,
On the construction and analysis of stochastic models:
Characterization and propagation of the errors associated with
limited data,
Journal of
computational Physics, 217 (2006) 63
-
81.


[17]

M. Arnst, R. Ghanem, C. Soize,
Identification of Bayesian posteriors for coefficients of
chaos expansions,
Journal of computational physics, 229 (2010) 3134
-
3154.


[18]

O. Daniel, I.M. Ishai,
Engineering Mechanics of Composite Materials
, Oxford, 2nd
edition., 2006.

[19]

W. Heylen, S. Lammens, P. Sas,
Modal analysis Theory and testing
, KU Leuven, 2003.


Stijn Debruyne
,
Dirk Vandepitte,

Loujaine Mehrez

and
Eric Debrabandere
.


4

[20]

F. Perrin, B. Sudret,
Use of polynomial chaos expansions and maximum likelihood
estimation for pr
obabilistic inverse problems,
18
th

Congrès Français de Méchanique,
Grenoble, 27
-
31 august 2007.