SYMPOSIUM E - SBPMat

skoptsytruculentΤεχνίτη Νοημοσύνη και Ρομποτική

15 Νοε 2013 (πριν από 3 χρόνια και 7 μήνες)

655 εμφανίσεις


1

SBPMat


BRAZIL
-
MRS







2
nd

Brazilian MRS Meeting

October 26
-
29, 2003





Symposium B
:


Advances in Biomaterials II



Symposium Organizers:____________________________________________________



José Carlos Bressiani (IPEN)


Carlos Frederico de Oliveira

Graeff (USP
-
Ribeirão Preto)


Marcos Farina (UFRJ)















2

I
NVITED
P
RESENTATIONS



B
-
I1

ROUGH SURFACES OF TITANIUM AND TITANIUM ALLOYS FOR IMPLANTS AND
PROSTHESES

1E. Conforto, 2B.
-
O.Aronsson, 3A. Salito, and 4D. Caillard; 1Swiss Federal Instit
ute of
Technology (EPFL), CH
-
1015, Lausanne, Switzerland; 2GAP Biomedical, University of Geneva,
CH
-
1211 Geneva 4, Switzerland; 3Sulzer
-
Metco AG, CH
-
5610 Wohlen, Switzerland;
4CEMES/CNRS, 29 rue Jeanne Marvig, F
-
31055 Toulouse Cedex 4, France.


Titanium an
d titanium alloys for dental implants and hip prostheses were surface
-
treated and/or
covered by metallic or ceramic rough layers. The goal of these treatments is to improve the surface
roughness and, consequently, the osteointegration, the fixation and the

stability of the implant.
Their microstructure has been studied and correlated to their mechanical behavior. As
-
treated and
mechanically
-
tested surfaces were characterized by scanning electron microscopy (SEM).
Structural analyses performed by transmissio
n electron microscopy (TEM), mainly in cross
-
section,
reveal the degree of adherence and cohesion between the surface layer and the substrate (implant).
Phase transformations at the surface, intermediate crystallographic phases formed between the
surface l
ayer and the substrate, and crystallographic relationships between them were also
identified and analyzed by this technique. Moreover, dislocation analyses by TEM allowed us
evaluating the degree of plastic deformation in the surface layer and at its inter
face with the
substrate.











B
-
I2

NEW MATERIALS FROM NATURAL RUBBER

Leonardo F. Valadares, Márcia M. Rippel and
Fernando Galembeck
, Institute of Chemistry,
Universidade Estadual de Campinas, Campinas SP, Brazil.


Natural rubber latex has some outs
tanding properties responsible for its unmatched role in some
industrial products, as for instance the auto tires, adhesives and surgical gloves. However, these
properties are often dependent on chain crosslinking procedures that do also make the rubber
re
sistant to biodegradation thus creating well
-
known problems such as that of tire disposal, for
example. In this laboratory, we have explored two new alternatives for making natural rubber
materials but without using covalent rubber chain crosslinking: nano
composite formation and ionic
crosslinking. Rubber latex is an ideal raw material for making a clay nanocomposite because this
requires clay exfoliation and the latex aqueous serum is an excellent clay exfoliating agent.
Montmorillonite
-
natural rubber comp
osites were prepared by admixture of clay and rubber latex,
under temperature and mixing conditions. The products are translucent and strongly birefringent,
evidencing that the clay is largely exfoliated and oriented within the rubber as confirmed also by
X
-
Ray diffraction and electron microscopy. Evidence for ionic crosslinking was obtained from
solubility, microscopy and dye sorption experiments. This is now the basis for a new approach for
natural rubber as well as other polymer latex modification.










B
-
I3

OSTEOBLAST ATTACHMENT AND ADHESION: THEY ARE REALLY NOT TWO OF

3

KIND

F.C. Silva Filho1
*, G.C.Menezes1, A. Tempone2, and C.N.Elias3. 1UFRJ
-
Instituto de Biofísica
Carlos Chagas Filho, 2FIOCRUZ
-

Instituto Oswaldo Cruz, and 3UFF
-
Escola de Engenhari
a
Industrial e Metalúrgica, Volta Redonda, Rio de Janeiro, Brazil.


Most of cells need to be bound to surfaces in order to survive and proliferate, a requirement that has
been named anchorage dependence. The simplest interpretation of this phenomenon might

be that
cell behavior is controlled by biochemical signals generated by specific surface receptors,
particularly integrins, when they meet their ligands. However, data accumulated in the literature
have been clearly indicating that this is not the whole s
tory. Geometrical parameters of a surface
may also affect the activation of cell function, including gene activation. The main job of a bone
tissue engineering is, therefore and at first glance, to provide a surface where osteoblasts might
attach leading t
o gene activation concerning adhesion and differentiation. We have assayed
different types of surfaces (engineered titanium and slides made of glass or polystyrene) coated or
not with human plasma fibronectin to study osteoblast attachment and adhesion. Ea
ch one of these
osteoblast properties were here monitored looking for the expression of PHEX (phosphate
-
regulating gene homologies to endopeptidases on the X
-
chromosome) by using cDNA technology
and reactivity to the Mab OB7.3.














B
-
I4

CHIT
OSAN

AND COMPOSIT

FILMS. CHARACTERIZATION, APPLICATIONS,
BACTERICIDES STUDIES FOR BURNING TISSUES AND CELL GROWING

Galo Cárdenas
.
1
, Lucia Cruzat1 , Carlos Rojas
2
, S. Patricia Miranda
3

and Andres Gutierrez
4
.
1
Depto
Polímeros, Fac. Ciencias Químicas, Univ.
de Concepción, Concepción, Chile.
gcardena@udec.cl

2
Hospital Naval, Talcahuano Base Naval, Chile.
3
Fac. Estudios Superiores Cuautitlán, Cuautitlán
Izcalli, UNAM, México.
4
Centro Nacional Rehabilitación, México DF 143
89.


In most of the patients with burns over 40% corporal surface, the skin reconstruction must be
carried out with skin graft at a deep containing dermis and epidermis from the healthy skin of the
patient. However, the risk for infection, in the donant z
one is damaged with scar and pigmentation
changes which depend on the dermis thickness extracted in the graft. The chitosan is an excellent
candidate for treatment of damaged areas produced by burns either from fire, chemical, hot water
and ulcer injuries
. The mechanism is explain as follows: the chitosan can produce films or
biocompatible films and adsorbents. Their application can be done using a film previously prepared
or a liquid solution placed directly over the damaged area producing a film “in sit
u”. These film
shows=é敲m敡b楬楴y=瑯=oxygen=w楴h=an瑡gonism=on=瑨e=hyéox楡iof=dam慧e=瑩tsues=and=瑨敩e=w敡k=
慣楤楴y= érodu捥s= 愠fr敳h= ana敳瑨es楣i eff散琮t qh敩e= d敧r慤慴楯n= by= enzymes= 慬汯ws= 瑯= 慶o楤= 瑨攠
remov慬a=lur=go慬ahas=b敥n=th攠us攠of=sev敲慬a=捨楴is
an=jt=r慮g敳㨠SM.MMMI=NMM.MMM=慮d=ORM.MMM=
gLmol=w楴h=a=h楧h=aA=as=愠sour捥=瑯=ér数慲攠捨楴isan=f楬ms.=䄠ful氠ch慲慣瑥t楺慴楯n=by=cqfoI=q䝁=
慮d=卅p=was=捡rr楥i=ou琮t qh攠b慣瑥t楣楤攠éroéer瑩敳=of==th攠f楬ms=慮d=捯méosi瑥t 慧a楮st=éos楴楶攠
慮d=n敧a瑩t攠gram=ba
捴敲楡猠睡猠w慲r楥i=ou琮
=
=
=
=
=
=
=
=
B
J

=
Bf位Aqbof䅌匠p䅎商䅃q啒f乇kq䡒何䝈=Bf位f䵅qfCp
=

4

J.L. Arias and M.S. Fernandez, Faculty of Veterinary Sciences and Center for Advanced
Interdisciplinary Research in Materiasls, Universidad de Chile, Santiago, Chile


Mode
rn times need innovative technological approaches for controlled fabrication of crystalline
materials with complex forms and novel properties. For building their hard tissues, living
organisms have develop a large variety of procedures leading to the forma
tion of precisely
controlled inorganic
-
organic composites, in which the minute organic component exerts significant
control on the mineralization process. This results in the formation of structures with uniform
-
sized
particles, novel crystal morphologies,

specific crystallographic orientation and interesting
properties. These biological procedures have inspired a large class of biomimetic advanced
materials, especially organic/inorganic composites. Through the study of egg
-

and seashell
formation it has be
en possible to learn about how biology builds crystalline materials. While
traditional engineering processes use “top
J
down fabrication techniques”, biology uses a “bottom
J
ué=
approach”. That means biological hard tissues are fabricated by a molecular self
J
a
ssembly=éro捥ss=
of= bu楬i楮g= b汯捫sI= on攠慴am= or= mo汥lu汥猠慴a 愠瑩m攮= puch= s瑲慴agy= invo汶es= 愠sé慴楯
J
teméor慬=
érodu捴楯n=慮d=d数os楴楯n=of=楮敲t=org慮楣=subs瑲慴asI=solub汥lch慲g敤=m慣romo汥lu汥l=or楥i瑩ng=
捲ys瑡氠nu捬敡瑩tn=and=grow瑨I=慮d=o瑨敲=m慣romo汥
cu汥猠fin楳hing=瑨攠éro捥ss.==
=
=
=
=
=
=
=
=
=
=
=
=
=
=
B
J

=
Ce䅒ACqbofwAqf低l 䅎䐠 mo佐boqfb匠 但= 乁乏協o啃q啒b䐠 C䅌Cf啍=
m䡏卐䡁qbp
=
A.䴮= oossi
=
and= g.= q敲r愬= CBm䘬c OOO9M
J
N8MI= ogI= Br慺楬i= 䜮A.= 卯慲敳ⰠC佐mb⽕䙒gI= m.伮= Box=
S8RMRI= ogI= Br慺楬㬠䴮= 䙡c楮aI= fCB⽕䙒gI= ogI= Br慺i
氬l o.= Boroj敶楣i= fCB⽕䙒gI= ON94N
J
R9MI= ogI=
Br慺楬Ⱐ䐮=b.=b汬楳I=乯r瑨w敳瑥rn=啮iv敲s楴yI=bvans瑯nI=f氮lSMOM8I=啓r.
=
=
C慬捩um=éhoséha瑥猠and=sé散i慬ay=hydroxy慰慴楴攬=eAI=慲攠some=of=瑨攠mos琠iméor瑡n琠b楯捥ram楣猠
for=bon攠r散ons瑲u捴楯n.=fn=瑨攠污獴=y敡rs=gr
敡琠effor瑳=h慶e=b敥n=m慤攠瑯=imérov攠e䄠m散h慮楣il=
éroé敲瑩敳=慮d=b楯慣瑩t楴y.=Ch慮g敳e 楮=th攠eA= surf慣攬=combin慴楯n= w楴h=inorg慮楣i and=org慮楣=
捯méounds=and=mo汥lu汥l 慤soré瑩tn=h慶攠b敥n=éroéos敤.==fn=som攠of=th敳攠stud楥猠捯méos楴敳=
捯n瑡楮ing=eA=慮d=o
rg慮楣imo汥捵汥猠hav攠b敥n=ér散楰楴慴敤=楮=數é敲imen瑡氠捯nd楴楯ns=in=wh楣h=
瑨攠eA=捲ys瑡ts=慣h楥i敤=dim敮s楯ns=捬cs攠瑯=thos攠of=bon攠慰慴楴攮=qh攠r敳e汴lng=nano捯méosi瑥猠
h慤=m散han楣慬iéroé敲瑩敳=and=b楯慣瑩t楴y=sim楬慲=瑯=bon攮=fn=瑨is=ér敳en瑡瑩tn=w攠
wi汬lshow=瑨慴=th攠
d散r敡s攠楮=捲ys瑡氠s楺攠induc敳eiméor瑡t琠modif楣慴楯n=on=䡁=chem楣慬i慮d=s瑲u捴ur慬aéroé敲瑩敳=
such=as=surf慣e=慣瑩v楴yI=捲ys瑡汬楮ityI=dissolu瑩tn=r慴攬= mo汤楮g=慮d= sin瑥t楮g=beh慶楯r.=t攠w楬氠
d楳捵ss=how=org慮楣imo汥lu汥s=or=m整慬=im
éur楴楥s=inh楢楴=hydroxy慰慴楴攠nu捬敡瑩tn=慮d=d散r敡s攠
楴i= 捲ys瑡氠 dimens楯ns.= f琠 wi汬l b攠 shown= th慴= 敶en= éure= eA= 捡n= b攠 ér散楰楴慴敤= wi瑨= 捲ys瑡氠
dim敮s楯ns=sm慬汥a=瑨an=NM=nmI=wh楣h=捯rr敳eond=瑯=愠e䄠w楴i=瑯瑡氠surf慣攠慲敡=high敲=瑨an=OMM=
mO⽧.=qh攠éo
瑥t瑩慬t of= n慮os瑲u捴cr敤=捡汣lum=éhoséh慴攠for=us攠慳abon攠graf琠m慴敲楡氠楳=瑨en=
d楳捵ss敤.=
=
=
=
=
=
=
=
=
B
J

=
f乆k啅kCb=但⁂f位AqbofAi匠低=q䡅=協o啃q啒b=但⁃lii=䅄䡅卉pk匠
=

5

J.G.B. Nebe
1
, F. Luethen1, A. Diener
1
, R. Lange
2
, P. Becker
3
, J. Rychly
1

1
Department o
f Internal Medicine and
2
Department of Electrical Engineering, University of
Rostock, Ernst
-
Heydemann
-
Str. 6, 18057 Rostock, Germany,
3
DOT Ltd., Charles Darwin
-
Ring 1a,
18059 Rostock, Germany.


To promote tissue formation after implantation, the biomateria
l should provide a highly
biocompatible substrate to enable cell adhesion, migration, proliferation, and differentiated
function. Biocompatibility studies therefore are increasingly focussed on very sensitive parameters
to examine molecular mechanisms, e.g
. of cell adhesion components. In our investigations both on
modified titanium, and on the biodegradable poly
-

-
hydoxy buty楣 慣楤 (䡂), 瑨攠捥汬ladh敳楯ns
w敲攠 s瑲u捴u慬ay 楮fluen捥d 捯mp慲敤 瑯 捥汬l gown on 捯汬慧en㨠 In os瑥tb污獴楣 捥汬l th攠
foma
瑩tn of in瑥tin 慤h敳楯ns and of th攠y瑯sk敬整e汬y an捨o敤 po瑥楮 vin捵汩l w慳 捨ang敤.
W攠 obs敲v敤 d楦f敲敮捥s in 瑨攠 og慮楺慴楯n 慮d 慬楧nm敮琠 of 瑨攠 慣瑩n y瑯sk敬eton 慮d of
數瑲慣敬eu污l m慴a楸 po瑥楮s. 䙵th敲mo攠w攠敶敡汥l dynam楣i捨anges of

䝆G
-
vin捵l楮 慮d 䝆G
-
慣瑩t du攠瑯 瑨攠瑩瑡tium m慴a楡氮 In 数楴i敬楡氠捥汬l on 䡂 w攠found 慬瑥a慴楯ns of 捥汬 sp敡d楮g
慮d 楮 瑨攠d楳瑲楢u瑩tn of 瑩th琠jun捴楯n po瑥楮s. B散慵se 瑨攠og慮楺慴楯n of 慤h敳楯n m敤楡瑥i
捯mponents 慲攠敬慴ed 瑯 瑨攠捥汬

phys楯汯gy b楯m慴敲楡i 捨慲慣瑥t楳瑩ts shou汤 ma楮t慩a th敳e
捥汬l污l s瑲u捴u敳⸠













B
-


BI佃位AIBILI夠A乄N体卅佉乔䝒AI低但⁂低 I䵐LA乔S

B. 䯶n楧 J
., 䑥慲瑭en琠of 䅮慴amy, ICB, Univ敲s楴y of 卡S 慵汯, 䅶.
L楮eu 敳e敳Ⱐ2415,
05508
-
9
00, S, B慺楬⸠L. J. 䙡F楡iJ, C䑄 Av. 口S Jo, 89, 12220, 匮S. Campos, 卐, B慺楬.
䴮 J. C慲bon慲椬iI丬 . 伮 Box 11049, 楮h敩eos, 05422
-
970, S, B慺楬i


h攠捡汣楦楣慴楯n of th攠bone t楳su攠po捥ss 楳 a汲敡dy w敬氠known 慮d 楴⁩s 捬ss楣 楮 ou k
now汥lg攠
瑨慴a th敲攠 慲攠 two m慩n po捥ss敳Ⱐ th攠 楮瑲amemb慮ous 慮d 瑨攠 endo捨ond慬a one, 慬a敡dy
d敳捲楢敤 楮 d楦f敲en琠s捩n瑩f楣i汥l敬猠w楴h 愠v慲楡i汥lamoun琠in uan瑩ty 慳awe汬l慳ain u慬楴y.
乯w慤ays w攠know 瑨a琠瑨敲e 楳 no 敳een瑩慬tdiff敲en捥 b整w
敥n 瑨攠two kinds of ossif楣慴楯n. he
p楮捩汥猠of os瑥t捯ndu捴楯n 慲攠b整瑥e known and 捯n瑲o汬敤 楮 敳敡e捨敳ew楴h imp污n琮tIn ou
敳敡e捨敳ew攠m慤攠b楯捯mp慴楢楬楴y and oss敯楮瑥t慴楯n 敶慬aa瑩tns w楴h d楦f敲敮琠ma瑥t楡汳 楮
慢b楴i. 䑩f敲en琠f汵o
敳捥n琠m慲k敲s w敲攠楮o捵污瑥t 楮 abb楴i 瑯 show 瑨攠p敲楯d楣id数os楴楯n of
bon攠慲ound 瑨e imp污lts and show th攠p敲楯d of bon攠d数os楴楯n and 敯gan楺慴楯n. Nov敬enon
-
瑯x楣ib楯慣瑩t攠phospha瑥tg污ss敳ew敲攠d敶敬ep敤. h攠p敳敮捥 of th敳攠g污ls敳es瑩m
u污瑥l 瑨攠
bon攠 gowth 楮 th攠 m敤u汬慲 敧楯n. 䵥瑨ods fo 捲楴楣慬 慮慬ys楳 w敲攠 emp汯y敤 楮 od敲 to
obs敲v攠d楦f敲敮琠慳a散瑳 of 瑨攠b楯捯mp慴楢楬楴y. h攠d楳瑡t捥 楮 敬慴楯n 瑯 瑨攠捯mp慣琠bon攠w慳
瑡t敮 楮 瑯 慣捯un琮t 䵡them慴楣猠 敱u慴楯ns and g慰hi
捳 w慲攠 dev敬ep敤 瑯 慬汯w 愠 s捩敮t楦楣
慰po慣h 瑯 瑨攠pob汥l.











