THREE-DIMENSIONAL BIOPRINTING OF HUMAN ORGANS:

somberastonishingΤεχνίτη Νοημοσύνη και Ρομποτική

13 Νοε 2013 (πριν από 3 χρόνια και 9 μήνες)

113 εμφανίσεις


T
HREE
-
DIMENSIONAL
BIOPRINTING OF HUMAN ORGANS
:

PHASES AND CONCEPTS


Rodrigo A. Rezende
,
Júlia A. Nogueira
,
Frederico D. S. Pereira, Vladimir Mironov,
Jorge V. L. da Silva

D
ivisão de Tecnologias Tridimensionais, Centro de Tecnologia da Informação Renato A
rcher CTI,
Campinas (SP), Brasil


E
-
mail:
rodrigo.rezende@cti.gov.br



Resumo.
The development of three
-
dimensional technologies, especially those related to 3D printing,
coupled with the need for alternati
ves to modern medicine, especially those patients that appear on
waiting lists for organ transplantation, has motivated research
in the area of human organs bio
pr
inting

.
This technique consists
o
n layer
-
by
-
layer

automated fabrication

of human organs by ad
ditive
manufacturing (or rapid prototyping). The process of biopr
inting

is basically divided in four main stages,
the first three being directly dependent on information technology: design (blueprint), printing,
maturation and implantation. Initially, the
body must be virtually modeled and from information derived
from medical images that are processed by software, for example,
the known
InVesalius developed in

CTI
. Then, the controlled

deposition

layer
-
by
-
layer

of

tissue spheroids containing living cells.
After the
printing stage, the body, not yet ready to be deployed, must be matured in a bioreactor until it is
functionally able to be deployed. In this paper, we present an

approach to the concept of bioprinting
, and
description of

the bioprinting

phases a
nd results related to software, hardware and simulations that have
been developed in the CTI
.


Keywords
:
Bioprinting, Biofabrication, Information Technology, Design, Simulation.



1.

INTRODU
CTION


According to the Report from the International Conference o
n Bioprinting and
Biofabrication in Bordeaux (3B’09), the field of bioprinting and biofabrication
continues to evolve. The increasing number and broadening geography of participants,
the emergence of new exciting bioprinting technologies, and the attractio
n of young
investigators indicates the strong growth potential of this emerging field. (Guillemot et
al., 2010).

After the 2009´s conference, two other editions were held
in

Philadelphia

(USA) and Toyama, Japan. This year, the International Conference on B
ioprinting
and
Biofabrication will happen in

Manchester, UK.



The main technological and economic imperative in tissue engineering technology is a
rapid tissue biofabrication. Thus, the challenge which developmental biology
-
inspired
approach to tissue
engineering is facing is the balanced combination of powerful
biological insight with technological imperatives and constraints. Organ printing or the
biomedical application of rapid prototyping, also defined as layer
-
by
-
layer additive
biomanufacturing, is

an emerging transforming biomimetic technology that has
potential for surpassing traditional solid scaffold
-
based tissue engineering. Organ
printing has certain advantages: it is an automated approach that offers a pathway for
scalable, reproducible, mass

production of tissue engineered products; it allows for
precise simultaneous 3D positioning of several cell types; it enables creation of tissue
with a high level of cell density; it can solve the problem of vascularization in thick
tissue constructs; and

finally organ printing can be done in situ. (Mironov et al., 2003a,
2008, 2009
-
a).


Bioprinting of tissues and organs can be defined as layer
-
by
-
layer additive robotic
biofabrication of three
-
dimensional functional living macrotissues and organ constructs

using tissue spheroids as building blocks. The microtissues and tissue spheroids are
living materials with certain measurable, evolving and potentially controllable
composition, material and biological properties. Closely placed tissue spheroids
undergo t
issue fusion, a process that represents a fundamental biological and
biophysical principle of developmental biology
-
inspired directed tissue self
-
assembly.
After the tissue spheroids structuring, the tissue/organ newly made is then carried out
into a biore
actor which should play an important role of providing an adequate
environment to the growth and maturation of the bioproduct. Bioreactors are used to
accelerate tissue maturation through the control of their mechanical, biochemical and
thermal conditions.

First of all, they should maintain the viability of the engineered
tissue. Following, they are many times employed as equipment to the cell seeding and
can be also applied to experimental and monitoring of maturation processes.


