Abhishek
Pandey
Reconfigurable Computing
ECE 506
Outline:
Introduction
TPR Vs MEANDER
Methodology
Flowchart
Partitioning
Placement and routing
3D Power
Comparison of different 3D tools
Results
Future Work
Introduction:
Better performance per unit area. Limited silicon area
and chip size.
Improvement over existing 2D technology
Need better CAD tools to exploit full benefit of 3D
FPGA.
3D as a improvement over FPGA and its limitation
Drawbacks of TPR:
First Synthesizer of 3D FPGA.
All SB’s are assumed 3D
Number of available TSV’s are assumed unlimited.
Area situation becomes worse in 3D FPGA.
Drawbacks of TPR(Area issue):
Alternative distribution scenarios for 3D SBs:
A layer from a 3D FPGA architecture with
r = 3
:
Methodology(
multisegment
interconnection
architecture.):
Methodology(The electrical equivalent circuit for
modeling a TSV):
Methodology(Proposed method):
Flowchart(MEANDER framework):
Flowchart(MEANDER framework):
3D Partitioning ( 3DPART)
3D Placement and Routing(3DPRO)
3D Power( 3DPOWER)
Partitioning( algorithm):
Partitioning( diagrammatic representation):
Placement( algorithm):
Placement( cost function):
Routing( cost function):
P & R ( Algorithm):
P & R ( Algorithm):
Power( algorithm):
Power( cost function):
Qualitative comparison between TPR and
our proposed solution*:
•
S
.
Das,
A
.
Chandrakasan
and
R
.
Reif
,
“Timing,
Energy,
and
Thermal
Performance
of
Three
Dimensional
Integrated
Circuits”,
Proceedings
of
the
ACM
Great
Lakes
Symposium
on
VLSI,(
2004
),
pp
.
338
-
343
.
Developed
at
MIT
•
Kostas
Siozios
,
Alexandros
Bartzas
,
and
Dimitrios
Soudris
,
“Architecture
-
Level
Exploration
of
Alternative
Interconnection
Schemes
Targeting
3
D
FPGAs
:
A
Software
-
Supported
Methodology,”
International
Journal
of
Reconfigurable
Computing,
vol
.
2008
,
Article
ID
764942
,
18
pages,
2008
.
doi
:
10
.
1155
/
2008
/
764942
.
Developed
at
National
Technical
University
of
Athens
(NTUA)
Average variation of application’s delay for a number of
layers and TSVs with different electric characteristics:
Average variation of power consumption for a number of
layers and TSVs with different electric characteristics:
Experimental setup:
The 3D architectures consist of up to five functional
layers.
The hardware resources of each functional layer are
identical.
The percentage of vertical interconnects (i.e., TSVs)
per functional layer ranges from 10% up to 100%, with
a step of 10%.
Each 3D SB realizes four vertical connections.
The electrical parameters for each TSV correspond to
fabrication technologies for 3D ICs found in relevant
references
Experimental setup:
The 3D architectures consist of up to five functional
layers.
The hardware resources of each functional layer are
identical.
The percentage of vertical interconnects (i.e., TSVs)
per functional layer ranges from 10% up to 100%, with
a step of 10%.
Each 3D SB realizes four vertical connections.
The electrical parameters for each TSV correspond to
fabrication technologies for 3D ICs found in relevant
references
Experimental setup:
Results(Average
Energy
×
Delay
Product (EDP) for different
number
of functional layers and percentage of fabricated TSVs):
Results(Average
wirelength
over the MCNC benchmarks for
different number of functional layers and percentage of fabricated
TSVs):
Results(Average operation frequency over the MCNC benchmarks
for different number of layers and percentages of fabricated TSVs):
Results(Average power consumption over the MCNC benchmarks for
different number of functional layers and percentage of fabricated
TSVs):
Results(Comparison results between MCNC
benchmarks):
Results(Comparison results between 20 biggest MCNC
benchmarks: via utilization in 3D FPGA architecture):
Future work:
Experimenting on working with different technology
on different layers.
Better CAD tools for 3D FPGAs.
More work need to be done on switch box layout for
combination of 2D and 3D switches.
More research need to be done on making better
connection within a switch box.
Specialized 3D P & R methods need to be researched.
Conclusion:
A systematic software
-
supported methodology for exploring and
evaluating alternative interconnection schemes for 3D FPGAs is
presented.
The methodology is supported by three new CAD tools (part of
the 3D MEANDER Design Framework).
The evaluation results prove that it is possible to design 3D
FPGAs with limited number of vertical connections without any
penalty in performance or power consumption.
More specifically, for the 20 biggest MCNC benchmarks, the
average gains in operation frequency, total
wirelength
, and
energy consumption are 35%, 13%, and 32%, respectively,
compared to existing 2D FPGAs with identical logic resources.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Preparing document for printing…
0%
Σχόλια 0
Συνδεθείτε για να κοινοποιήσετε σχόλιο