B
-


BI位I䵅IC AAI 䙏FMAI低 低 RRA䐠 BI佉久R 䵁RI䅌

6

SURFACES

F.A.Mueller
, L.Jonasova, P.Greil, University of Erlangen
-
Nuernberg, Department of Materials
Science, Mar
tensstr. 5, 91058 Erlangen, Germany.


Bioinert materials are generally encapsulated by fibrous tissue after implantation into the living
body. It is known that a limited number of bioactive ceramics can bond to living bone without
formation of fibrous tiss
ue. These materials create an apatite layer on their surface after
implantation. In our studies we investigated the in vitro growth of bone
-
like apatite layers in
physiological environment on titanium and cellulose implant surfaces, respectively. The impla
nt
material surface was modified by a chemical pretreatment with hydroxide solutions containing
alkaline or earth alkaline metals, or by coating the surface with a bioactive gel. Exposure of the
pretreated implants to simulated body fluid (SBF) stimulates
rapid in vitro formation of a bone
-
like
hydroxy carbonated apatite (HCA) layer. Nucleation of HCA was found to be influenced by ion
exchange reactions in a hydroxide gel layer which initially formed on the implant surface.
Biomimetically grown HCA
-
layers a
re of particular interest for the generation of bioactive
interfaces between load bearing protheses and the surrounding tissue matrix as well as functional
scaffold structures for tissue engineering. Low processing temperatures (37°C) offer the possibility

to incorporate functional bioorganics like morphogenic proteins or cytokines in an
inorganic/organic hybrid HCA
-
layer.






B
-
I10

PREPARATION OF CALCIUM CARBONATE LAYERS FOR THE COATING OF METALLIC
AND NON
-
METALLIC PROSTHESIS

Jean Pierre Manaud; Yann LE

PETITCORPS* ICMCB
-
CNRS
-
UPR 904887, Av. A Schweitzer
33608 Pessac France lepetit@icmcb.u
-
bordeaux .fr


Calcium carbonate layers were deposited on titanium and carbon/carbon composites by reactive
plasma assisted evaporation (RPAE). Cylinders of coral (Pori
tes Lutea) were first decomposed to a
calcium monoxide and then used as a source for the evaporation. A plasma gas containing a large
amount of CO2 was used to promote the reaction with the evaporated material and to get the
deposit. By adjusting the exper
imental parameters, a coating rich in calcium carbonate (80
mol.%CaCO3 and 20 mol.% CaO) can be obtained at a relatively high rate of deposition (200
nm/min). Non
-
destructive infra red spectroscopy and destructive thermogravimetry analysis were
done to det
ermine the qualitative and quantitative composition of the coating.






B
-
I11

THE BIOMATERIALS PROGRESS: A GENERAL VIEW

A. C. Guastaldi Grupo de Biomateriais, Instituto de Química da UNESP, Rua Prof. Francisco
Degni, S/N, Araraquara, São Paulo, Brazil; C
aixa Postal 355, 14801
-
970, Araraquara, SP, Brazil,
guastald@iq.unesp.br


In this conference It will be presented a general view about the biomaterials progress. The
biomaterials science is an interdisciplinary field that represent one of the more and sop
histicated
trends in the worldwide medical practice. This lecture will give us a general idea about the titanium
and some others inorganic materials used as biomaterials. Commercially pure cpTi, titanium alloys,
hydroxyapatite
-
Ca10(PO4)6(OH)2 coated and Al
2O3 are considered very important in the dental
and orthopaedic applications because of its excellent biocompatibility and proper mechanical
properties, but more recently apatites coating by sol
-
gel and biomimetic routes is commom practice
in order to impr
ove the biocompatibility, bioactivity and the corrosion resistence of metallic
implants. It will be approach also the interactions among the several scientific and technologic
areas present in the biomaterials development and clinical applications.




7


O
RAL
P
RESENTATIONS



B
-
O6

HYDROTHERMAL CALCIUM TITANATE AS A BIOCOMPATIBLE COATING

J. P. Wiff
, V. M. Fuenzalida, J. L. Arias and M. S. Fernández, Universidad de Chile and Center for
Advanced Interdisciplinary Research in Materials, Casilla 487
-
3, Santi
ago, Chile.


In order to increase the biocompatibility of titanium and Ti6Al4V substrates, surface calcium was
incorporated by an hydrothermal
-
electrochemical method, leading to the deposition of a calcium
titanate coating. The samples were immersed in s
imulated body fluid (SBF) up to 28 days. X
-
ray
diffraction showed the polycrystalline calcium titanate, with no significant changes after the
treatment in SBF. Photoelectron spectroscopy revealed a magnesium enriched calcium titanate
coating before the SBF

treatment, and the incorporation of phosphorus as phosphates after it.
Surface vanadium was not detected in any case. Scanning electron microscopy showed pinholes in
the starting calcium titanate coatings as well as in the SBF treated samples. The microst
ructure was
strongly modified by the SBF, changing from a plate
-
like structure in the starting film to a globular
one after the SBF treatment. After SFB microprobe analysis, phosphorus was detected all over the
region originally coated, but not at the pinh
oles, showing that the calcium titanate was effective in
promoting phosphate deposition.










B
-
O8

SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE PREPARED BY A WET
PRECIPITATION PROCESS

M. H. Santos, L. P. de F. Souza, H. S. Mansur,
M. Oliveira
,

W. L. Vasconcelos, Department of
Metallurgy and Materials Engineering, Federal University of Minas Gerais, Rua Espírito Santo,
35/206
-

30160
-
030
-

Belo Horizonte
-

MG
-

Brazil, hmansur@uol.com.br


Recently, there has been an increasing attention on the p
reparation of calcium phosphates,
particularly the hydroxyapatite (HA, chemical formula Ca10(PO4)6(OH)2), for the development,
understanding and manufacturing of biomaterials. Several techniques have been utilized for the
preparation of hydroxyapatite and
other calcium phosphates. It is vital to know the reaction kinetics
to be able to control the HA obtained by the aqueous solution route. In the present work, HA has
been produced by several different wet precipitation processes. Calcium hydroxide, calcium
phosphate suspensions were used as reagents, with the addition of phosphoric acid under
vigorously stirring and heating. The precipitate was dried at about 100°C overnight and then the
powder was treated at 900°C for 2 hours. The powder samples were examin
ed using SEM/EDX,
XRD, FTIR, chemical and thermal analyses. The SEM photomicrographs have shown disperse HA
particles. The XRD and FTIR results revealed a high purity hidroxyapatite powder. Also, the
thermal analysis showed no evidence of thermal decomposi
tion of the HA powder. The HA
obtained by the precipitation route has presented a homogeneous morphology and typical crystal

structure.











8

B
-
O16

BIOACTIVE HYBRIDIZED COMPOSITE FOR ENDODONTIC TREATMENT

K.de Arruda Almeida
, T. M. Caniello, A.A.A. de

Queiroz; Departamento de Física e
Química/Instituto de Ciências, Universidade Federal de Itajubá (UNIFEI). Av. BPS, 1303, 37.500
-
903, Itajubá
-
MG, Brasil.


Poly (ε
J
捡éro污捴ln攩I= 愠 b楯d敧r慤慢汥l éo汹m敲I= hav攠 shown= 瑯= b攠 éromising= 楮= = 敮dodon瑩t=
ob瑵r慴楯n=du攠瑯=瑨敩e=數捥ét楯n慬ay=good=瑩tsu攠捯mé慴楢楬楴y=慮d=慤hes楯n=in=th攠roo琠c慮慬a=qh攠
us攠of==C愨佈lO==for=敮dodon瑩挠瑲敡tmen琠hav攠b敥n=of=愠gr敡琠楮t
敲敳琠of==th攠敮dodon瑩s瑳=du攠瑯=
瑨敩e=數捥é瑩tn慬ay=r慤楯é慣楴y=慮d=捡é慣楴y=瑯=d数os楴⁣慬捩am=in=瑨攠organ楣i瑩ssu攮=qh攠慤d楴楯n=of=
b楯d敧r慤慢汥léo汹m敲s=瑯=CaE佈lO=w楬氠b攠慮=in瑥t敳瑩ng=a汴敲n慴av攠瑯=th攠synth敳es=of=hybr楤楺敤=
b楯慣瑩t攠捯méos楴i
s=w楴h=modu污瑥l=捡汣極m=汩l敲慴楯n=to=瑨攠bon攠瑩tsu攠慰楣慬i==qh攠b楯慣瑩t攠
mCi
J
I2/Ca(OH)2 composite was made after bulk polymerization of ε
J
=
捡éro污捴ln攠monom敲=
楮=the=ér敳敮捥=of==C愨l䠩O==using=th攠fO=as=捡瑡tys琠=瑯=th攠form慴楯n=of=愠hybr
楤楺敤==ma捲oéorous============
mCi
J
fO⽃愨佈lO= m慴aix.= qh攠 慮瑩m楣iob楡氠 慣瑩t楴楥猠 of= 瑨攠 mCi
J
fO⽃愨l䠩O= w敲e= 慳a敳s敤=
慧慩as琠bsch敲楣i楡i 捯汩l 慮d=却慰hy汯捯捣us=慵reus.=qh攠b楯汯g楣慬i é敲forman捥=慮慬ys楳=of=瑨e=
捯méosi瑥t mCi
J
fO⽃愨l䠩O= = w敲攠 m慤攠 慦瑥t=
敮dodon瑩捡氠 瑲敡tmen琮t nu慮t楴慴iv攠 d慴愠 for=
h楳瑯moréhom整e楣s= ev慬aa瑩tn= w敲攠捯汬散瑥l= af瑥t= m楣ios捯é楣i obs敲v慴楯n.= qh攠r慤iogr慰h楣i
慮慬ys楳=af瑥t==敮dodon瑩挠ob瑵r慴楯n=r敶敡汥l=愠good=慤h敳楯n=楮=th攠roo琠t慮慬a
=
=
=
=
B
J
伱T
=
wf乃=obibA卅pB夠Bfm䡁卉C=
C䅌Cf啍
J
wfkC=m䡏em䡁qb=Bf佃boA䵉Cp
=
A.= 䴮= Cos瑡t
慮d= 䜮= A.= 卯慲敳Ⱐmb䵍⽃佐mbI= 商rgI= ON94N
J
9TOI= ogI= Bra穩氻z o.= C慬楸瑯I= f儮=
m啃⽒gI=ON94N
J
R9MI=ogI=Br慺楬㬠i.=䴮=ooss椬iCBm䘬c塡u楥i=卩paudI=NRMI=OOO9M
J
N8MI=ogI=Br慺楬i
=
=
win挠楳=ér敳en琠in=th攠捡汣lf楥d=瑩tsues
=
慴a汯w=汥v敬献ef琠h慳a慮=iméor瑡n琠ro汥lon=瑨攠m散h慮楳ms=of=
os瑥tb污獴s= d楦f敲敮瑩t瑩tn= 慮d= os瑥tg敮敳es.= 卥p敲慬a 慵thors= sugg敳瑥t= 瑨慴a 瑨攠穩n挠慤d楴楯n= 瑯=
捡汣極m=éhoséh慴攠捥men瑳=EwnqCm⽈LF=捯u汤=imérov攠os瑥t捯ndu捴楯n=in=human=bon敳⸠fn=this=
work=
w攠synth敳楺敤= 愠b楰h慳楣a 捥ram楣猠捯méos敤= by= C愱9wnOEEm伴FN4I= wnqCmI= 慮d= C愱M
J
xwnxEm伴FSE佈lOI=wneAI=慮d=楮v敳瑩g慴攠楴i=d楳so汵瑩tn=éroé敲瑩敳.=qh攠捥r慭楣猠w慳aob瑡楮敤=by=
s楮瑥ting=愠def楣楥n琠hydroxyaé慴楴攠捯n瑡tning=NI=R=慮d=NM=┠mol=of=wn.=qh攠穩z
c=r敬敡se=楮=m楬汩
J

w慴敲=and=in=瑲楳Ehydroxym整hy氩=am楮om整h慮e=w敲攠fo汬lw敤=during=R=days.=qh攠敦f散t楶敮ess=of=
瑨攠wn=r敬敡s攠in捲敡s敤=when=samé汥ldissolu瑩tn=w慳a捡rr楥d=ou琠楮=ér敳敮捥=of=th攠qof匠so汵瑩tn.=
qh楳=w慳a慴瑲楢u瑥t=瑯=th攠捯mé汥l慴楯n=
of=穩n挠瑯=qof匠mo汥捵汥献lqh攠uo䐬=䙔fo=慮d=捨em楣慬=
慮慬ys楳= by= 䅁匠show敤= 瑨慴a 瑨攠穩z挠r敬敡s攠楮捲敡s敤= w楴h= th攠wnqCm= 捯n瑥t琠and= may= b攠
捯n瑲o汬敤= by= 慤just楮g= the= wnqCm⽚ne䄠 r敬慴楶e= éhas攠 捯méos楴楯n.= 䙲cm= th楳= work= we=
捯n捬cd敤=瑨慴ab楰has楣i捡汣
ium
J
穩n挠éhoséh慴攠m楧h琠b攠愠new=wn=捡rr楥i=b楯捥r慭楣i=for=bone=
r散ons瑲u捴楯n.
=
=
=
=
B
J
伲4
=
䅌䝉kAqb=䅓⁂f位Aqbof䅌=q传Cbii=C啌q啒b=fk=Bf佅乇k久bof乇
=
i.o.䅮dr慤e
㬠䠮匮䠮i.䵡r瑩ns㬠g.匮乯br攻e 䴮b.i.䑵慲瑥㬠䴮=䙡c楮愠慮d=o.=Boroj敶楣i=䑥a瑯=de=
䡩e瑯汯g楡i攠b
mbr楯汯g楡i=fCBI=商rgI=f汨愠do=䙵ndI=o楯=d攠g慮敩eoI=ogI=Br慳楬I=ON94N
J
R9M.
=
=
Algin慴敳a慲攠éo汹s慣捨慲楤敳e數捬csiv敬y=ex瑲慣瑥t=from=捥l氠w慬as=of=慬a慥=慮d=som攠b慣t敲楡i=慮d=
捡n=form=g敬猠in=瑨攠ér敳en捥=of=d楶慬敮琠捡瑩tnsI=su捨=as=捡汣極m.=A汧in楣ia
捩cs=or=慬ain慴敳a慲攠
捯méos敤=by=d楦f敲敮琠éroéor瑩tns=of=m慮nuron楣i慮d=guluron楣i慣楤s=瑨慴a慲攠iméor瑡t琠楮=瑨攠g敬e
éroé敲瑩敳I=su捨=慳=r楧楤楴y=慮d=éoros楴i.=Chondrocy瑥s=cu汴ur敤=楮=mono污y敲=na瑵r慬ay=loos攠瑨敩e=
éh敮otyé攬=wh楣h=in捬ud敳etyé攠ff=捯
汬慧敮=慮d=aggr散慮=exér敳e楯n.=卥p敲慬aé慰敲s=r数or琠瑨慴aP䐠
捵汴ur攠 楮= 慬gin慴攠 b敡ds= 捡n= 慶o楤= 瑨攠 d敤iff敲en瑩慴ton= éro捥ss= s敥n=
in vitro
. Phenotype
maintenance is crucial for bioengineering processes attempting to repair cartilage lesions. In this
pre
liminary work, human chondrocytes were expanded, cultured in alginate beads and then
prepared for electron microscopy analyses. SEM of the beads showed hyaline
-
like cartilage
appearance, with isolated cells entrapped into lacunae. A pericellular material,
morphologically
different from the alginate matrix, could also be seen. Therefore, chondrocyte encapsulation in
alginate can stimulate matrix production and accumulation, and may improve the chondrocytic
phenotype, bringing new perspectives in orthopaedic
therapies.