The creation of a represe
ntative environment inside the bioreactor is too
complex since it can enclose a large range of variables. Simulating this scenery is
essential to the study. The success of tissues and organs bioprinting is straight linked to
a set of an appropriate environ
ment in the bioreactor that assures the feasibility,
maturation, biomonitoring, tests, storing and transport of the involved elements on the
generation of the new tissue such as the deposited cells and nutrients. As an example,
the perfusion and fluid diff
usion phenomena within the organs in maturation process in
bioreactor is fundamental for understanding of the phenomenon. Moreover,
computational fluid dynamic software packets have been increasingly developed during
the past decade and are powerful tool t
o calculate flow fields, shear stresses and mass
transport within and around 3D constructs, including a bioreactor environment.



2.

BIOPRINTING

AT A GLANCE



Organ printing is a variant of the biomedical application of rapid prototyping
technology or lay
er
-
by
-
layer additive biofabrication of 3D tissue and organ constructs
for replacement, repair and regeneration of damaged and diseased human organs and
tissues.
Since its inception (Mironov et al., 2003 a) the concept of organ printing using
robotic biopri
nters for the layer
-
by
-
layer additive biofabrication of functional 3D tissues
and organ constructs using self
-
assembling tissue spheroids has undergone progressive
development (Jakab et al., 2010; Mironov et al., 2009; Visconti et al., 2010) and
gradually
gained recognition as a reasonable bottom
-
up solid scaffold
-
free alternative to
the classic top
-
down or solid scaffold
-
based approach to tissue engineering (Nichol and
Khademhosseini, 2009). As Dr. David Williams an editor of journal “Biomaterials” and
Pre
sident of TERMIS (Tissue Engineering and Regenerative Medicine International
Society) stated in recent influential review: ‘‘There is obviously some way to go before
such a paradigm (directed tissue self
-
assembly) could be translated into a practical
reali
ty, but many steps have been taken’’ (Williams, 2009). The report on the 4th
International Bioprinting and Biofabrication Conference (2009) that took place in
Bordeaux, France, stated that ‘bioprinting is coming of age’. The increasing number of
papers and

reviews, publication of the first books (Guillemot et al., 2010), the rapid
development of new bioprinting and biofabrication research centers around the world,
creation of the new “Biofabrication” journal and International Society for Biofabrication
(201
0) and, most importantly, the development of commercially available bioprinters
are all important progress milestones.


The potential competitive advantage with the use of self
-

assembling tissue
spheroids for organ printing has been recently reviewed (Mi
ronov et al., 2008; Mironov
et al., 2009; Visconti et al., 2010). It has been suggested that the bottom
-
up solid
scaffold
-
free approach can enhance the development of tissue engineering technology
by enabling the automated and robotic industrial scale orga
n biofabrication (Mironov et
al., 2009). History of the automobile industry and the emergence of microelectronic
industry have taught us that an automated robotic approach is required for the successful
development of new commercially profitable industries
. The combination of computer
-
aided robotics and tissue engineering will not only enable tissue and organ bioassembly
at large industrial scale, but will also provide the necessary level of flexibility for
patient specific, customized organ biofabrication.



It is become increasingly obvious that, from a systems engineering point of
view, it will take more than just bioprinters to biofabricate complex human tissues and
organs. Indications suggest that the development of series of integrated automated
roboti
c tools, or an organ biofabrication line (OBL) is required. Components of the
OBL must include a clinical cell sorter, stem cell propagation bioreactor, cell
differentiator, tissue spheroid bio
-

fabricator, tissue spheroids encapsulator, robotic
bioprinter
, and perfusion bioreactor.


Organ printing, is a rapidly emerging technology that promises to transform
tissue engineering into a commercially successful biomedical industry. It is increasingly
obvious that similar well established industries implement a
utomated robotic systems
on the path to commercial translation and economic success. The use of robotic
bioprinters alone however is not sufficient for the development of large industrial scale
organ biofabrication. The design and development of a fully in
tegrated organ
biofabrication line or development of series of integrated automated robotic tools is
imperative for the commercial translation of organ printing technology. Development of
integrated line of automated robotic tools for biofabrication at ind
ustrial scale requires a
complex multidisciplinary approach and close research and development collaboration
of mechanical engineers, experts in rapid prototyping technology, computers scientists,
chemical engineers and material scientists with biologists
and tissue engineers.


