The Role of Chemistry in Innovation

tentchoirΤεχνίτη Νοημοσύνη και Ρομποτική

15 Νοε 2013 (πριν από 3 χρόνια και 10 μήνες)

84 εμφανίσεις

The Role of Chemistry in Innovation


Chemistry for Future Energy Supply

K. Wagemann, DECHEMA e.V.

2

Two hot topics in the present political
discussions:

Energy Supply

Climate Change

(Adaptation & Mitigation)


3

Energy in the SusChem
Implementation Action Plan


Energy


Alternative energy sources


Photovoltaic


Fuels production from biomass


Fuel cells


(Metal)nanoparticles as fuel


Wind power


Energy conservation


Efficient lighting


Insulation


Energy storage


Batteries


Gas storage


Supercapacitors

4

Energy in the SusChem
-
Deutschland IAP


Photovoltaics


Fuel cells


Efficient use of energy
-

inorganic LEDs


Efficient use of waste heat from industrial plants


Li
-
Ion batteries for stationary and mobile applications


Super caps


H
2

production and storage


Exhaust gas treatment and catalysis


Light weight materials


Biobutanol

5

Chemistry and Energy


German Coordination Group

„Chemical aspects of energy research“:


DECHEMA
-

Gesellschaft für Chemische Technik und
Biotechnologie e.V.


DBG


Deutsche Bunsen Gesellschaft für
Physikalische

Chemie e.V


GDCh


Gesellschaft Deutscher Chemiker e.V.


DGMK


Deutsche Wissenschaftliche Gesellschaft

für Erdöl, Erdgas und Kohle e.V.


VDI
-
GVC


VDI
-
Gesellschaft Verfahrenstechnik

und Chemieingenieurwesen


VCI


Verband der Chemischen Industrie e.V.

6

Position Paper

7

Position Paper

Thesis


The demand for chemical solutions will increase:


Fuel cells: Catalysts, Electrolytes, Membranes


Solar cells: Organic, Polymeric, Easy to Process Systems


Batteries: Electrodes, Electrolytes


Thermoelectrica: Nanostructured Materials


CO
2
-
Sequestration: Absorption, Chemical Conversion


Heavy Oils and Coal (and Biomass): Conversion to Fuels


8

Energy Supply

Fuels

Bioenergy

Photovoltaics

Fuel cells

Thermoelectrics

Collectors

H
2
-
Production


Energy storage

Mobile batteries

Stationary batteries

Supercaps

Chemicals

Energy efficient

production

processes

Catalysis

Microreaction techn.

New reaction media

Process integration

OLEDs

Superconductors

Lightweight materials

Thermal insulation

Efficient use

of energy

The role of chemistry

CO
2
-
Utilisation

Chemistry has a role for the
future energy supply!

10

Backup

Backup

11

Chemistry
-
related CO
2
-
Emissions

Numbers of 2004, Source: Ministry of Economics and Technology

Energy

Industry (total)

Chemistry




㴠㠶ㄠ䵩漮o琠䍏
2

12

Production of Hydrogen


Alternatives


Direct thermal water splitting (without catalyst: T > 2.500
°
C)


catalytic


redoxcatalytic


Photocatalytic water splitting at solid surfaces


Biomimetic photosystems in liquid phase (Ru
-
Systems)


Biohydrogen

13

Photovoltaics


Thin film solar cells (a
-
Si, µCSi, CdTe ...)


Multibandgap
-
cells


Alternatives:


Organic semiconductor systems


Photoelectrochemical cells

(Grätzel
-
Cells)

14

Materials for Collectors


Coatings today:


Black Chromium


Black Nickel

Efficient, but processing (galvanisation) not environmentally benign


Coatings Future:


Al
2
N
3


Carbides


TiNO
x

Better efficiency (absorption and reflection)

but processing costs high

15

Thermoelectrical Devices


Principle












Materials: Bi
2
Te
3
, Bi
2
Se
3
, Sb
2
Te (RT) / PbTe
-
, SiGe
-
Alloys (550


800 K)


Energy Source: In general lost heat


Applications:


Energy independent micro sensors (“self
-
powered sensors”)


“self
-
powered micro
-
devices”


Auxiliary power systems in automotives


Cooling of Photovoltaic devices

16

Thermoelectrical Devices

Future: Higher Efficiency using nanostructured materials

17

CO
2
-
Sequestration

& Utilisation

Carbon Capture and Storage Technologies

18

CO
2
-
Sequestration


Research Topics (Chemistry related)


Coal Gasification


CO
2
-
Capture


Absorption


Membranes


Materials / Corrosion

(CO
2
(l) / H
2
O / High Salt Concentration)

19

CO
2
-
Utilisation


Energy Storage Systems


Dry Reforming


CO
2

as C
1
-
Building Block


Artificial Photosynthesis


Microalgae

Cultivation


“Better Plants”

20

CO
2
-
Utilisation


Energy Storage Systems

CO
2

+ H
2



CH
3
OH + H
2
O



NEDO
-
Project, Japan (since early 90ies)

Japan

Australia

CO
2

MeOH

ZnCrO
-
catalyst

21

CO
2
-
Utilisation

Steamless Carbon Dioxide Reforming
(Dry Reforming)


CO
2

+ CH
4


2CO + 2H
2


Idea: Exploitation of remote gas fields
(stranded gas)


Discussion Platforms:


Eranet Chemistry


SusChem
-
D: September Workshop

22

CO
2
-
Utilisation

Artificial Photosynthesis

23

CO
2
-
Utilisation

Artificial Photosynthesis


Light harvesting supramolecular components (Balzani, Bologna)

24

CO
2
-
Utilisation

Artificial Photosynthesis


General Problems


Thermal


Stability


Photo(oxidative)
-
Stability


Light
-
Harvesting



European Network: Solar
-
H
(http://www.fotomol.uu.se/Forskning/Biomimetics/solarh)

25

CO
2
-
Utilisation

CO
2

as C
1

Building Block


Problem: Inertness

O

C

O
R
1

R
2

C

O
R
2

R
1
O

R
3

R
4

O

C

O
R
1

R
2
O

CO
2

Acetales

Carbonates

Ester

26

CO
2
-
Utilisation

CO
2

as C
1

Building Block

Activation by Carboanhydrase:


CO
2

+ H
2
O


HCO
3
-

+ H
+



Aktive Center of Carboanhydrase

27

CO
2
-
Utilisation

Activation of CO
2


Active Species: Carbamate






M.

Antonietti, Angew. Chemie 2007, 119, 2773 ff

28

CO
2
-
Utilisation

Biorefineries


Bioethanol/BioDiesel (1
st

Generation)


Biofuels 2
nd

Generation


BTL (


FT
-
Catalysts)


Lignocellulose


Ethanol


Biogas


Chemical Building Blocks

29

CO
2
-
Utilisation

Biogas

One Alternative: Zinkoxid


H
2
S+ZnO


H
2
O+ZnS




200
-
400
°
C (!)




H
2
S
-
content: ppb