Support: Institutos do Milênio de Bioengenharia Tecidual /CNPq




9

B
-
O26

MICROSCOPY, CRYSTALLOGRAPHY AND THERMAL ANALYSIS OF DENTAL
CERAMICS

1
M. H. Santos,
2
L. P. de F. Souza
,
3
J.
F. B. G. Giovannini,
2
H. S. Mansur
1
Department of Dentistry
-

In
tegrated Federal Faculties of Diamantina (FAFEID),
2
Department of Metallurgy and Materials
Engineering, Federal University of Minas Gerais,
2
Department of Dentistry
-

Newton Paiva
University Center, MG
-

Brazil, Rua Espírito Santo, 35/316
-

30160
-
030
-

Bel
o Horizonte
-

MG
-

Brazil, lucianapalhares@bol.com.br


Among dental materials, ceramics are best option to reproduce the function and aesthetics of the
tooth. After sinterized, they become a material with high strength to applications in dentistry. The
ai
m of this work was studied four dental ceramics, before and after thermal treatment, mainly
concerning their morphological characteristics, chemical elemental analysis, crystalline structure
and thermal behavior. Samples of ceramic powders, as receveid fro
m manufacturers, Duceram
Plus®, Cerabien®, EX
-
3® and d
-
Sign were characterized by scanning electron microscopy (SEM)
coupled with energy dispersive spectroscopy (EDS), X
-
ray diffraction (XRD) and thermal analysis
(DTA,TGA). Cylindrical ceramic samples were

produced and subject to controlled temperatures
and analyzed again.

SEM micrograph suggested micrometric particles with regular size and shape. Chemical
composition through EDS showed the main elements: Si, Al and K. XRD, before and after thermal
process
ing, evidenced the presence of great amount of amorphous phase. The major crystalline
phases in the samples were leucite (K2O.Al2O3.4SiO2), albite (Na2O.Al2O3.6SiO2) and quartz
(SiO2). The melting temperature of the samples located between 800
-
900°C. We ca
n conclude that
the analyzed ceramic powders presented small size particles and low melting temperature. The
ceramics can be use to produce dental restorations, because after thermal treatment are constituted
of glass matrix reinforced by a dispersed cryst
alline structure.











B

伳M
=
f丠 噉qo传 Bf佁Cqf噉q夠 Ak䐠 C奔佔佘lCfq夠 但= C䡅䵉C䅌i夠 qobAqb䐠 䝌Ap匠
䙉cbo匠
=
A.= i.=
䅮dr慤e
1
, R.M.M.
Turchetti
-
Maia
2
, M.T.P.
Lopes
2
, C.E.
Salas
3
, R. Z.
Domingues
1
Departamentos:
1
Química

=
fCbxI=
2
Farmacologia

=
fCB= 攠
3
Bioqu
ímica e Imunologia

=
fCBI=
啮iv敲s楤慤攠䙥c敲慬ad攠䵩jas=䝥d慩献a
䅶.=䅮瓴n楯=C慲汯sI=SSOTI=Cbm=PNOTM
J
9MI=B敬e=eor楺in瑥t=
Br慺楬
=
=
卡mé汥l=of=愠捯mm敲捩慬=g污ls=f楢敲=w敲攠us敤=in=this=work=瑯=瑥獴=th攠eff楣慣y=of=愠chem楣慬isol
J
g敬e surf慣攠瑲敡tm敮琠瑯=敮han
捥=瑨攠b楯慣瑩tity=of=samé汥s.=䅦瑥t=瑲敡瑥t=w楴h=瑥瑲慥瑨oxys楬慮e=
Eqb体l= 慴a room= 瑥mé敲慴ur攠for= N= hourI= 楮d楶楤u慬a samé汥猠of= 瑨攠f楢敲s= w敲攠so慫敤= 楮瑯= 愠
simu污瑥l=body=flu楤=E卂䘩cso汵瑩tnI=from=wh楣h=瑨ey=w敲攠remov敤=af瑥t=RI=NMI=NR=慮d=OM=d慹s.=

捲ogr慰hs=of=samé汥s=chem楣慬iy=瑲敡瑥t=w楴h=qb体lr敶e慬敤=瑨攠form慴楯n=of=愠hydroxy慰慴楴a
J
捯慴楮g=污y敲=af瑥t=R=d慹s=in瑯=卂䘠so汵瑩tn.=qh攠捯慴楮g=be捡m攠捯n瑩nuous=慦瑥t=NM=days.=䙯ur楥i=
瑲慮sform= infr慲敤= sé散瑲os捯é楣i EcqfoF= 慮慬yses= 捯nf楲m敤= 瑨慴a
瑨攠 捯慴ang= 污y敲= h慳a m
J

v楢r慴楯n= b慮ds= n敡r= NMSM= cm
J
N= 慮d= SMM= 捭
J
N= 捨慲慣t敲楳瑩挠 of= hydroxy慰慴楴攠 EeAF.= b䑓a
m楣ios捯éy=w慳a慬so=us敤=瑯=ch慲慣瑥t楺攠瑨攠morého汯gy=of=samé汥献lqh攠cy瑯瑯x楣楴y=of=th攠f楢敲s=
was=敶慬u慴敤=b敦or攠慮d=慦瑥r=imm敲s楯n=int
o=卂䘠so汵t楯n=for=given=瑩m敳eusing=愠d楲e捴c捯n瑡捴t
瑥獴= EA協j
J
䘠 8NPF= 慮d= 敬u瑩tn= 瑥t琠 E啓rOPF.= 卡mé汥s= imm敲s敤= in= 卂䘠 exh楢楴敤= 汯w敲=
cy瑯瑯x楣楴y=th慮=nom=imm敲s敤=on敳⸠Eé㰰IMR=

=
test “t” of Student
J
䵡nn
J
th楴neyF.
=
=
=
=
=

10

B

伳O
=
wbqA=
J
=
m佔b乔fAi=䵅Ap啒b
䵅乔匠p丠Bf佁Cqf噅=C佌i䅇A丠
=
A.= i.=
䅮dr慤e

o.=w.=
䑯mingues
=
䑥a慲瑡men瑯=d攠兵ím楣愠
J
=
fCbx=
J
=
啮楶敲s楤慤攠䙥c敲慬a de=
䵩j慳⁇ar慩s.=Av.=䅮瓴n楯=Car汯sI=SSOTI=Cbm=PNOTM
J
9MI=Be汯=䡯r楺in瑥t=Br慺楬i
=
=
qh攠fo捵s=of=瑨楳=work=楳=瑯=show=瑨攠楮fluen捥=of=ch慲g攠su
rf慣攠on=瑨攠b楯慣瑩v楴y=of=楮t敮瑩tn慬ly=
modif楥i=捯汬lgen=f楢敲=surfa捥.=卩p楣i=ob瑡楮敤=from=愠so氠
J
=
g敬e éro捥ss=w慳=us敤=慳=慧敮t=for=
surf慣攠mod楦楣慴楯n=b散ause=楴ié污ys=慮=iméor瑡n琠ro汥lon=th攠bone=min敲慬楺a瑩tn=éro捥ss.=qh攠
穥瑡téo瑥t瑩慬


) of
samp汥l o慴敤 慮d non
-
捯慴敤 w楴i s楬i捡 was m敡su攠慳⁡ fun捴楯n of 瑨攠p䠮
I琠was obs敲v敤 a shif琠in th攠


vs. p䠠and 瑨e 楳o敬散瑲楣ipo楮琠fo 卩
-

瑲敡瑥t 捯汬慧en was 7 wh楬攠
fo non
-
瑲敡瑥t samp汥l楴 was 10. u攠s楬楣i has iso敬散瑲楣ipo楮琠n敡

2 and th攠shif琠obs敲v敤
楮d楣慴is th慴a慴a汥慳琠p慲琠of th攠s楬楣愠w慳ain捯po慴敤 on suf慣攠duing th攠瑲敡tmen琮th攠慢楬楴y
瑯 fom 愠hydoxy慰慴楴攠污ye when samp汥l 慲攠expos敤 瑯 b楯汯g楣慬isimu污瑥l flu楤s (卂䘩Fh慳
b敥n us敤 瑯 散ogn楺攠b楯慣
瑩v攠m慴敲楡汳. h攠p䠠of 瑨es攠b楯汯g楣慬isolu瑩tns is 慢ou琠7.4
-
7.8. It
m敡ns th慴a瑲敡瑥t samp汥猠慣u楲敳eneg慴av攠h慲g攠when in 捯n瑡捴 w楴h th敳攠b楯汯g楣i氠so汵瑩tn
慴瑲慣瑩tg pos楴iv攠 楯ns 汩k攠 C愠 慮d 慲攠 慢汥l 瑯 fom Á 捯慴angs. 䵩Mog慰hs of s
amp汥s
捨em楣慬iy 瑲敡瑥t 捯obo慴攠瑨楳 慳aump瑩tn. 䙯 瑲敡瑥t samp汥猠瑨敲攠楳 愠捬敡 fom慴楯n of 愠
捯慴楮g 污y敲 慦瑥t 5 d慹s into 卂䘠so汵瑩tn whi汥l瑨攠pu攠捯汬慧敮 suf慣攠em慩ns p慣瑩捡汬y
un慬瑥t敤. 䙯u楥i 瑲慮sfom 楮f慲敤 sp散瑲os捯p楣
(FIR) 慮慬yses 捯nf楲m敤 瑨慴a 瑨攠 捯慴楮g
污y敲 h慳⁐
-
传v楢慴楯n b慮ds n敡 1060 捭
-
1 慮d 600 m
-
1 捨慲慣瑥t楳瑩挠of hydoxy慰慴楴攠(䡁).
















B

伴4
=
m佌奏i
J
C䡉q体A丠䑅k䑒f䵅o匠䙏c=ibf午p䅎f体l匠pobAq䵅乔
=
䴮A.m.Cam楬i
1
, O.Z. Higa
1
, G.A.Abraha
m
2
,
A.A.A. de Queiroz
3
, J. San Roman
4

1
IPEN/LBM São
Paulo/Brasil,
2
INTEMA(UNMdP
-
CONICET) Mar del Plata
-
Argentina,
3
DFQ
-
ICI UNIFEI, 37500
-
903 Itajubá MG
-
Brasil.
4
ICTP(CSIC) Madrid
-
España


Macromolecular dendrimers have gained an attention in the molecular
biology due to their
endoreceptor and exoreceptor properties. In this sense, biologically active dendrimers have been
successfully used for the development of drug and gene delivery systems, vaccines, anti
-
cancer,
antiviral agents as well as protein mimet
ics. In this work, we report on the preliminary in vivo
evaluation of the borated polyol
-
chitosan dendrimers (PG
-
Ch/B) with high potential for the
treatment of the visceral and cutaneous leishmaniosis by the boron neutron capture therapy
(BNCT). The PG
-
Ch/
B complexes exhibited high swelling degree without dissolution relatively to
the chitosan films or their physical mixtures with boric acid and glycerin. The phagocytosis of the
PG
-
Ch/B by homogeneous mouse peritoneal macrophages was evaluated by the phase
-
contrast
microscopy. The results indicated that the interfacial free energy may be important one for the
attachment of the dendrimer to the phagocytic cell and that the optimal hydrophobicity of the
polyol surface may be responsible for the susceptibility
to phagocytosis.











11

B

伴R
=
Aa协pmqf低l 但l B佖l久= 卅剕䴠 䅌B啍f丠 Ak䐠 iv协w奍b= 低l C䡉q体lk=
䵅䵂o䅎Ap
=
䴮= A.= qorr敳
I= C.= 䜮= Aimo汩I= 䴮= 䴮= B数éuI= C.= C.= 卡p瑡t愬= 卣poo氠of= Chem楣慬i bng楮敥ringI=
啮楣iméI=CmSMSSI=Camé楮asNPM8P
J
9TMI=Br慺楬i
=
=
morous=ch楴isan=mem
bran敳=w敲攠ér数慲敤=using=four=diff敲敮琠m整hods=in=ord敲=瑯=楮cr敡s攠瑨e楲=
捨em楣慬i and= m散han楣慬i s瑡b楬楴y.= qh攠m整hods= w敲攺e NF= 捲oss汩nking= w楴h= 数楣h汯rohydrin㬠OF=
捲oss汩lking= w楴h= glu瑡t慬a敨yd攻= PF= 慣整y污瑩ln= w楴h= 慣e瑩挠 慮hydr楤攠 and= 4F= 捡汣lfi
c慴楯n= by=
so慫ing=瑨攠慣整y污瑥l=ch楴isan=membran敳ein=simu污瑥l=body=flu楤=for=T=d慹s.=qh楳=work=慩m敤=瑯=
捨慲慣瑥t楺攠瑨攠in瑥t慣瑩tn=of=瑨攠four=tyées=of=瑲敡瑥t=membr慮敳e wi瑨=éro瑥楮s.=Bov楮攠s敲um=
慬aumin=
J
=
BpA= Eéf㴴I8F= 慮d= lysozyme= Eéf㴱NF= w敲e= s敬e
捴敤= as= mod敬e éro瑥楮s= for= 瑨is=
楮ves瑩g慴楯n= 慮d= 瑨敩e= 慤soré瑩tn= on= 瑨攠éolym敲楣i m慴a楣敳i w敲攠敶慬u慴敤.= B慴捨= 慤soré瑩tn=
experiments were carried out to produce the isotherms of adsorption, using “Tris” as buffer
Eé䠽TI4F.= qh攠éro瑥楮= 捯n捥n瑲慴楯n= wa
s= d整敲min敤= by= 啖
J
sé散瑲oého瑯me瑲y.= qh攠m慸imum=
慤soré瑩tn= 捡é慣楴y= EqmF= 慮d= 瑨攠bind楮g= 捯ns瑡n琠EkdF= for= bov楮e= s敲um= 慬aumin= EB十F= and=
lysozyme= ér敳敮瑥t= v敲y= sim楬慲= r敳e汴l= for= 慬氠tyées= of= membran敳⸠qh攠maximum= adsoré瑩tn=
捡é慣楴楥i=for=lysozym攠a
r攬=howev敲I=污lg敲=than=thos攠for=bov楮攠s敲um=慬aum楮=ind数敮d敮瑬y=of=
瑨攠membr慮攮= qh楳= f慣琠捡n= b攠數é污楮敤= by= 瑨攠敬散瑲os瑡瑩挠n慴ur攠of= 瑨es攠楮瑥t慣瑩tnsI= 慳=
捯nf楲m敤=by=d敳eoré瑩tn=r敳u汴l=Eusing=塍=乡C氠so汵瑩tn=for=敬e瑩tnF.=qh敳攠r敳e汴s=ind
楣慴i=瑨慴a
慬氠瑲敡tmen瑳=d楤=no琠tff散琠tons楤敲慢ly=th攠慤soré瑩tn=捡é慣楴y=of=BpA=and=lysozym攮=
=
=









B

伵4
=
义qofC= 佘l䑅= 卅乓po=
mobmAob䐠 B夠 协i
J
dbi= b乔oAm䵅乔= 但l fo
低lfffF
J
䑉bq䡙e䑉q䡉佃AoBAjA
qb=f丠A=卉ifCA=jAqof
u
=
g.倮m 䵥汯= gr
.I= g.C.= B楡空o瑴tI= C
.A.= Brun敬汯I= C.䘮传 䝲慥ff= I= 䑆a
J
䙆Ciom
J
啓rI= N4M4M
J
9MN=
o楢敩e=mr整eI=Br慺楬
.
=
=
卩p捥= n楴物i= ox楤攠 E乏k= was= d楳捯v敲敤= 慳= 慮= iméor瑡n琠 m敤楡瑯r= of= v慲楯us= éhys楯汯g楣慬i
éro捥ss敳Ⱐ sev敲慬a k传 d整散瑩tn= m整hods= h慶e= b敥n= d敶敬eé敤.= 䡯wev敲= v敲y= fe眠 d整散瑩tn
=
瑥捨n楱u敳e慲攠bo瑨=s敬散瑩v敬y=慮d=s敮s楴iv攠enough;=b卒=楳=on攠of=瑨em.=fn=th楳=work=w攠r数ort=
瑨攠 synthes楳= of= th攠 乏k sensorI= 升䙥p䑅qCI= 捯ns楳瑩ng= 楮= th攠 敮瑲慰m敮琠 of= th攠 楲onEfffF
J
d楥瑨y汤楴h楯捡rbam慴a= E䙥c䑅qCFI= w楴h楮= 愠 s楬楣愠 ma瑲楸= by= 瑨e= sol
J
g
e氠 éro捥ss.= 啖⽖楳=
sé散瑲os捯éy=E噡s楡iI=C慲y=RMF=慮d=b卒=EComéu瑥t=楮瑥tf慣敤=噡s楡i=b
J
4=u
J
B慮d=sé散瑲ome瑥tF=
h慶攠b敥n=us敤=瑯=捨慲慣瑥t楺攠瑨攠m慴敲楡汳=and=s敮sors.=qh攠b楮d楮g=of=g慳敯us=乏=瑯=愠so汩d=
r敳e汴敤= 楮= 愠啖r噩s= sé散瑲um= sim楬慲= 瑯= 瑨攠䙥䑅q
C㩎传so汵瑩tn.= qh攠b卒= sé散瑲um= of= th攠
升䙥p䑅qC㩎伬=慴aroom=瑥mé敲慴ur攬=exh楢楴敤=愠ch慲慣瑥t楳瑩挠thr敥
J
汩le=Eg=㴠O.MPRF=sim楬慲=瑯=
瑨慴afound=in=solu瑩tn=慴aTT=h.=f琠was=found=th慴ath攠䙥䑅qC㩎传h慳=慮=楮捲敡s敤=s瑡ti汩ly=楮=瑨攠
sol
J
g敬ethan=in=so汵瑩t
n.=qh攠b卒=s楧n慬=s瑡ys=慰éroxim慴aly=捯ns瑡n琠for=NM=days=楮=the=m慴aix=in=
捯mé慲楳on=瑯=8=hours=楮= so汵瑩tn㬠wh楬攠m慩n瑡tning=捯mé慲慢汥l sensi瑩t楴y.=qh楳=r敳u汴l m慫es=
升䙥p䑅qC= 愠éromis楮g= bio捯mé慴楢汥l sensor= for= 乏k wh敲攠d整散瑩tn= w楴h= sé慣攠r敳e汵瑩
潮o
捯u汤=b攠慣h楥i敤.
=
cAmb卐I=CAmb匠pnd=C乐q=suééor瑥t=瑨楳=work.
=
=
=
=
=
=
=
=
=
=
=