Recent white paper from MIT stated that third revolution in biomedical science
(first revolution was based on discovery of DNA structure, second revolution was based
on Human Genome Project) will be based on close integration of bio
logy, engineering
and physical sciences. Emerging Bioprinting and 3D Tissue Biofabrication technologies
which combine biology, engineering and material sciences (Figure 1) is probably one of
the best manifestation of above described third biomedical revolu
tion and, thus,
represents new research paradigm in tissue engineering.





Figure 1


Biofabrication
/Bioprinting

a
s
inter
disciplinary research field.



3.

STAGES OF THE BIOPRINTING


Organ printing technology using analogy with

rapid prototyping technology can
be divided on three most important steps: pre
-
processing, processing and post
-
processing (Figure 2).




Figure 2


Three main steps in organ printing technology.




3
.1

Pre
-
Processing


Preprocessing can be defined as dev
elopment of computer
-
aided design or
“blueprint” of 3D human tissue and organ based on using clinical imaging modalities
and special rapid prototyping softwares (Figure
3
). Blueprint in STL file is actual
instruction for robotic bioprinter how to print 3D
tissue construct. It is not possible to
bioprint human organ and tissue without development of CAD based “blueprint”.




Figure
3



From blueprint to final structures.



Realization of rapid prototyping technology is impossible without computer

science
and the corresponding software. Acquisition of clinical images using

modern
imaging modalities and transforming them into computer
-
aided design

(CAD) and STL
files are important and essential steps in the bioprinting process
.
Mathematical modeling
could be

also used for

prediction kinetics of cell seeding, tissue ingrowth, oxygenation
and vascularization of bioprinted tissue constructs (Guillemot et al., 2010).



3
.2

Processing


Processing or actual computer
-
aided robotic bioprinting include preparation of

“bioink” or self
-
assembled tissue spheroid, development of “bio
-
paper” or processible
and biocompatible hydrogel and using “robotic bioprinter” or computer controlled
robo
tic précised dispenser (Figure 4
).
There are already several commercially available
3D bioprinters and robotic dispenser. CTI has Biofab@CTI bioprinter.





Figure
4



Example of digital (droplet generating) microfluidic device

(
http://www.dolomite
-
microflu
idics.com/en/new
-
prods/droplet
-
systems
)
.





3
.3

Post
-
Processing


The immediate outcome of bioprinting is not functional and viable organ. It is
important to realize that it takes time for bioprinted tissue spheroids to fuse and
bioprinted tissue to assem
ble, compact, remodel and mature into functional tissue
constructs. In order to turn these bioprinted constructs into functional tissue and organs
suitable to clinical implantation into human body they must undergo process of tissue
fusion, tissue remodeli
ng and functional tissue maturation. This process must be
realized in specially designed perfusion chamber or “bioreactors” in relatively short
time (days or weeks not months). Perfusion bioreactor based “accelerated tissue
maturation” requires non
-
invasiv
e and non
-
destructive monitoring of bioprinted tissue
maturation. Post
-
processing is probably the most essentially crucial step in organ
printing technology, and effective post
-
processing or accelerated tissue maturation will
require the development of new

types of bioreactors, more efficient accelerated tissue
maturation technologies as well as methods of non
-
invasive and non
-
destructive
biomonitoring.



4.

ESSENTIAL COMPONENTS FOR ORGAN BIOFABRICATION LINE


The

idea of
the

Organ Biofabrication Line

is pr
esented in Figure 5
.




Figure 5



Organ Biofabrication Line.




4.1. Robotic Tissue Spheroid Biofabricator


The development of scalable methods to biofabricate uniformly sized tissue
spheroids is essential for enabling the bi
oprinting of large tissue and organ constructs
because each require millions of tissue spheroids. The majority of existing methods of
tissue spheroid biofabrication are not scalable. For example, it would take 100 Petri
dishes to generate 5 thousands tissu
e spheroids using the hanging drop method of tissue
spheroid fabrication (Kelm and Fussenegger, 2004; Mironov et al., 2003 b).