12

B

伵9
=
䡙䑒e塙AmAqfqb= 協剕pq啒䅌= Ce䅒䅃qbofwAqf低l 啓r乇k fo低l A匠
䷖卓BA啅o=mo佂b
=
C.=䓭慺
J
셧ui污
I=B楯m慴a=rniv敲s楤慤=d攠i愠䡡e慮愬=䅶.=rn楶敲s楤慤=敮瑲攠䜠y=oond愬=ia=䡡e慮愬=
Cub愻
=
b.=B.=卡楴pv楴ih=慮d=A.=䴮=ooss椬iCBm䘬c塡u楥i=卩gaud=NRMIogI=Br慺楬i
=
=
C慬捩um= hydroxy慰慴楴攠 EeAF= has= 愠 gr敡琠 v敲s慴楬楴y= in= 慣捥é瑩tg= 愠 污lg攠 v慲楥iy= of= 楯n楣=
subst楴it楯ns.=qh楳=is=瑲ue=for=b楯汯g楣慬ieA=敩eh敲=in=norm慬a捯nd楴楯ns=or=when=i琠楳=慦f散t
敤=by=
é慴ao汯g楥献icurth敲mor攬=瑨e=ér敳敮捥=of=th敳攠楯ns=捡n=inf汵en捥=th攠b楯汯g楣慬ir敳eons攠of=e䄠
imé污l瑳I=sé散if楣慬iy=楴s=os瑥t楮瑥gr慴楯n=and=bi
o
d敧r慤慴楯n=r慴敳⸠qh攠敦f散琠of=楯n楣isubs瑩瑵t楯ns=
on=瑨攠eA=s瑲u捴ur攠慮d=éroé敲瑩敳=捯u汤=b攠stu
d
i
敤=by=jössb慵敲=sé散瑲os捯éy=E䵓j=if=愠sm慬氠
éor瑩tn=of=Ca
2+

in calcium sites could be substituted by
57
Fe. However, the material obtained by wet
methods is very complex because a variety of iron species are produced. In this work we developed
an alternati
ve method to synthesize the HA doped with Fe
3+

or Fe
2+
. A solid mixture of
CaHPO
4
∙2H
2
O, CaCO
3

and Fe
2
O
3
, were treated in reducing conditions following by a sintering in
inert or oxidizing atmosphere at 1150

C. h攠so汩l s瑡瑥t敡捴楯n was mon楴i敤 by usi
ng 愠mass
sp散瑲ome瑥t. h攠X
-
ay d楦f慣瑩tn, 敬散瑲on sp楮 敳enan攠慮d 䵓M敳e汴s show敤 瑨a琠愠pu攠䡁
w楴h 楲on 捡瑩tns in bo瑨 捡汣lum s楴is w慳 fom敤. h楳 me瑨od of podu捩g A wi瑨 Mössb慵敲
pob敳ewou汤 b攠v敲y useful fo s瑲u捴u慬astud楥i in
volving 䡁dop敤 w楴h m整慬s wi瑨 impo瑡n捥
楮 bon攠散ons瑲u捴楯n.

Aknow汥lgm敮ts 瑯 C乐 慮d WA匮S







伶N
=
協啄夠但⁈奄剏vvAm䅔fqb=佂qAf久䐠B夠䵅C䡁义C䅌=䅌i余l乇
=
䴮=A.=匮pd愠卩汶愬=C.=C.=d愠卩汶愬=i佃b䴠Caméus=m楣椠䑥a慲琮t兵ím楣愠佲gân楣愠攠fno
rg楣愠
J
=
商rIC敡rIBr慺楬㬠
A.=匮pB.=卯mbra
=
i佃b䴠Caméus=m楣椠䑥a慲琮td攠䛭c楣愠
J
=
商CIC敡rá=IBr慺楬i
=
=
j
散h慮楣慬i 慬汯y楮g= h慳a b敥n= us敤= su捣敳sfu汬y= 瑯= érodu捥= n慮o捲ys瑡汬tn攠 éowd敲s= of=
hydroxy慰慴楴攠EeAF=us楮g=敩gh琠tiff敲en琠txé敲imen瑡t=éro捥dur敳⸠q
h攠mi汬敤=eA=
w敲攠s瑵d楥i=by=
x
J
ray=éowd敲=d楦fr慣瑩tnI=楮frar敤=慮d=oam慮=s捡瑴敲楮g=sé散瑲os捯éy.=䙯r=fiv攠d楦f敲敮琠éro捥dur敳=
w攠go琠瑨攠form慴楯n=of=eA.
=
䙯r=慬氠瑨攠éro捥dur敳ew攠d楤=
NRI=PMI=4R=慮d=SM=hours=of=
=
mi汬楮g.=qhe=
m楬汩ng=éro捥ssI=us敤=瑯=éro
du捥=eAI=ér敳敮ts=th攠慤v慮瑡g攠th慴am敬瑩tg=楳=no琠n散essary=and=瑨攠
éowd敲= ob瑡楮敤= 楳= n慮o捲ys瑡汬楮攮= qh攠 m慴敲楡氠 捡n= b攠 捯mé慣瑥t= 慮d= 瑲慮sform敤= 楮= so汩l=
捥ram楣isamé汥献=qh攠high=eff楣楥icy=of=瑨e=éro捥ss=oé敮s=a=way=瑯=érodu捥=捯mm敲捩慬camoun琠of
=
n慮o捲ys瑡汬tn攠eA
=
diff敲en琠tro捥dur敳
.
=




B

伶R
=
q䡅=低卅q=但⁍A乇䅎b卅pCi啓rbo匠p丠䑏ab䐠i
J
䅌A义久=Cov協䅌p
=
g.= o.= m楮he楲oI= o.= m.= dos= 卡p瑯sI= g.= 䴮= 卡pak椬i 䴮A.= o.= 䵩j慮d愬= 䜮= A.= 䙡c楡sI=
嘮= 丮= 䙲c楲e
=
䑥a慲瑡m敮瑯= d攠 䛭c楣愬= rniv敲s楤慤攠 䙥c敲慬a do= Ce
慲= C慩a愠 mos瑡氠 SMPM= C慭éus= do= m楣iI=
SM4RR
J
9MM=䙯r瑡汥t愬=C敡r=Br慺楬i䬮=䭲慭bro捫=䑥a慲瑡m敮瑯=d攠䛭c楣愬=rn楶敲s楤慤攠䙥c敲慬=
d攠䵩j慳a 䝥d慩s= B敬e= 䡯r楺in瑥t= 䵩jas= 䝥d慩猬a Br慺楬i 䴮= C.= 䘮c d攠佬lv敩e愬= 匮p q.= 䝯uv敩愬=
䑥a慲瑡m敮瑯=d攠兵ím楣愠佲g楣愠e
=
fnorgân楣愬=啮楶敲sid慤攠䙥c敲慬ado=C敡rCaméus=do=m楣iI=
SM4RR
J
9MM= 䙯r瑡汥t愬= C敡r= Br慺楬i B.= 匮p C慶慤愬= C.= 䝡d敬e愠 䑥a慲瑡men瑯= d攠 B楯quím楣愬=
啮iv敲s楤慤攠䙥c敲慬ado=C敡r=Caméus=do=m楣椬=SM4RR
J
9MM=䙯r瑡汥t愬=C敡r=Br慺楬igosiu楳=d攠
iim愠䙩cho=i慢
or慴ar楯=d攠fmunoé慴a汯g楡i 䭥hko=A穡m椬=啮楶敲s楤慤攠䙥c敲慬ad攠m敲nambu捯I=
C楤慤攠啮iv敲s楴楡i=m敲nambu捯I=o散楦攬=Br慺楬i
=
=
i
J
慬慮楮攠捲ys瑡汳=mangan敳e=doé敤=wi瑨=捯n捥n瑲慴楯ns=of=M.R┬B.M┬BO.M┬BP.M┠慮d=R.M┠by=
vo汵m攠in= th攠 moth敲= so汵瑩on= hav攠be
敮= grown= 慴a room= 瑥mé敲慴ar愠EOToCF= us楮g= 瑨攠 s汯w=
敶慰or慴楯n=m整eod.=qh攠u
J
ray=ch慲慣瑥t楺慴楯n=of=th攠i
J
a污lin攠捲ys瑡ts=shows=愠s瑥数敲=楮捲敡se=
楮=th攠un楴⁣敬氠volume=for=捯n捥n瑲慴楯ns=h楧h敲=th慮=P.M┮Bqh楳=b敨慶楯r=楮d楣慴is=瑨e=數楳瑥t捥=of=
two=d
oé楮g=regim敳Ⱐon攠b敬ew=慮d=oth敲=慢ov攠P.M┮Bb汥捴con楣ié慲amagn整楣ir敳en慮捥=EbmoF=
m敡surements=é敲form敤=慴aroom=瑥mé敲慴ur攠捬敡rly=ind楣慴敳afor=愠doé楮g=汥v敬e慢ov攠P.M┠瑨攠
onset of the existence of manganese “clusters”, e.g. a mean lattice inters
t楣攠 m慮gan敳e=
楮捯réor慴楯n=楮=敡捨=i
J
慬anin攠捲ys瑡t=捥汬=by=慴=汥慳l=two=a瑯ms.=th敮=瑨e=doé楮g=楳=sm慬汥a=瑨an=
P.M┬B瑨攠m敡n=mangan敳攠in捯réor慴楯n=楳=of=on攠慴am=in=e慣h=i
J
慬anin攠捲ys瑡氠捥汬l
=

13

B

伷O
=
C䡅䵉C䅌= 協ABfifq夠 但l A= BflACqf噅= Cov協䅌if久= p
fifCAqb= f丠 䑉䙆bob乔=
if兕n䑓Ⱐ=单oc䅃b=䅒b䄠⼠L佌啍b=pli啔f低lo䅔f体⁁乄kb塐体啒b=qf䵅匮
=
C.=oavagnani
I= 伮=m敩瑬Ⱐb.=a.=wano瑴tI=噩瑲敯us=䵡瑥t楡is=i慢or慴ary=Ei慍慖aI=䑥a慲tmen琠of=
䵡瑥t楡汳=bng楮敥ring=E䑅䵡FI=䙥c敲慬a啮楶敲s楴y=of=口p=C慲汯s=E商千慲FI=Cm
.=STSI=Cbm=NPRSR
J
9MRI=口p=C慲汯sI=pmI=Br慺楬i
=
=
t攠捲ys瑡汬楺敤= a= soda
J
lime
J
s楬楣愠g污ls= in= ord敲= 瑯= ob瑡楮= 愠b楯慣瑩v攠捲ys瑡汬楮攠s楬i捡瑥t= t攠
s瑵d楥i=楴s=捨em楣i氠s瑡t楬ity=楮=an=慱u敯us=汩lu楤= for=NI=TI=NRI=PMI=SM=慮d=9M=d慹s=exéos楴楯n.=
Add楴楯n慬lyI=s
瑡t楬楴y=s瑵d楥s=w敲攠é敲form敤=w楴h=卂c
J
䬹=Esimu污瑥l=body=flu楤F=so汵瑩tn=慮d=
慲瑩t楣楡氠s慬楶愠for=4hI=NI=T=and=NR=d慹s.=lur=s瑵d楥s=捯ver敤=瑨攠m慴敲楡氠surf慣攠慲敡=⼠vo汵m攠
so汵瑩tn=r慴楯=Eop䄯噓A=range=from=M.N=瑯=慢ou琠RM=cm
J
NI=mu捨=high敲=瑨en=the
=
stud楥猠éerform敤.=
fnfr慲敤= sé散瑲os捯éyI= s捡nning= 敬散瑲on= m楣ios捯éy= and= é䠠m敡suremen瑳= w敲攠捡rri敤= ou琠楮=
ord敲=瑯=und敲s瑡nd=th攠chemi捡氠瑲慮sform慴楯ns=on=th攠b楯慣瑩t攠s楬楣慴i=surf慣攠wh敮=exéos敤=瑯=
瑨攠d楦f敲敮琠汩tu楤sI=opA⽖匠r敬慴楯ns=慮d=e
xéosur攠瑩m敳e
=
=
=
=
=


伷R
=
䡙䑒佐䡉ifC= 協ABfifw
Aqf低l 但l miA卍䄠 m佌v
䵅ofwb䐠 䑉di奍b= 䙉cj
p= 䙏o=
佐䡔䡁i䵉C=AmmifCAqf
低l
=
C.= C.= m慴敲n楡i椠o楴i
I= 䴮= A.= Alg慴瑩Ⱐ啎r卐
J
䙅c
J
䑆儬= Av.= Ar楢敲瑯= m敲敩ea= d愠Cunh愬= PPPI=
NORNS4NMI=䝵慲慴楮gu整e
J

J
Br慺楬i
=
=
fn= b楯m慴敲楡i
s= indus瑲y= l楫攠 oéh瑨慬mo汯g楣i éros瑨es楳= 慮d= 捯n瑡捴t 汥ls敳e th攠 hydroéh楬楣i
éroé敲瑩敳=of=愠surf慣攠楳=of=é慲慭oun琠iméor瑡t捥.=qh攠r敡son=楳=瑨慴ahydroéh楬楣=surf慣敳em慫e=
d楦f楣u汴=th攠éro汩l敲慴楯n=of= b慣瑥t楡氠f楬ms=慮d=imérov攠瑨攠lubr楣慴楯n= n敥d敤=
慴a the=楮瑥tf慣攠
b整w敥n=g污ssy=or=éo汹m敲楣i捯n瑡捴t汥ls敳eand=瑨攠o捵污l=t楳su攮=qh敲敦or攠愠瑲敡瑭en琠to=imérov攠
瑨攠hydroéh楬楣i捨慲慣瑥t楳瑩挠of=愠surf慣攠楳=iméor瑡t琠for=楴s=us攠慳ab楯ma瑥t楡氮=qh楳=work=r数or瑳=
瑨攠r敳u汴l=of=捯n瑡捴t慮g汥lm敡surem
敮ts=in=d楧lym攠é污lm愠éo汹m敲s=d数os楴敤=on=mj䵁=é污瑥s=
慦瑥t= 楴i= exéosur攠瑯= 䠲传é污lmas.= 䑩glym攠é污smas= 睥w攠g敮敲慴敤= by= 愠 o䘠éo睥w= suéély=
oé敲慴楮g=in=R=t=楮=d楧lyme=慴moséh敲es=k数琠慴a NMM= mqorrI=w楴hin=愠é污lm愠r敡捴cr.=m污獭a=
éo汹m敲楺敤=d楧lym攠f
楬ms=睥w攠d数os楴敤=dur楮g=N=or=O=hours.=qh攠f楬m=éost
J
瑲敡tmen琠睡猠捡rr楥i=
ou琠 楮= o䘠 ex捩瑥c= 䠲传 é污lmas= for= PM= minu瑥s= soon= 慦瑥t= 楴i= d数os楴楯n.= Con瑡捴c 慮g汥l
m敡surements=w敲攠捡rr楥i=ou琠w楴h=慮=au瑯m慴敤=gon楯m整敲.=qh攠r敳e汴l=show敤=瑨慴a捯n瑡捴t
a
ng汥ld散r敡s敤=from=TRM=瑯=NRM=慦瑥t=d楧lym攠d数os楴楯n=慮d=瑨is=va汵攠rem慩n敤=慰éroxim慴aly=
捯ns瑡n琠for=mor攠th慮=on攠mon瑨.=qh敳e=r敳e汴l=show敤=th攠敦f散瑩v敮ess=of=wa瑥t=é污lm慳=楮=瑨e=
hydroéh楬楣⁳瑡t楬楺慴楯n=of=d楧lym攠é污lm愠éolym敲s.
=
=
=
=
=


伷8
=
佐lfC䅌=A乄kbibCqofC䅌=mo佐boqfb匠但l B䅒f啍=qfqA乁qb
J
䡉ao佘lAmAqfqb=
C位m体lqb=千obbj
J
mof乔b䐠q䡉C䬠䙉c䵓
=
m.=B.=A.=䙥捨in攬=A.=䘮ci.=Alm敩e愬=C.=C.=d愠卩pv愬=i慢or慴ar楯=d攠q敬散omun楣懧õ敳e攠C槪ic楡ie=
bngenh慲楡i d攠 䵡瑥t楡楳= EilCb䴩I= 䑥a慲瑡m敮瑯= d攠 兵ími
捡= 佲gân楣愠 攠 fnorg楣愬=
啮iv敲s楤慤攠䙥c敲慬ado=C敡r=C慩x愠mos瑡氠SMPMI=Cbm=SM4RR
J
TSMI=䙯r瑡汥t愬=C敡r=Br慺楬⸠
A.=匮p
B.= 卯mbra
I= 䑥a慲瑡m敮瑯= d攠䛭c楣愬= 啮iv敲s楤慤攠䙥c敲慬a do= C敡r= C慩a愠mos瑡氠SMPMI= Cb倠
SM4RR
J
TSMI=䙯r瑡汥t愬=C敡r=Br慺楬i
=
=
qh攠敦
f散琠of= th攠ér敳敮捥= of= hydroxy慰慴楴攠EeA
J
C愱MEm伴FS= E佈lOF= h慳a b敥n= s瑵d楥i= 楮= 瑨攠
d楥汥i瑲楣iéroé敲瑩敳=of=瑨攠b慲極m=t楴慮慴攠EBql
J
B慔楏iF=th楣i=f楬m.=qh敳攠f楬ms=w敲攠ér数慲敤=楮=
two=污y敲s=g敯m整ey=using=the=s捲敥n=ér楮瑩ng=瑥thn楱u攠on=A氲伳=subs瑲a
瑥献t䵥chan楣慬=慬汯ying=
h慳=b敥n=us敤=su捣敳efu汬y=瑯=érodu捥=n慮o捲ys瑡汬tn攠éowd敲s=of=hydroxy慰慴楴a=EeAF=us敤=楮=瑨攠
f楬ms.=t攠慬獯=汯ok=慴a瑨攠敦f散琠of=瑨攠gr慩n=s楺攠of=th攠Bq传慮d=䡁=in=瑨攠fin慬aéroé敲t楥猠of=瑨e=
f楬m.= qh攠 samé汥猠 w敲攠 s瑵d楥i= us
楮g= u
J
oay= diffr慣瑩tnI= oaman= 慮d= fnfr慲敤= sé散瑲os捯é楥猬=
d楥汥i瑲楣i é敲m楴瑩v楴y= 慮d= 汯ss= m敡suremen瑳.= qh攠 ro汥l é污l敤= by= f楲楮g= éro捥ss= 楮= 瑨攠 f楬m=
ér数慲慴楯n=慮d=瑨攠捲ys瑡t汩l攠s楺攠of=eA=慮d=Bq传楮=瑨攠d楥汥i瑲楣i 捯ns瑡t琠and=of=th攠film=is=
d楳捵sse

=

14

B

伹O
=
䑅噅i佐䵅乔= 但l 乩q椠 午pmb= 䵅䵏ov= 䅌i余= Af䵉乇k Bf位b䑉C䅌=
AmmmifCAqf低l
=
g.= 佴lbo
I= fqA
J
CqAI= NOOO8
J
9MMI= 匮p g.= dos= CaméosI= 卐I= Br慺楬Ⱐ
jotubo@ita.br
; O. D. Rigo,
DEMA
-
FEM
-
UNICAMP, 13083
-
970, Campinas, SP, Brazi
l; C. Moura Neto, ITA
-
CTA, 12228
-
900, S. J. dos Campos, SP, Brazil; P. R. Mei, DEMA
-
FEM
-
UNICAMP, 13083
-
970, Campinas, SP,
Brazil.


NiTi shape memory alloys present several biomedical applications: stents, guide wire, implants,
orthodontic archwires, etc.

For such applications it is necessary that the material be at least bio
-
inert. Beside the alloy composition itself, factors such as alloy purity could have influence on
bioinercity and on martensitic transformations temperatures. In the sense to obtain hi
gh purity
materials two processes are under development, that is, electron beam melting

=
bB䴠and=v慣uum=
楮du捴楯n= m敬瑩ng=

=
噉䴮= fn= 瑨楳= work= r敳u汴l= w楬氠b攠ér敳敮瑥t= 捯mé慲ing= 瑨攠two= éro捥ss敳e
m慩nly=in=瑥tms=of=fin慬a捡rbon=慮d=oxygen=捯n瑥n琮
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

15

P
OSTER
P
RESENTATIONS



B
-
P1

EFFECT OF THE SOLVENT IN PVDF AND PVDF/CaCO
3

COMPOSITE USED IN IMPLANTS

Emanuele M. Mello, Neri Alves, Celso X. Cardoso, José C. S. Camargo, Luis C. M. Vanderlei,
José A. Giacometti
, A
ntonio J. F. Carvalho, Rebeca D. Simões, FCT/UNESP

=
mr敳楤敮瑥=
mrud敮瑥t=B楡i捡=C慬汥g慲椬it楬汩am=䐮=B敬eng敲oI=䙃䴯啎fCA䵐=

=
Camé楮as.
=
=
qh攠d敶敬eém敮t=of=m慴敲楡is=th慴aér敳en琠b楯捯mé慴楢楬楴y=is=one=of=th攠瑡tg整e=of=瑨e=s捩cn瑩f楣=
捯mmun楴y.=t楴h=th
楳=go慬a=rods=of=瑨攠捯méos楴攠of=éolyEvinyl楤敮攠f汵or楤攩=Em噄䘩=慮d=捡汣極m=
捡rbon慴攠EC慃a
3
) and of the pure PVDF were produced by casting (using dimetylacetamide,
DMA) and by fusion under pressure at 210
o
C. Rods were implanted into live subjects to
i
nvestigate histological changes. The material analysis was carried out using differential scanning
calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Results have shown that
the PVDF is always crystallized in the non
-
polar

-
phase. 䙔IR
慮d 䑓C 敳u汴s indi捡瑥t 瑨e
p敳敮捥 of 䑍A 敳楤u攠楮 瑨攠ods p数慲ed by 捡s瑩ng. h攠h楳瑯汯g楣慬ian慬ysis 敶e慬敤 瑨慴a
ods w楴i 䑍A 敳楤u攬 愠highly 瑯x楣isubs瑡n捥, 汥慤 瑯 楮f污mm慴ay 敡捴楯ns (p敳敮攠of 捥汬l:
f楢ob污獴s, lymphoy瑥猠and
p污lmoy瑥猩t wh楣h do敳eno琠h慰p敮 fo 瑨攠ods podu捥d by fus楯n
und敲 p敳eu攮 I琠 was 慬獯 obs敲v敤 瑨攠 os瑥tg敮敳es po捥ss o捣u敤 aound 瑨攠 imp污lts
p数慲ed by 瑨攠fus楯n m整hod.











B
-


C䅌CI啍 䡏卐A C䵅乔 WI䠠LI䝎体单LF低A A乄N
䙉FR匠A䑉I低

L.A. dos 卡n瑯s
, Un楶敲s楤慤攠䙥F敲慬ado R楯 䝲慮d攠do 卵氠

=
䑥a慲瑡men瑯=d攠䵡瑥t楡楳=.=䅶.=
佳l慬ao= Ar慮h愬= 99=

=
C敮瑲o=

=
mor瑯= A汥lr攠

=
Br慳楬.= b
J
ma楬㨠 lu楳.san瑯s@ufrgs.br㬠 o.䜮=
C慲rod敧u慳a= 啮楶敲s楤慤= d攠i愠䡡e慮愠
J
=
C敮瑲o= d攠B楯m慴敲
楡汥i
J
=
ia= 䡡e慮愠

=
Cub愻a 匮p 伮=
oog敲oI=fns瑩tu瑯=d攠m敳euis慳=bn敲gé瑩捡t=攠ku捬敡r敳=

=
fmbk
J
C久丯卐㬠伮=w.=䡩g愬=fns瑩tu瑯=d攠
m敳eu楳慳abn敲g楣és=攠ku捬c慲敳e

=
fmbk
J
C久丯卐=㬠A.=l.=Bos捨椬i啮楶敲s楤慤攠䙥c敲慬ad攠口o=
C慲汯s=
J
=
䑥a慲瑡men瑯=d攠bng敮h慲楡i
d攠䵡瑥t楡楳
J
=
口p=C慲汯s=

=
卐=

=
Br慳楬㬠A.=C.=䘮cd攠Arrud愬=
啮iv敲s楤慤攠bs瑡tu慬ad攠Camé楮as=
J
=
r义CA䵐
J
䙅c=

=
Caméin慳a卐=
J
=
Br慳楬.
=
=
=
C慬捩um=éhoséh慴攠bon攠捥m敮瑳=ECcCsF=慲攠us敦u氠in=or瑨oé敤楣猬ius敤=m慩nly=慳abon攠subst楴i瑥t=
qh攠m慩n=慤v慮瑡ges=of=瑨
楳=k楮d=of=捥m敮瑥t慲攠瑨攠b楯捯mé慴楢楬楴y=慮d=b楯慣瑩t楴yI=whi捨=r敮d敲=
bon攠瑩tsu攠os瑥t捯ndu捴cv攮=qh攠m慩a=d楳慶an瑡g攠of=瑨楳=tyé攠of=m慴敲楡氠楳=th攠汯w=m散h慮楣i氠
éroé敲瑩敳.=C䙃s=w楴i=high=m散han楣慬i éroé敲瑩敳=捯u汤=b攠us敤=楮=r数慩a=of=fr慣瑵r敳
I=éro瑨敳楳=
fix慴楯n=慮d=oth敲s.=fn=this=睯rk=w慳=stud楥i=th攠inf汵en捥=of=sod極m=汩gnossulfon慴a=and=f楢敲s=
E捡rbonI= éo汹éroé楬敮攠慮d愠ny汯nF= on= th攠m散han楣慬i and= 捩瑯瑯x楣楴y= éroé敲瑩敳= of= tr楣慬i極m=
éhoséh慴攠捥men琮t qh攠汩gnosulfon慴a=慤d楴楯ns=no琠i
mérov敤=瑨e=捥ment=m散han楣慬iéroé敲瑩敳.=
t慳aobs敲v敤=only=愠imérovem敮琠of=m散h慮楣慬iéroé敲瑩敳=for=捯méos楴楯ns=wi瑨=捡rbon=f楢敲s.=
The in vitro citotoxic effect of a calcium phosphate cement based on α
J
瑲楣慬iium=éhoséh慴攠w楴h=
sod極m= 汩gnossulfon慴攠
immers敤= 楮= 卂䘨卩mu污瑥l= Body= 䙬c楤F= w慳a inv敳瑩g慴敤= 楮= th楳= study=
b慳敤=on=th攠fpl
J
NM99P="B楯汯g楣慬ibv慬u慴楯n=of=䵥d楣慬=䑥a楣is"=s瑡nd慲d.=qh攠捵汴ur敳eus敤=
w敲攠 Chin敳攠 䡡ms瑥t= lv慲yEC䡏e= 捥汬s= 楮= 捯n瑡t琠 w楴h= d楬i瑥t= 捡汣lum= éhoséh慴a= 捥m敮琠
數瑲慣
ts. Our findings revealed that calcium phosphate cement is citotoxic and that the material’s
捩瑯瑯x楣楴y=r敤u捥s=w楴h=sodium=汩lnossulfon慴攠慤d楴楯n.=qh攠汩lnossulfon慴攠慤d楴楯n=楮捲敡s敤=
瑨攠é䠠v慬u敳en敡r=瑯=T.MI=w楴h=捯ns敱uen琠tmérovemen琠tf=c楴i瑯x
楣楴y=v慬u敳⸠
=
=
=
=
=
=


16

B
-
P3

ASSESSMENT OF FLUORIDE DENTAL PREPARATIONS ON CORROSION

RESISTANCE
OF CAST TITANIUM.

V.F. BARROS

and M.S. MIRANDA, FO
-
UERJ, Av. 28 de setembro, 157 CEP 20551
-
030, Rio de
Janeiro, Brazil; J.B. DE CAMPOS and M.V. OLIVEIRA, INT, Ri
o de Janeiro, Brazil; L.C.
PEREIRA, Coppe, UFRJ, Rio de Janeiro, Brazil.


Titanium has been widely used as dental biomaterial because of their favorable mechanical
properties and excellent corrosion resistance. However, the dental preparations containing
f
luorides, used orally and topically, may be not adequate because of its corrosion behavior related
to titanium surfaces. The purpose of this study was to investigate the effect of fluoride
concentration and pH values on titanium surfaces. Test specimens we
re made from cast
commercially pure titanium (ASTM grade 2). All specimens received the standard metallography
procedure for titanium and were attacked by different fluoride dental solutions: 1.23% acidulated
phosphate fluoride gel with pH 3.5 (APF gel), 2
.00% NaF gel with pH 6.5 (neutral gel), 0.05% NaF
solution with pH 4.0 (acid solution), and 0.05% NaF solution with pH 7.5 (neutral solution). The
specimens were exposed to this preparations for 4, 8, and 16 minutes and then immersed in
synthetic saliva wa
ved in magnetic stirrer. Surface changes were observed with optical microscope
and SEM. The surface titanium morphology exhibited more extensive pitting features after attacked
with neutral solution, and more aggressive corrosion (tarnished layer) and disc
oloration change
after APF gel exposition. The authors concluded that the exposed titanium surfaces by neutral or
acid dental solution containing fluoride species have shown characteristically corrosion
morphology compared with the control samples
.














B
-
P9

DEGRADATION OF A DENTAL FILLING MATERIAL AFTER HIGH CARIES CHALLENGE

M.A. Paraizo
, M.S. Miranda, Faculdade de Odontologia da U.E.R.J

=
ogI=Br慺楬㬠A.=C.=䅭慲慬a=
䙡cmanguinhos=

=
䙉cCo啚I=ogI=Br慺楬㬠i.C.=䵥nd敳ⰠA.=匮=䝯m敳ⰠfjA=

=
售䘮c.g.I=ogI
=
Br慺楬i
=
=
qh攠慩a=of=瑨楳=study=w慳a瑯=敶慬aa瑥td敧r慤慴楯n=suff敲敤=by=d敮瑡氠r敳en=f楬汩ng=m慴敲i慬猠慦瑥t=愠
捡r楥猠捨慬汥ng攬= by= h楧h= é敲forman捥= 汩lu楤= 捲om慴a
graph (HPLC) and contact angle (θ). An
org慮楣imodif楥i=捥rom敲=E
ormocer
) called Definite (Degussa) was tested. Samples were builded in
a Teflon mold measuring 30mm x 6mm x 2mm, following manufacturer’s instructions. After pH
cy捬敳Ⱐsolu瑩tns=w敲攠楮j散t
ed=楮=愠䡐iC=Ephim慤穵=

C
J
18 column in reverse phase). The θ was
obtained by a goniometer after (θA) and before (θB) cycles, at 60% air humidity and 25

C. A
d楳瑩汬敤 w慴敲 dop (0,06 m氩 was pu琠on 瑨攠m慴敲楡氠suf慣攬 慮d 慦瑥t 6 min., 瑥t m敡su敳ew敲

ob瑡楮敤 w楴h 20 s散onds 楮t敲v慬献a慣h samp汥l散敩e敤 4 dops, on攠敡捨 瑩m攬 on d楦f敲ent
慲敡s. 䡐LC 敳u汴l show敤 d敧慤慴楯n 楮 th攠m慴敲楡氠and was g敡瑥t 楮 慣楤 m敤極m. B楳
-
䝍䄠
慮d 䝄GA w敲攠d整散瑥t 䑥in楴攠敳楤ues. Con瑡t琠慮g汥ld慴愠w
敲攠s瑡瑩s瑩捡汬y an慬ys敤 by
AN佖A 慮d 却ud敮t
-
乥uman
-
䭥Kls. 䵥慮s and 匮䐮 (d敧敥), w敲攠(p 㰠0,05):

θA: 85,16


3 慮d
3B㨠 69,77


7,12. Au瑨os 捯n捬d敤 瑨慴a an
ormocer

filling material degraded on a caries
simulated medium.










17

B
-
P10

MECHANICAL PROPERTIES OF ALUMINA
-
ZIRCONIA COMPOSITES FOR CERAMIC
ABUTMENTS

M. C. C. S. B. Moraes

(1); C. N. Elia
s (1); L. G. Oliveira (2); J. Duailibi Fh. (2) (1) Departament of
Mecanical and Metallurgical Engineering (DE
-
4), IME, Praça General Tibúrcio, 80 Praia
Vermelha, 22.290
-
270, Rio de Janeiro, Brazil (2) INT, Av. Venezuela 82, sala 604, Saúde, 20081
-
310, Rio
de Janeiro, Brazil


The need for new materials to substitute injured or damaged parts of the human body has led
scientists of different areas to investigate bioceramics since the 70's, when other materials in use
started to show rejection problems. Ceramic
s show some advantages like being the material that
best mimics the bone tissue, although present low mechanical strength when compared with the
metallics materials. As patients have become more and more demanding regarding the esthetic and
biocompatibilit
y aspects of their dental restorations, ceramic material has become a main object of
scientific interest especially from the material point of view. The alumina
-
zirconia composites are
one of the good and promising candidate for biomaterials application,
due to biocompatibility and
their mechanical properties that combined high flexural strength with a relative high toughness. The
aim of the present work is analyze the mechanical properties of these composites, where Y
-
TZP
zirconia content was varied from
5 to 80 weight %. These systems can achieve a flexural strength
93 % and fracture toughness 29 % superior when compared to the pure alumina ceramics. These
results showed that, under certain conditions, wear
-
resistant ceramic abutments components can be
pr
epared for prosthetic rehabilitations with osseointegrated dental implants.















B
-
P12

PREPARATION AND THERMAL ANALYSIS OF POLY(3
-
HYDROXYBUTYRATE) AND
POLY(EPICHLOROHYDRIN) ELASTOMERS BLENDS

J. A. de Lima;

M. I. Felisberti, Instituto de Química
da UNICAMP, Caixa Postal 6154, 13083
-
970,
Campinas/SP, Brazil.


Poly(3
-
hydroxybutyrate) (PHB) is a microbial polyester presenting the advantages of
biodegradability and biocompatibility over other thermoplastics with similar mechanical properties.
However,

their costs and performances must be adjusted by blending with suitable polymers. The
Poly(epichlorohydrin) (PECH), is a linear and amorphous elastomer, exhibiting a low glass
transition temperature around
-
23
o
C. Blends of poly(3
-
hydroxybutyrate) with pol
y(epichlorohydrin)
were prepared by solution casting from chloroform solutions at different compositions (0, 20, 40,
50, 60, 80 and 100%). The influence of PECH molar mass in the miscibility system was evaluated.
The miscibility of binary blends, PECH and

PHB, were investigated as a function of blend
composition by differential scanning calorimetry (DSC) and dinamical mechanical analysis
(DMA).