Recently, a novel elegant method was introduced whereby tissue spheroids were
biofabricated using micromolded non
-
adhesive hydr
ogel (agarose) (Dean et al., 2007;
Napolitano et al., 2007 a,b). These densely placed micromolded recessions with
rounded bottoms in hydro
-

gel allowed for the biofabrication of uniformly sized tissue
spheroids (Mehesz et al., 2011). The use of this approa
ch in combination with a robotic
dispenser (for example, ‘EpMotion
-
5070’, Eppendorf) increases the productivity of
tissue spheroids biofabrication for production of up to five thousand tissue spheroids of
standard size on one 96 well multiwall plate (Figur
e
6
).


Recent advances in digital (droplet
-
based) microfluidics offered a new exciting
perspective to bio
-

fabricate thousand tissue spheroids with complex internal structure
and composition in seconds using a relatively cheap and elegantly designed casca
de
droplet generator (Shah et al., 2008). Thus, the development of scalable robotic tissue
spheroid biofabricators for the automated biofabrication of uniform sized tissue
spheroids is a feasible and achievable goal.






Figur
e 6



A 96 multiwell
designed and
rapid prototyped plate at CTI.




4.2. Robotic Bioprinter


Bioprinters are a key element of organ printing technology (Jakab et al., 2010;
Mironov et al., 2008, Mironov et al., 2009). The emergence of commercially availa
ble
bioprinters is probably the most remarkable development of the past decade (Figure
7
).
The explosive growth of different variants of bioprinting technology resembles the early
development phase of rapid prototyping technology 10

15 years ago, when many

completing technologies were developed but not all of them successfully
commercialized. Robotic bioprinters for the precise dispensation of tissue spheroids
include three essential elements: X

Y

Z axis robotic precision position system,
automated biomater
ial dispensers and computer
-
based software enabled operational
control. Tissue spheroids bioprinting of satisfactory resolution have been already
demonstrated.



Figure
7



The
in
-
development
bioprinter

in

CTI
.




4.3. Irrigation dripping tripled perfus
ion bioreactor


The conceptual design of novel irrigation dripping tripled perfusion bioreactors
with temporally removable porous minitubes suitable for bioprinting (Figure
8
) is
already under development and experimental using Computational Fluid Dynamic

software at CTI (Mironov et al., 2009; Rezende et al., 2011 b).


The design is a triple perfusion bioreactor because it has three circuits: one for
maintaining a wet environment around the bioprinted construct, the second for media
perfusion through an i
ntraorgan branched vascular tree, and the third and most essential
circuit, for temporal perfusion. The last type of perfusion is undertaken using extremely
strong, thin, porous, non
-
biodegradable, removable minitubes that serve as temporal
supports and ar
tificial microchannels.


The main goal of the proposed dripping irrigation circuit system is to ‘buy’ time
until the ‘built in’ intra
-
organ branched vascular system will mature sufficiently for the
initiation of intravascular perfusion. Moreover, this tem
poral perfusion system can be
used for the delivery cells, soluble extracellular matrix molecules and maturogens. The
rational design behind such a bioreactor, especially the level of porosity and distance
between minitubes, must be based on systematic mat
hematical modeling and computer
simulation of interstitial flow. The identification of proper materials and coatings of
these minitubes, and the optimal way to retrieve the inert minitubes without severe
tissue injury are other important engineering challe
nges.




Figure
8



Scheme of the irrigation dripping tripled perfusion bioreactor.






5. REFERÊNCIAS


M
ironov
, V.; B
oland
, T.; T
rusk
, T.; F
orgacs
, G.; M
arkwald
, R.

(2003
a
).

Organ printing: computer
-
aided
jet
-
based 3D tissue engineering.
Trends Biote
chnol.
, 21, pp. 157

161
.


J
akab
, K.; N
orotte
, C.; M
arga
, F.; M
urphyk
. Jakab, C. Norotte, F. Marga, K. Murphy, G. Vunjak
-
Novakovic and G. Forgacs
. (2010).

Tissue engineering by self
-
assembly and bio
-
printing of living cells.
Biofabrication
, 2, p. 022001
.


M
ironov
, V.; K
asyanov
, V.; D
rake
, C.; M
arkwald
, R.

(2008).

Organ printing: promises and challenges.
Regen Med.
, 3, pp. 93

103
.


M
ironov
, V.; V
isconti
, R.; K
asyanov
, V.; F
orgacs
, G.; D
rake
, C.; M
arkwald
, R.

(2009
-
a
).

Organ printing:
tissue spheroids as bu
ilding blocks.
Biomaterials
, 30, pp. 2164

2174.