18

B
-
P13

A TITANIUM
-
HYDROXYAPATITE SINTERED COMPOSITES STUDY FOR BIOMEDICAL
APPLICATIONS

OLIVEIRA, M.V
. a
nd de Campos, J.B., DPCM/INT, Av. Venezuela 82, Saúde, Rio de Janeiro,
Brazil and PEREIRA, L.C., UFRJ, Rio de Janeiro, Brazil, ROSSI, A.M., CBPF, Rio de Janeiro,
Brazil, CAIRO, C.A.A., CTA/IAE/AMR, São Paulo, Brazil


Titanium based materials are one of the

best biomaterials for implant applications due to their
excellent corrosion resistance and mechanical properties. By joining titanium with hydroxyapatite
(HAp), it can be produced a composite with the best characteristics of each material with the
excelle
nt HAp biocompatibility and the mechanical properties of titanium. Ti/HAp composites
represents an alternative system for surgical implants, substituting the traditional metallic and
ceramic biomaterials. Powder metallurgy (PM) techniques have been used fo
r composites
processing because the constituents are mixed without melting leading to homogenous
microstructures. In this preliminary study, a PM route was used for processing a 80/20 Ti/HAp
composite. The main objective was to study processing parameters
to achieve adequate superficial
morphology and an homogeneous microstructure. Sintering process was performed at 1150
o
C
during 1 hour step in vacuum atmosphere better than 10
-
6

Torr. The composite samples were
characterized by x
-
ray diffraction (XRD), opti
cal and electron microscopy (SEM), roughness and
hardness tests. The results indicated that the composite microstructures have strong bonds between
the particles but the mixture between titanium and HAp powders must be optimized to achieve a
more homogeneo
us structure XRD measurements have revealed the formation of some
intermetallic phases it will be soon studied.












B
-
P18

CHARACTERIZATION OF THE MORPHOLOGY OF IMPLANTS SURFACES USING
DIGITAL IMAGE ANALYSIS

M. G. DINIZ
, M. A. S. PINHEIRO, J. ÁZARA,

A. CAMUSSI, J. D. de BRITTO FILHO*.

Mechanical Dep., UERJ, 20550
-
013, RJ, Brazil.
diniz@uerj.br

*LABMEL, UERJ, 2055
-
170, RJ,
Brazil.


Surface treatments for titanium dental implants can divided in two major approaches:
coating with
bioactive substances and modifying
-
surface processes. This last methodology includes treating the
titanium with oxide blasting treatments associated, or not, with chemical attack The excellence in
products and processes has increased the numbe
r of titanium surfaces that undergoes
characterization methods, which is strongly related to the convenient response of this material in
biological applications. The digital analysis of images can be a powerful tool in characterizing
implants surfaces, whi
ch is important in predicting the behavior of this material during the
biological healing process in the interface implant/tissue. Materials with identical chemical
composition, rugosity and superficial energy level can present distinct behaviors due diff
erences in
the morphology of their superficial finishing. This work is aimed in developing a methodology
focused in the characterization of the superficial morphology of commercial pure titanium that
undergoes abrasive blasting and also chemical attack [DI
NIZ et al., 2002]. Dimensional parameters
and form factors, statistically associated with the superficial morphology of the material, will be
obtained from SEM techniques and then analyzed using the KS400 software. The proposed
methodology will allow a mor
e accurate control in the processes of obtaining implant surfaces with
convenient biological characteristics.





19

B
-
P20

BIOACTIVITY STUDY OF GLASS
-
CERAMICS WITH VARIOUS CRYSTALLINE
FRACTIONS OBTAINED BY CONTROLLED CRYSTALLIZATION

P. Guanabara Jr
, A. C. M.
Rodrigues, O. Peitl, Vitreous Materials Laboratory (LaMaV),
Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), CP.
676, CEP 13565
-
905, São Carlos, SP, Brazil.


It was performed “in vitro” tests in order to analyze the bi
o慣瑩t楴y=of=愠b楯慣瑩t攠g污ss
J
捥ram楣=
捯méosi瑩tn= E卯da
J
iime
J
卩pi捡= g污獳F.= 卡mé汥猠 of= g污ss
J
捥ram楣s= w楴h= MI= ORI= RM= and= TR┠
捲ys瑡汬楺敤= fr慣瑩tns= w敲攠 ob瑡楮敤= by= 捯n瑲o汬敤= 捲yst慬汩穡瑩an.= qh敳攠 g污ls
J
捥ram楣猠 w敲攠
數éos敤=瑯=愠so汵瑩tn=th慴asimu污瑥l
=
th攠flu楤=of=瑨攠body=EpBc
J
䬹F=for=4MI=RMINMM=慮d=OMM=hours.=
qh攠 敶o汵瑩tn= of= s楬楣i
J
g敬e 污y敲I= amoréhous= 捡汣極m= éhoséh慴攠 and= hydroxy捡rbon慴敡é慴楴a=
E䡃AF= form慴楯n= was=an慬yz敤=using=䙯ur楥i=qr慮sform= fnfr慲敤=印散瑲os捯éy=E䙔foF.=A汬=th攠
g污ls
J
捥rami
cs=show敤=th攠form慴楯n=of=a=w敬e
J
d敶敬eé敤=䡃A=污y敲=on=楴s=surf慣e=慴aNMM=hours=
數éosur攠瑩m攮
=
=

B
-
P21

BIOPOLYMER CONTAINING IRON OXIDE NANOPARTICLES FOR DRUG DELIVERY

P.V. Finotelli
, IQ/UFRJ, 21949
-
900, RJ, Brazil; C. Diaz
-
Aguila, Centro de Biomateria
les, U. de la
Habana/Cuba; L. Andrade, M. Farina, ICB/UFRJ; E.M.B. Saitovitch and A.M. Rossi, CBPF, Dr.
Xavier Sigaud 150, 22290
-
180, RJ, Brazil; M.H. Rocha
-
Leão, EQ/UFRJ, 21949
-
900, RJ, Brazil.


Magnetic particles dispersed in a biopolymer has been propos
ed as a drug delivery system in which
the drug release would be activated by a magnetic external stimuli. In this work we synthesized iron
oxide nanoparticles entrapped in calcium alginate microspheres. The samples were characterized by
Mössbauer spectrosc
opy, electron paramagnetic resonance and scanning electronic microscopy.
Calcium alginate beads were prepared by dropping sodium alginate solution (2%) into a CaCl2
solution (0.16 M) with stirring at room temperature. Magnetite (Fe3O4) particles were prepa
red by
coprecipitation of Fe(III) and Fe(II) in the presence of NH4OH and alginate. The Mössbauer
analysis at room temperature showed a hyperfine doublet, which is an indicative of a
superparamagnetic iron species. Low temperature Mössbauer spectroscopy me
asurements revealed
that the blocking temperature is characteristic of nanoparticles with dimension smaller than 10 nm.
EPR spectroscopy showed that part of the iron substitute calcium ions in the polymer structure. The
results suggested that the iron oxid
e/alginate system might be appropriate for drug delivery
applications.

Acknowledgements to CNPq, Capes and Millennium Institute for Tissue Bioengineering
(IMBT)/CNPq.





B
-
P49

ANALYSIS OF FATIGUE LIFE OF EXPERIMENTAL Ti
-
10Mo ALLOY AND
COMMERCIALLY PURE T
ITANIUM FOR DENTAL APPLICATIONS

F. P. Rodrigues
, V. A. Guimarães,
A. P. R. Alves Departamento de Materiais e Tecnologia,
UNESP
-

Campus de Guaratinguetá, Av. Ariberto P. Cunha, 333, CEP 12516
-
410, Guaratinguetá
-
SP, Brazil J. R. Bauer, Departamento de Odon
tologia, USP, São Paulo, SP, Brazil


Titanium and some titanium
-
based alloys have been introduced in the manufacturing of crown and
fixed partial denture frameworks, which are affected by fatigue. The present work evaluated the
fatigue life of experimental

titanium alloy Ti
-
10Mo for dental applications. Ti
-
10Mo
alloy was
obtained in an arc
-
voltaic melting furnace. T
welve samples with 6 mm in diameter and 40 mm in
length were made of this alloy in a s
pecial titanium casting machine. Castings were divested a
nd
machined with 3,5 mm in diameter at central and 40mm in length. The ends were 5,8 mm in
diameter and round angles were set connecting the center to the ends. A constant defection fatigue
test was conduced using a hydraulic and servo
-
hydraulic fatigue te
sting machine with a frequency
of 15 Hz. A deflection articulated grip was based in the system developed by Zavanelli et al. The
maximum applied loading

was maintained constant at 1000 N (an arbitrary value approaching the
forces generated in peoples wit
h bruxing episodes). The test without fracture were stopped with
60.000 cycles. Within the limitations of this study, results obtained from this alloy were satisfactory
when compared commercially pure titanium.


20

B
-
P23

IN SITU CRYSTALLIZATION USING THE LAS
ER TWEEZERS MICROSCOPE

C.N. Keim
, M. M. M. Oliveira, L. T. Salgado and M. Farina, Laboratório de Biomineralização,
ICB, CCS, Universidade Federal do Rio de Janeiro, 21941
-
590, Rio de Janeiro, RJ, Brazil. E
-
mail:
mfarina@anato.ufrj.br


Here we describe a
method for crystallization of micrometer
-
sized minerals from solution using a
laser tweezers microscope (Neodymium
-
YAG laser with


㴠1064nm, fous


100 瑯 200mW慴琻
乩Non 
-
300 m楣ios捯p攻e 乁㴠 1.3 obj散瑩t攠 汥ls). h攠 b敡m was fo捵s敤 on瑯 sm慬氠 m整慬
p慲瑩捬敳t(


=
10 μM) dispersed in the solution. The particles absorb the laser energy, increasing the
瑥mé敲慴ar攠in=瑨e=surroundingsI=wh楣h=汥慤s=瑯=v慰or楺慴楯n=of=w慴敲.=䵩n敲慬楺a瑩tn=o捣urs=du攠瑯=
sué敲s慴ur慴楯n=n敡r=瑨攠é慲瑩捬攮=乡䍬k捲ys瑡汳=érodu捥d=慲ound
=
瑨攠fo捵s敤=b敡m=from=P.R┠to=
PM┠so汵瑩tns=慴=é䠠T.M=w敲攠捵b楣i=慳=瑨os攠form敤=w楴hou琠瑨e=污獥l.=A=CaC氲⽎慈C伳=P㨱=
so汵瑩tn= 慴a 楯n楣i s瑲eng瑨= == M.MOR= 瑯= M.N䴠 慮d= é䠠 8.R= érodu捥dI= w楴hout= 瑨e= 污l敲= b敡mI=
romboh敤r楣i 捡汣lum= 捡rbon慴敳a EC慃伳FI= 慳a usua
氠 for= 楮org慮楣i 捡汣楴攮= 䡯w敶敲I= round敤=
s瑲u捴ur敳e捯n瑡tning=敬eng慴ad=捲ys瑡ts=d楳éos敤=r慤楡汬y=w敲攠form敤=when=瑨e=污獥l=was=us敤.=
qh攠慤d楴楯n=of=so汵b汥léro瑥tns=數瑲慣瑥t=from=fish=o瑯汩lhs=E捡汣楦楥i=s瑲uc瑵r敳eof=th攠inn敲=敡rF=
捨慮g敤= th攠 sé敥
d= and= sh慰攠 of= 捡汣lum= 捡rbon慴攠 s瑲u捴ur敳e form敤.= qh攠 ér敳敮捥= of=
éo汹s慣捨慲楤敳=楳o污瑥l= from=th攠捥汬l w慬氠of=愠brown= 慬a愠慬so=ch慮g敤=th攠sh慰攠of= m楮敲慬=
form敤.= fn= 捯n捬us楯nI= 瑨is= m整hod= 捡n= b攠 us敤= for= 楮= s楴i= f慢r楣慴楯n= of= m楣iom整敲
J
s楺敤=
s瑲
u捴ur敳e慳aw敬氠慳afor=敶慬u慴ang=th攠ro汥lof=organ楣imo汥捵汥猠楮=th攠min敲慬楺a瑩tn=of=sé散楦楣=
捲ys瑡ts.=
=
䙩can捩慬c suééor琺t C佐bAI= C乐qI= CAmb匬p cAmbogI= fns瑩tu瑯= do= 䵩泪j楯= d攠 B楯敮g敮h慲楡i
q散楤u慬a
=
=






B
-
P25

NON
-
THROMBOGENIC SURFACES OF GRAFT AND

HEPARINIZED COPOLYMERS OF
PLASTICIZED PVC FILMS, BY SIMULTANEOUS GAMMA IRRADIATION

1
Panzarini, L.C.G.A
; Higa, O. S; Guedes, S. M. L
1

Instituto de Pesquisas Energéticas e Nucleares

=
fmbk
J
C久丯卐=
Consue汯@ié敮.b
r
=
=
m污獴楣楺id=m噃=f楬ms=gr慦瑥t=慮d=h数慲楮楺敤=by=simu汴lneous=r慤楡瑩in=éro捥ss=us楮g=gamm愠rays=
w敲攠ev慬u慴敤=楮=fun捴楯n=of=é污瑥汥琠慤h敳楯n=慮d=thrombus=form慴楯n.=卵rf慣攠morého汯g楣慬=
慮慬ys楳=w慳=捡rr楥i=ou琠by=s捡nning=敬散瑲on楣im楣ios捯éy=Ep
b䴩.=qh攠graf瑥t=捯éolym敲s=w敲攠
ob瑡楮敤= by= gamm愠 楲r慤楡瑩in= of= 瑨攠 m噃= f楬ms= in= sys瑥ms= 捯n瑡tning= 䑍Abj䄠 慱u敯us=
so汵瑩tn= 慴a d楦f敲敮琠 捯n捥n瑲慴楯ns= EPM┠ 慮d= 4R┩B= 偖m
J
g
J
䑍AbjA= EPM┩B 慮d= m噃
J
g
J
䑍Abj䄠E4R┩B=慮d=in=the=ér敳敮捥=of=h数慲in=sod極m=s慬琠E
M.OR┠wLvFI=m噃
J
g
J
䑍AbjA
J
g
J
h数慲楮I=in=bo瑨=䑍AbjA=s瑵d楥i=捯n捥n瑲慴楯ns.=Coméar楳on=of=th攠ého瑯m楣iogr慰hi敳eof=th攠
samé汥l=show敤=such=in捲敡s楮g=imérovement=so=th慴=瑨e=楮瑲odu捴楯n=of=hydroéh楬楣i groués=by=
gr慦瑩ng=䑍AbjA=on瑯=m噃=捨慩as=was=no琠敮ou
gh=瑯=捯nf敲=non
J
thrombogen楣iéroé敲瑩敳e瑯=瑨攠
gr慦瑥t=捯éolym敲s.=䅮=in捲敡s楮g=thrombus=form慴楯n=was=no瑩捥t=in=捯mé慲楳on=w楴h=瑨攠m噃=
f楬m= surf慣攠 w楴hou琠 graf瑩ng.= qh楳= 敦f散t= w慳= qu楴i= 敶id敮捥d= 楮= th攠 samé汥l= of= coéo汹m敲s=
楲r慤楡瑥i=慴ah楧h=捯n捥
n瑲慴aons=of=䑍AbjA=E4R┩B=qh攠慤d楴楯n=of=h数慲楮=sodium=s慬琠瑯=th攠
r敡捴楯n=m敤iumI=M.OR┠w⽶I=imérov敤=non
J
thrombogen楣ich慲慣瑥t楳瑩ts=瑯=瑨攠gr慦瑥t=捯éo汹m敲s=
慴a bo瑨= 䑍AbjA= stud楥i= 捯n捥n瑲慴楯ns.= qh攠捯nfront= of= 瑨攠r敳e汴s= shows= 瑨慴a th攠gr慦瑥t=
捯éo汹m敲s=楲r慤楡瑥i=楮=so汵瑩ons=捯n瑡tning=PM┠of=䑍Ab䵁=and=M.OR┠wLv=of=h数慲楮=sod極m=
s慬琠ér敳en瑥t=b整瑥e=non
J
thrombog敮楣isurf慣攠捨慲慣瑥tist楣献if琠w慳=敶楤敮捥d=th慴ather攠was=an=
楮捲敡s攠of=th攠surf慣攠roughn敳e=by=th攠gr慦t楮g=ajAbj䄠on瑯=m噃
=
捨慩ns=慳=愠fun捴楯n=of=瑨e=
捯n捥n瑲慴楯n=of=瑨e=monomer.=佮=th攠oth敲=handI=th攠surf慣攠roughness=was=汥ss=ev楤敮琠af瑥t=
h数慲楮= sod極m= s慬琠 慤d楴楯n.= qh楳= f慣琠 捯nf楲ms= th慴a th攠 d散r敡s攠 of= 瑨攠 roughness= surf慣攠
minim楺敳⁴h攠b汯od=é污瑥汥琠a捴楶慴楯n=m
散han楳ms.
=
=
=
=


21

B
-
P27

SYNTHETIC MELANIN: STRUCTURAL AND ELECTRICAL CHARACTERIZATION BY
SCANNING PROBE MICROSCOPY.

M. I. N. da Silva
, and M. A. Cotta, Universidade Estadual de Campinas, Instituto de Física Gleb
Wataghin, Departamento de Física Aplicada, Lab
oratório de Pesquisa em Dispositivos, CP 6165,
13083
-
970, Campinas, SP, Brazil. S. N. Dezidério, and C. F. O. Graeff, Faculdade de Filosofia,
Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. J. C. Gonzalez,
Laboratório Nacional d
e Luz Síncrontron, Campinas, SP, Brazil.


Melanins are important photoprotective pigments found in many organisms and tissues. They have
attracted great attention due to their role in photo protection and technological applications. In this
work we will s
tudy the effect of hydration on the structural and electrical properties of synthetic
melanin samples using Atomic Force Microscopy (AFM), Electrical Force Gradient Microscopy
(EFM), and Conductive Atomic Force Microscopy (C
-
AFM). Two thin film synthetic m
elanin
samples were prepared by evaporating (casting) a solution of melanin powder in a mixture of
DMSO (Dimethyl Sulfoxide. All the experiments were done in air using a Digital Instrument
MultiMode Scanning Probe Microscope, with a Nanoscope III controlle
r and an extender electronic
box, and an AutoProbe CP from ThermoMicroscopes. TappingMode ultra sharp Si tips were used
in all the experiments. AFM was used to study the morphology of the synthetic melanin thin films.
EFM and C
-
AFM were used to study the
electrical properties of the samples in correlation with
their morphology. An increment of the EFM signal was observed in both samples at the edges of
the flat terraces. However, a lower EFM signal was found in the agglomerates present in the
hydrated samp
le. These results show a degradation of the structural and electrical properties of
melanin thin films caused by hydration.











B
-
P28

CHARACTERIZATION OF SHORT CHAIN FATTY ACIDS MICROCAPSULES PRODUCED
BY SPRAY DRYING

M. I. Teixeira
, Prog. Pós Grad.

em Ciência de Alimentos IQ/UFRJ; L. R. Andrade; M. Farina, Lab.
de Biomineralização

=
fCBL= CC匯p 商rg㬠 䘮c b.= m.= Corn敪oI= b䵂oAm䄠 L䅧ro楮dús瑲楡i d攠
A汩men瑯sI= 䅶.= d慳= 䅭楣isI= n


29.501 , 䝵慲慴楢愬 RJ㬠 䴮 䠮 䴮 Roh愠 L旣o, 䑥瑯. de
ngenh慲楡iB楯uím楣


=
b儯商rg=
J
=
ON.9NM
J
㤰〠
J
=
f汨愠do=cundI=o楯=d攠g慮敩eoI=Br慳楬.
=
=
䵩jro捡ésu汥猠捯n瑡tning= shor琠捨慩a= f慴ty= 慣楤s= EpCcAF= w敲攠érodu捥d= by= séray= dry楮g= using=
d楦f敲en琠troéor瑩tns=of=慲慢楣igum=and=ma汴ld數瑲楮=as=w慬a=m慴敲楡汳.=mroéor瑩tns=of=R=慮d=NMB
=
of=
慲慢楣igumI=R=and=NM┠of=m慬瑯d數瑲楮=and=瑨攠mix瑵r攠of=R┠of=m慬瑯d數瑲in=慮d=RB=of=慲慢楣=
gum= w敲攠慤d敤= 瑯= samé汥l= of= f敲men瑥t= é敲m敡瑥= 捯nt慩aing= 千cA= and= 污瑥l= dr楥i= 楮= séray=
drying.=qh攠s瑲u捴ur敳eof=m楣io捡ésu汥猠w敲攠stud楥i=by=卣慮ning=b汥捴
ron=䵩jros捯éyE卅pF=慮d=
m楣io捡ésu汥ls楺敳iw敲攠m敡sur敤=by=ias敲=䑩ffr慣瑩tn.=卅䴠r敳e汴s=ind楣慴id=瑨慴a瑨攠s瑲u捴cres=of=
m楣io捡ésu汥s= w敲攠慦f散瑥t=by=tyé攠慮d=éroéor瑩tn=of= w慬氠m慴敲楡氮= Almos琠慬氠m楣io捡ésu汥猠
捯n瑡楮ing=慲慢楣igum=慳=w慬氠m慴敲楡i
=
h慤=surf慣攠d敮tsI=bu琠no=捲慣ks=or=éor敳ew敲攠obs敲v敤.=
䵩jro捡ésu汥猠捯n瑡tning=m慬瑯d數瑲楮=w敲攠séh敲楣慬i=h慤=few敲=surf慣攠den瑳=慮d=some=of=瑨em=
h慤= éor敳⸠qh攠污lg敲= m楣io捡ésu汥l s楺is= w敲攠obs敲v敤= 楮= 瑨os攠捯n瑡tning= m慬瑯dex瑲楮.= lur=
r敳e汴s=sh
ow=th慴=m楣ios瑲u捴ur攠慮d=s楺攠of=m楣io捡ésu汥s=慲攠慦f散瑥t=by=tyée=慮d=éroéor瑩tn=of=
b楯m慴敲楡氠ls敤.
=
=
=
=
=
=
=
=


22

B
-
P29

BIOMIMETIC APATITE FORMATION ON POLYCAPROLACTONE (PCL) COMPOSITES
CONTAINING CALCIUM CARBONATES

Celso P. Melo
, Departamento de Física,

UFPE, Recife, Brazil; Robson A. S.Queiroz, Pós
-
Graduação em Ciência dos Materiais, UFPE, Recife, Brazil.


Polycaprolactone (PCL) composites containing a mixture of calcium carbonates were prepared by
mixing a PCL solution to a Ca(OH)
2

suspension that was
previously submitted to CO
2

bubbling.
After drying, the mixture was grounded and then soaked for varied amounts of time in simulated
body fluid (SBF) at 37
0
C. The carboxy groups induce apatite nucleation and, as a result, bone like
apatite particles were
deposited on the composite surface. The PCL/CaCO
3

composites before and
after the soaking were analyzed by X
-
ray diffractometry and Fourier transform infrared
spectroscopy, and its morphology was observed by scanning electron microscopy. Within 3h of
expos
ition to SBF, biomimetic apatite was formed on the PCL/CaCO
3

composites in SBF and the
amount deposited increased continuously up to 12h. The relative amounts of vaterite, aragonite and
calcite (different forms of calcium carbonates) were dependent on the
length of exposure to SBF.
These PCL/CaCO
3

composites are expected to present high bioactivity, and therefore they arise as
promising candidates for use on bone repair clinical applications.

[Financial support: CNPq]














B
-
P33

THE INFLUENCE OF RF

POWER AND PRESSURE ON THE POLIURETHANE CONTACT
ANGLE

G. Z. Gadioli
, E. C. Rangel, R. P. Mota, R.Y. Honda, N. C. Cruz, Laboratório de Plasmas

E
APLICAÇÕES
-

UNESP
-

CAMPUS GUARATINGUETÁ
, 12516
-
410
-

GUARATINGUETÁ/SP, BR
AZIL.


As the behavior of a materia
l in a biological environment is strongly related to its interaction with
water, good surface wettability is highly requested for a material to present good biocompatibility.
In this sense, many techniques have been successfully applied to improve biomater
ial surfaces.
Amongst them, plasma processing is of particular interest because it allows surface modifications
without degenerating the bulk properties. In this work, glow discharge plasmas have been applied
to the treatment of Polyurethane. It has been i
nvestigated the evolution of contact angle,

, of
samp汥猠expos敤 瑯 d楦f敲en琠p污lm慳⸠h攠p敳敮琠wok

des捲楢敳e慮 inves瑩g慴楯n on polyu整hane
捯n瑡捴t慮g汥lexpos敤 瑯 N
2
, O
2

and H
2
. The t
reatments were performed in a vacuum chamber by
applying radiof
requency (RF) power (13,56 MHz) to two external electrodes. During the treatments
the chamber was continuously pumped by an 18
-
m
3
/h rotary vane pump. The admission of the
gases was controlled by needle valves while the chamber pressure was monitored by a P
irani
gauge.

The basic parameter of wettability is the contact angle


of 愠汩lu楤 w整瑩ng 瑨攠so汩d. In 瑨楳
wok, th攠捯n瑡捴tang汥lm敡suemen瑳 w敲攠p敲fom敤 by 慮 慵瑯m慴敤 gon楯m整敲 (Ramé
-
䡡琬t
㄰1
-
00).
W攠h慶攠obs敲v敤 瑨慴a瑨攠數posu攠of th攠po汹
me 瑯 p污lm慳aex捩瑥 by R䘠pow敲 mo攠
瑨慮 50 W h慶e b散am攠th攠po汹u整h慮e suf慣攠hydoph楬楣iw楴hou琠d数敮den捥 of th攠us敤 g慳a
䡯wev敲, oxygen p污lm慳 d散敡s攠polyu整han攠捯n瑡捴tang汥 (瑯 汥ss 瑨an 35 d敧敥s) w楴h any
R䘠Fow敲.







23

B
-
P34

STRU
CTURAL CHANGES IN EGGSHELLS OF

CAPTIVE TORTOISES (
Geochelone
carbonaria
)

C.A.R. Matias
1
; S.F. Bruno
1
; J.B. Campos
2
; M. Farina
3
; R. Cruz, R.
4
,
*
.
1
Dep
to
. de Patologia e
Clinica Veterinária, Universidade Federal Fluminense
.
2
D
ivisão de Processamento e Cara
cterização
de Materiais, Instituto Nacional de Tecnologia.
3
Instituto de Ciência Biológicas, Universidade
Federal do Rio de Janeiro;
4
Instituto de Biologia, Universidade Federal Fluminense.
*
E
-
mail :
rcruz@vm.uff.br
.


Eggshells are natural composite bioceramics containing organic and inorganic (CaCO
3
) phases. The
objective of this study was to describe morphological and ultrastructural changes in two eggshells
from two specimens of captive tortoises
(
Geochelone carbon
aria
) with retention problems. The
eggshells microstructure were studied by several techniques: Light microscopy (LM), Polarized
light microscopy (PLM), Scanning electron microscopy (SEM) and X
-
ray diffraction (XRD). It
was found that eggshell
thickness
f
rom one tortoise was significantly
greater
(4.07mm) than the
other one (1.11mm). Ultrastructure of the calcified layer of eggshell was examined by Scanning
Electron Microscopy (SEM). The thicker egg also presented pores that could connect the interior of
t
he egg with the outside environment and provide the diffusion of respiratory gases and water
vapors. The thicker eggshell presented irregular multilayered structure in cross section, with
alternating crystal and organic matrix layers forming a thicker com
posite structure. In both cases,
the pores are not aligned, thus causing less diffusion of gases and water vapors, according with
gravity or length of egg retention.












B
-
P35

PRELIMINAR CHARACTERIZATION OF PEA PROTEIN CONCENTRATE (PPC) AND
CA
RBOXIMETHYLCELLULOSE (CMC) MICROCAPSULES USED FOR SLOW RELEASE
OF ASCORBIC ACID (AA)

A.P.T.R. Pierucci
, Instituto de Nutrição, CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, 21941
-
590, Brasil / PPg Ciência de Alimentos
-
IQ
-
UFRJ; L.R. Andrade; M. Farina, Dep
tº de Histologia e
Embriologia, CCS, UFRJ; M.H.M. Rocha
-
Leão, EQ/ PPg Ciência de Alimentos
-
IQ
-
UFRJ.


Microcapsules structure interferes in the kinetics of the release of encapsulated materials. Some
studies have been reported comparing morphology and stabi
lity of different microcapsules. The aim
of this work was to characterize microcapsules of PPC and CMC carriers of AA, by measuring size
distribution (by light scattering) and overall morphology (by scanning electron microscopy).
Samples were obtained from

spray dried solutions of coat (PPC or CMC) and core (AA) in the
proportion of 2:1. Maltodextrin was tested as co
-
adjuvant in this process. Particle sizes ranged from
25.18 to 39.00

m 瑯 C m楣io捡psu汥s, 慮d 14.4 瑯 12.5

m 瑯 C䵃⸠ C m楣o捡psu汥l
pe
s敮瑥t 楲敧u污l sh慰敳ewi瑨 愠ough suf慣攮 䅧g汯me慴楯n of m楣io捡psu汥s w慳aobs敲v敤
mo攠 in瑥ns敬y in samp汥猠 w楴h m慬瑯d數瑲in. C䵃M podu捥d 敧u污l sph敲楣慬i p慲瑩捬敳t w楴h
smoo瑨 suf慣攬 慮d 汥獳 慧g汯m敲慴楯n 瑨an C. 却Sd楥猠on 瑨攠 敬敡s攠 慴
攠 of 䅁 fom 瑨e
m楣io捡psu汥s 慮d th攠捯敬慴楯n w楴i s瑲u捴u慬aan慬ys楳 慲e 楮 捯us攮

䙩Fan捩慬Suppo琺⁃慰敳㬠eN⽐R低堻XIns瑩tu瑯s do 䵩泪M楯⽃乐.










24

B
-
P37

BIOMIMETIC PARTIAL RECONSTRUCTION OF EGGSHELL

M.S. Fernandez
, K. Passalacqua and J
.L. Arias, Faculty of Veterinary Sciences and Center for
Advanced Interdisciplinary Research in Materials, Universidad de Chile, Santiago, Chile


Eggshells are composite ceramics containing minute amounts of organic matrix and calcium
carbonate (calcite) f
iller. The organic matrix mainly consists of type X collagen, a keratan sulfate
-
rich proteoglycan (mammillan), a dermatan sulfate
-
rich proteoglycan (ovoglycan), and some other
proteins, such as osteopontin and ovocleidin 17. These macromolecules are not un
iformly
distributed through out the shell, but are segregated to different regions of the eggshell. Eggshells
are built in a spatio
-
temporal assembly line regulating process. While type X collagen constitutes
the inner non
-
mineralized layer of the shell (s
hell membranes), mammillan has been involved in
nucleation of calcite crystals on the mammillary knobs, and ovoglycan in crystal growth of the
palisade layer. By using eggshell membranes containg mammillae obtained prior to be mineralized
as a substrate fo
r in vitro calcification, incubated at different times in the presence or absence of
carbonic anhydrase or dermatan sulfate at different pH, we tried to rebuild eggshell formation, an
evaluate the effect of these specific additives on the crystalline morph
ology of the deposited
calcite.There is an synergic effect between carbonic anhydrase and dermatan sulfate on the
deposition and modification of calcite crystals, which resembled the normal eggshell fabrication.


B
-
P40

CHARACTERIZATION OF SHORT CHAIN FATT
Y ACIDS MICROCAPSULES PRODUCED
BY SPRAY DRYING

M. I. Teixeira
, Prog. Pós Grad. em Ciência de Alimentos IQ/UFRJ; L. R. Andrade; M. Farina, Lab.
de Biomineralização

=
fCBL= CC匯p 商rg㬠 䘮c b.= m.= Corn敪oI= b䵂oAm䄠 L䅧ro楮dús瑲楡i d攠
A汩men瑯sI= 䅶.= d慳= 䅭楣isI= n