M
ironov
, V.; Z
hang
, J.; G
entile
, C.; B
rakke
, K.; T
rusk
, T.; J
akab
, K. F
orgacs
, G. K
asyanov
, V.; V
isconti
,
R.; M
arkwald
, R.
(2009
-
b
).
Designer ‘blueprint’ for vascular trees: morphology evolution of vascular

tissue constructs.
Virtual Phys. Prototyping
, 4, pp. 63

74.


V
isconti
, R.; K
asyanov
, V.; G
entile
, C.; Z
hang
, J.; M
arkwald
, R.; M
ironov
, V.
(2010).
Towards organ
printing: engineering an intra
-
organ branched vascular tree.
Expert Opin. Biol. Ther.
, 10, pp
. 409

420
.


N
ichol
, J.; K
hademhosseini
, A.

(2009).
Modular tissue engineering: engineering biological tissues from
the bottom up.
Soft Matter
, 5, pp. 1312

1319
.


W
illiams
, D.

(2009).

On the nature of biomaterials.
Biomaterials
, 30, pp. 5897

5909
.


G
uill
emot
, F.; M
ironov
, V.; N
akamura
, M.

(2010).

Bioprinting is coming of age: report from the
International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09).
Biofabrication
, 2, p.
010201
.


K
elm
, J.; F
ussenegger
, M.

(2004).

Microscale tissue en
gineering using gravity
-
enforced cell assembly.
Trends Biotechnol
, 22, pp. 195

202
.


M
ironov
, V.; M
arkwald
, R.; F
orgacs
, G.

(2003b).

Organ printing: self
-
assembling cell aggregates as a
“bioink”.
Sci Med
, 9, pp. 69

71.


D
ean
, D.; N
apolitano
, A.; Y
oussef
,

J.; M
organ
, J.

(2007).
Rods, tori, and honeycombs: the directed self
-
assembly of microtissues with prescribed microscale geometries.
FASEB J
, 21, pp. 4005

4012
.


N
apolitano
, A.; C
hai
, P.; D
ean
, D.; M
organ
, J.

(2007a).

Dynamics of the self
-
assembly of com
plex
cellular aggregates on micromolded nonadhesive hydrogels.
Tissue Eng
, 13, pp. 2087

2094
.


N
apolitano
, A.; D
ean
, D.; M
an
, A.; Y
oussef
, J.; H
o
, D.; R
ago
, A. L
ech, M.; Morgan
, J.

(2007b).
Scaffold
-
free three
-
dimensional cell culture utilizing micromolde
d nonadhesive hydrogels.
Biotechniques
, 43, 494,
496

500
.


M
ehesz
, A.; B
rown
, J.; H
ajdu
, Z.; B
eaver
, W.; S
ilva
, J.; V
isconti
, R.; M
arkwald
, R.; M
ironov
, V.
(2011).
Scalable robotic biofabrication of tissue spheroids.
Biofabrication
. 2, Jun;3(2):025002
.


S
hah
, R.; S
hum
, H.; R
owat
, A.; L
ee
, D.; A
gresti
, J.; U
tada
, A.; C
hu
, L.; K
im
, J.; F
ernandez
-
N
ieves
, A.;
M
artinez
, C.

(2008).

Designer emulsions using microfluidics.
Mater Today
, 11, pp. 18

27
.


R
ezende
, R.; P
ereira
, F.; K
emmoku
, D.; M
ironov
, V.; K
asyanov
,

V.; V
ilbrandt
, T.; S
ilva
, J.

(2011a).

Enabling Technologies for Robotic Organ Printing.
"Innovative developments in virtual and physical
prototyping"
, P.J. Bártolo et al., published by Tayl
or & Francis. (in press)
.


R
ezende
, R.; L
aureti
, C.; M
ironov
, V.;

K
asyanov
, V.; M
aciel Filho
, R.; S
ilva
, J.

(2011b).

Towards
Simulation of a Bioreactor Environment for Biofabricated Tissue Maturation.
"Innovative developments
in virtual and physical prototyping"
, P.J. Bártolo et al., published by Taylo
r & Francis. (in p
ress).




6. ACKNOWLEDGEMENTS


This work was sponsored by São Paulo Research Foundation (FAPESP), The
Brazilian Institute of Biofabrication (INCT
-
BIOFABRIS) and The National Council for
Scientific and Technological Development (CNPq).