29.501 , 䝵慲慴楢愬 RJ㬠 䴮 䠮 䴮 Roh愠 L旣o, 䑥瑯. de
ngenh慲楡iB楯uím楣愠

=
b儯商rg=
J
=
ON.9NM
J
㤰〠
J
=
f汨愠do=cundI=o楯=d攠g慮敩eoI=Br慳楬.
=
=
䵩jro捡ésu汥猠捯n瑡tning= shor琠捨慩a= f慴ty= 慣楤s= EpCcAF= w敲攠érodu捥d= by= séray= dry楮g= using=
d楦f敲en琠troéort
楯ns=of=慲慢楣igum=and=ma汴ld數瑲楮=as=w慬a=m慴敲楡汳.=mroéor瑩tns=of=R=慮d=NM┠Bf=
慲慢楣igumI=R=and=NM┠of=m慬瑯d數瑲楮=and=瑨攠mix瑵r攠of=R┠of=m慬瑯d數瑲in=慮d=RB=of=慲慢楣=
gum= w敲攠慤d敤= 瑯= samé汥l= of= f敲men瑥t= é敲m敡瑥= 捯nt慩aing= 千cA= and= 污瑥l= dr楥i=
楮= séray=
drying.=qh攠s瑲u捴ur敳eof=m楣io捡ésu汥猠w敲攠stud楥i=by=卣慮ning=b汥捴lon=䵩jros捯éyE卅pF=慮d=
m楣io捡ésu汥ls楺敳iw敲攠m敡sur敤=by=ias敲=䑩ffr慣瑩tn.=卅䴠r敳e汴s=ind楣慴id=瑨慴a瑨攠s瑲u捴cres=of=
m楣io捡ésu汥s= w敲攠慦f散瑥t=by=tyé攠慮d=éroéor瑩tn=of
=
w慬氠m慴敲楡氮= Almos琠慬氠m楣io捡ésu汥猠
捯n瑡楮ing=慲慢楣igum=慳=w慬氠m慴敲楡氠h慤=surf慣攠d敮tsI=bu琠no=捲慣ks=or=éor敳ew敲攠obs敲v敤.=
䵩jro捡ésu汥猠捯n瑡tning=m慬瑯d數瑲楮=w敲攠séh敲楣慬i=h慤=few敲=surf慣攠den瑳=慮d=some=of=瑨em=
h慤= éor敳⸠qh攠污lg敲= mi
捲o捡ésu汥l s楺is= w敲攠obs敲v敤= 楮= 瑨os攠捯n瑡tning= m慬瑯dex瑲楮.= lur=
r敳e汴s=show=th慴=m楣ios瑲u捴ur攠慮d=s楺攠of=m楣io捡ésu汥s=慲攠慦f散瑥t=by=tyée=慮d=éroéor瑩tn=of=
b楯m慴敲楡氠ls敤.
=
=
=
B
J
m4O
=
Aa䡅卉p丠 但l 䡙䑏ou奁mAqfqb= C佁qf乇匠 低l qfqA义啍
J
B䅓䕄= 单p協oAq
b匠
佂qAf久䐠B夠Bf位f䵅qfC=䵅q䡏䐠
=
=
i.=C.=l汩le楲愠噥s捩c
I=A.=C.=䝵慳瑡汤椻irn楶敲s楤慤攠bs瑡du慬am慵汩l瑡t=Cm=PRRI=Ar慲慱u慲愠
J
=
卐I=
N48MN
J
9TMI= Br慺楬㬠A.= 噥s捩cI= 啮iv敲s楤慤攠䙥c敲慬a d攠口p= C慲汯sI= Cm= STSI= 口p= Car汯s=
J
=
卐I=
NPRSM
J
9TMI=Br慺楬i
=
=
Comm敲捩慬cy=
éur攠瑩瑡n極m=E捰
J
q椩I=慮d=som攠of=楴s=慬汯ys=慲攠捯ns楤敲敤=v敲y=iméort慮琠楮=th攠
m敤楣慬i f楥汤=b散慵s攠of=楴s=數捥汬ln琠b楯捯mé慴楢楬楴y=and=m散han楣慬=éroé敲瑩敳.=Co慴楮g=th敳e=
m整慬汩e=surf慣es=wi瑨=捡汣lum=éhoséh慴攠捥ram楣sI=such=as=th攠hydroxy慰慴楴
攠EeAFI=捡n=捯mbin攠
瑨攠數捥汬ln琠m散han楣慬iéroé敲瑩敳=of=瑨攠subs瑲慴攠wi瑨=th攠d敳楲ed=b楯慣瑩t楴y=of=瑨攠捯慴敤=f楬mI=
y楥汤楮g=imé污l瑳= w楴h= mor攠oss敯楮瑥gr慴楯n=and=捯ns敱u敮瑬y=b整瑥e=慣捥é瑡t捥=by=th攠human=
body.= fn= th楳= work= we= have= stud楥i= 瑨e= 慤
h敳楯n= éroé敲瑩敳= of= e䄠捯慴楮gs= ob瑡楮ed= by= th攠
b楯mim整楣im整hodI=wh楣h=simu污瑥l=瑨e=捯nd楴楯ns=of=th攠捯réor慬a敮v楲onmen琬ton=diff敲敮琠tyées=
of=瑩瑡nium
J
b慳敤=subs瑲慴敳Ⱐsuch=as=捰
J
q椠慮d=qi
J
SAl
J
4嘠慬汯yI=w楴h=and=w楴hou琠瑩瑡nium=ox楤e=
楮瑥tf慣攮=t
攠hav攠慬獯=an慬y穥d=瑨攠inf汵en捥=on=慤h敳楯n=of=th敲m慬=瑲敡tments=us敤=瑯=楮捲敡s攠
瑨攠 捲ys瑡t汩l楴y= of= th攠 捯a瑥t= f楬mI= ev慬u慴敤= by= u
J
ray= diffr慣t楯n= and= s捡nning= 敬散瑲on=
m楣ios捯éy= 瑥捨n楱ues.= qh攠 慤h敳楯n= w慳a 慳s敳s敤= by= m楣io

s捲慴捨= 瑥獴= using= tw
o= d楦f敲敮t=
figur敳e of= m敲楴i 瑯= 捨慲慣瑥t楺攠瑨攠qu慬楴y= of= th攠捯慴楮g㨠th攠fu汬l d敬emin慴楯n= 汯慤= 慮d= 瑨e=
fr楣瑩in慬aworkI=d敦楮敤=慳⁴h攠慲敡=und敲=fr楣瑩in=for捥=v敲sus=norm慬afor捥=捵rv攮=====
=

25

B
-
P43

PROPERTIES OF PIASSAVA COMPOSITES WITH POLYMERIC MA
TRIX

Regina C.M.P. Aquino

1
, José R.M. d’Almeida
2

and Sérgio N. Monteiro
3

1

Center of Technological Education, CEFET, Campos dos Goitacazes, RJ;
2

Department of
Materials Science and Metallurgy, Catholic University of Rio de Janeiro, RJ;

3 Laboratory fo
r Advanced Materials, LAMAV, State University of the Northern Rio de Janeiro,
UENF, Avenida Alberto Lamego, 2000, Campos dos Goitacazes, RJ, Brazil, cep 28015620.


In the past years, scientific and technological researchs have concentrated efforts in sear
ching for
materials that could present more diversified and improved properties as compared to those of
conventional materials. Thecurrent tendency is to look for new materials, which are compatible to
the environmentwhithout negative effects. The developm
ent of natural fiber reinforced composites
with polymeric matrix is an example of an action to introduce a special material that is, at least for
the fiber, renewable, low coast, biodegradable and non toxic. In the present paper, therefore, the
physical
-
ch
emistry properties of the piassava (Attalea funifera Mart) fiber were evaluated.
Polyester resin was used as matrix and specimens were made with piassava fiber with volume
fraction varying from 10 to 40%. The mechanical properties of the composites were ev
aluated by
bend tests. The results have shown that this piassava fiber reinforced polymeric composites present
a potential for competitivity with other wood based industrialized products.




B
-
P46

BEHAVIOR OF HUMAN OSTEOBLASTS IN COLLAGEN CONTAINING 3
-
D
GELS

A.B.R.Linhares
, and M.Farina. Laboratório de biomineralização, Instituto de Ciências Biomédicas,
UFRJ, Rio de Janeiro, 21941
-
590, RJ, Brazil.



Osteoblasts are capable to migrate and proliferate in three
-
dimensional collagen matrices.
Mechanical signa
ls from the remodeled matrix feed back to modulate cell phenotype in an iterative
process. Analyzing the morphologies of osteoblasts in 3
-
D cultures may provide insights about how
these cells migrate, proliferate and organize in vivo.

Human osteoblasts wer
e cultured on both rat and bovine type I collagen gels in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% bovine fetal serum (BFS). Briefly, a volume of
N=m氠捯n瑡tning=NMR=捥汬l=in=N.TSx=捯n捥n瑲慴敤=䑍b䴠was=mix敤=w楴h=捯n捥n瑲慴敤=䑍b䴬=
B䙓I=c
o汬慧en=and=M.N丠乡k䠬=楮=慰éroér楡瑥iamountsI=瑯=愠瑯瑡氠vo汵m攠of=NMm氮lqhe=so汵t楯n=
so汩l楦楥i=慴=room=瑥mé敲慴ar攮=䑩ah敳e捯n瑡tn楮g=瑨e=so汩l楦楥i=g敬e=w楴h=th攠emb敤d敤=捥汬l=w敲攠
ov敲污楤=wi瑨=瑨攠cu汴ur攠m敤極m.=Coméos楴敳=捯n瑡tn楮g=捯汬慧敮=and=é
owd敲敤=hydroxy慰慴楴a=
E䡁F=from=bovin攠or楧in=w敲e=慬獯=us敤.=f琠was=obs敲v敤=瑨慴a瑨攠捥汬⽧敬e捯méosi瑥t捨慮g敤=sh慰攠
w楴h=捵汴lr攠瑩m攮=佳l敯b污獴s=楮s楤攠th攠g敬eér敳敮瑥t=瑲楡igu污l=g敯m整ey=or=w敲攠敬eng慴敤I=wh楬i=
楮=th攠g敬eé敲楰h敲y=they=w敲攠d楳
éos敤=楮=é慲慬汥氠r敬慴楶ely=瑯=敡ch=oth敲=慮d=瑡ng敮瑩t汬y=瑯=瑨攠
g敬e 捯n瑯ur.= fn= th攠捯汬慧enL䡁= samé汥l w攠obs敲v敤= 捥l汳= 慤h敲敤= 瑯= bo瑨= 捯汬慧en= 慮d= eA=
é慲瑩捬敳⸠
=
=
=
=
B
J
m4T
=
䄠 協啄夠 低= C佒o体ll丠 ob卉協A乃b= 但= q䡅= qi
J
NM䵯= b塐bof䵅kqAi= 䅌i余=
䅆Abo=䑉䙆bo
b乔=mo佃b卓f乇k䵅q䡏䑓
=
A.=m.=o.=䅬Aes
I=䘮cA.=卡p瑡n愬=i.=A.=A穥v敤oI=匮pA.=Curs楮oI=b.=丮=Cod慲o=i慢or慴ar楯=d攠䵡瑥t楡楳=
攠bns慩asI=䑥a慲瑡men瑯=d攠bngenh慲楡i 䵥揢n楣愬=啎rqA唬=ou愠䑡a楥氠䑡a敬汩Ⱐs⽮=

=
g慲d業=
䵯rumb椬iq慵b慴=卐=Cbm=NO.MSM
J
44M
=
=
qh攠 éuré
os攠 of= 瑨楳= work= is= m楣ios瑲u捴cr慬a ch慲慣瑥t楺慴楯n= 慮d= 捯rros楯n= r敳楳瑡n捥= of= 瑨e=
數é敲imen瑡氠qi
J
NM䵯=Ew琮tF=慬汯y=as
J
捡s琠and=瑲敡瑥t.=qh攠bu瑴tns=of=瑨is=慬汯y=w敲攠ob瑡楮敤=
w楴h=捡s瑩ng=of=捯mm敲捩慬c t楴慮ium=Egr慤攠on攩=and=molybdenum=Eéur攠99I99┩
=
楮=argon=慲c
J
m敬瑩ng=furn慣攮=䅦瑥t=捡s瑩ngI=慬汬ays=w敲攠div楤敤=in=four=groués=from=an慬ys楳㨠慳=捡s琬=so汵瑩tn=
h敡琠 瑲敡tmen琠 慴a NMMM끃= in= 慲gon= 慴moséh敲攬= rem敬瑩ng= in= 捥n瑲楦ug慬a m慣h楮攠 Einv敳emen琠
捡s瑩tgF=慮d=rem敬瑩ng=楮=捥n瑲楦ug慬am慣h楮攠fo汬
ow敤=éor捥污楮=f楲ing=cy捬敳⸠Corros楯n=b敨慶楯ur=
of=瑩瑡nium=慬汯ys=in=an=fluor楤慴敤=éhys楯汯g楣慬=s敲um=EM.NR=䴠乡䍬=⬠M.MP=䴠乡䘠xé䠽S.MzF=
was=stud楥i=慮d=捯mé慲敤=w楴h=qi
J
SAl
J
4嘠a汬ly.=fn=慬氠敬散trod敳esys瑥mI=sim楬慲=éo瑥t瑩tdynam楣=
éo污l楺慴楯n=捵r
ves=w慳aob瑡tn敤.=qh攠慰é慲敮琠br敡kdown=éo瑥t瑩慬t=w敲攠obs敲v敤=慴=縱.O=嘠vs=
千b.=卯汵b楬楺敤=qi
J
NM䵯=慬汯y=exh楢楴敤=愠mor攠汯w=é慳aiv攠捵rr敮琠tens楴y.
=
=

26

B
-
P48

ANALYSIS OF FLEXURAL STRENGHT OF A SYSTEM FIBER/RESIN AFTER STORAGE IN
SALIVA

Fábio Dias Cos
ta
, Universidade Iguaçu (UNIG), Rua Abílio Augusto Távora, 20134, 26255
-
360,
Nova Iguaçu, Rio de Janeiro, RJ, Brazil; Ana Paula Rosifini Alves, Laboratório de Materiais e
Ensaios, Departamento de Engenharia Mecânica, Universidade de Taubaté (Unitau), Rua D
aniel
Danelli, s/n, Jardim Morumbi, Taubaté, São Paulo, SP, Brazil


This present work evaluated, compared and analyzed the influence of storage in synthetic saliva on
flexural strenght of Targis/Vectris resin system. Ten samples were made with fibers env
olved from
the composite resin in a stainless steel die with 20 x 4 x 4 mm dimensions. After the cure the
specimens were storage in synthetic saliva from 24 hours at 37° C ± 2. Flexural testing was carried
out in a universal testing machine at a crosshead

speed of 1mm/min and load cell of 100 kgf.
During testing samples were mantained in saliva. The results were statistically analyzed and the
flexural strength was calculated (158MPa). No significant difference in flexural strenght between
system testing i
n air (P<0.01), made in the previous study, and system storaged and for both the
properties were maintained. However, the results showed less variations when compared with
values obtained in testing realized in air.









B
-
P50

MICROSTRUCTURAL CHARACTER
IZATION OF INTERFACIAL REACTION Ti
-
10Mo
ALLOY WITH INVESTMENT MATERIAL

KALIL, C. A
. ; ALVES, A. P. R.1; BAUER, J. R. O.2; RODRIGUES JR., D.3 Rua Daniel Danelli,
s/n, Jardim Morumbi, Taubaté, São Paulo 1Laboratório de Materiais e Ensaios, Departamento de
En
genharia Mecânica, Universidade de Taubaté, 12060
-

440, Taubaté, São Paulo, Brazil,
2Departamento de Materiais Dentários, Faculdade de Odontologia, USP 3Departamento de
Engenharia de Materiais, FAENQUIL, Lorena, SP


Commercially pure titanium has been use
d in for dental applications because of its excellent
properties. However, titanium has a high melting temperature and reactivity with oxygen and
impurities at elevated temperatures makes it difficult to cast. One method to solve this problem is to
use tit
anium alloys. This study intends to verify the reaction of an experimental titanium alloy (Ti
-
10wt.%Mo) with the investment mold after casting. This alloy was obtained with casting of
commercial titanium and molybdenum on an arc
-
voltaic melting furnace. Tw
elve wax patterns with
diameter of 6 mm and length of 15 mm were divided in two groups. The first was invested with a
silica investment material and the second group was invested with zirconia
-
based investment. After
casting in a special titanium casting m
achine, each group was divided again and analyzed in two
ways: transversal section metal/mold and transversal section metal blasted. The samples were
embedded in epoxy resin, grounded on silicon carbide paper and polished. The reaction in the
metal/mold in
terface and the alloy/investment were analyzed using a optical and scanning
electronic microscopes. These analyses showed that there was interfacial reaction on the silica
-
based investment and an oxide layer became present after blasting. Oxide layers of 5
thickness were formed on the titanium alloy during reaction with investment material. Zirconia
-
based investment lets superficial layer cleans without contamination.








27

B
-
P51

STUDY OF NON
-
TOXIC ALUMINUM AND VANADIUM
-
FREE TITANIUM ALLOYS FOR
BIOM
EDICAL APPLICATIONS

H. M. Silva
, C. Moura Neto, Divisão de Engenharia Mecânica

=
A敲on懺瑩捡t=fns瑩tu瑯=qe据o泳g楣i=
d攠A敲onáu瑩捡t EfqAFI=m=䵡r散h慬ado=Ar=bdu慲do=䝯m敳ⰠRMI=噩污s d慳A握捩慳Ⱐ口o=gosdos=
Caméos=

=
卐I=捥é=NOOO8
J
9M4I=Br慺楬㬠匮p䜮=卣pn敩ee
rI=䑥a慲瑡m敮瑯=d攠bng敮h慲楡id攠䵡瑥t楡楳I=
䙡捵汤慤攠d攠bngenh慲楡i 兵ím楣愠d攠ior敮愠EcAb乑啉iFI= C慩x愠mos瑡氠NNSI= ior敮愠卐I= 捥é=
NOSMM
J
9TM=I=Br慺楬i
=
=
mur攠瑩瑡t極m=and=楴i=慬汯ys=慲攠瑨攠mos琠慴瑲慣瑩v攠m慴敲楡汳=for=b楯m敤楣慬i慰é汩捡瑩lns.=佮攠of=瑨攠
m
os琠iméor瑡n琠b楯m敤楣慬i瑩t慮極m=慬汯ysI=r散敮瑬yI=has=b敥n=瑨攠qi
J
SAl
J
4嘮=䡯wev敲=on=慣捯un琠
of= 瑨e= 瑯x楣ity= of= th攠敬emen瑳= 䅬Aand= 嘬= new= 慬汯ysI= th慴a do= no琠捯n瑡楮= 瑨es攠敬em敮瑳I= 慲攠
慣h楥i楮g=gr敡琠慴瑥n瑩tn.=却ud楥猠show=th慴a

-
瑹p攠瑩瑡n極m a汬lys

捯n瑡楮ing non
-
瑯xi挠敬em敮ts
(䵯, Z, 乢, 愠慮d 䙥F 捡n 數h楢楴ian 敬慳瑩挠modu汵s 汯w敲 th慮 th攠i
-
6䅬
-
4嘠慬汯y. h楳 wok
d敳捲楢敳e瑨攠m楣ios瑲u捴u敳e慮d m散han楣慬ipop敲瑩敳 of th攠


瑹p攠瑩瑡nium 慬汯ys, i
-
8乢
-
13Z
慮d i
-
18乢
-
13Z (┠w琩. i
-
8

-
13Z 慮d i
-
18乢
-
13Z 慬汯ys 慲e podu捥d fom 捯mm敲捩慬y
pu攠m慴敲楡is (椬i乢 慮d Z) by 慲挠me汴lng und敲 慲gon 慴mosph敲攠in 愠w慴敲

捯o汥l=捯ééer=
h敡r瑨=furn慣攮=qh攠ob瑡楮敤=楮gotsI=w楴i=in楴楡氠d楡m整敲=of=N8=mmI=慲攠submi瑥t=瑯=s敱u敮捥s=of=
h
敡琠瑲敡tmen琠ENMMMºC⼶Mmin=and=w慴敲=quench楮gFI=捯汤
J
working=by=swaging=éro捥dur敳eE89B=
é污獴楣i d敦orm慴楯nF=慮d=in=s敱u敮捥=o瑨敲= h敡琠瑲敡tment=E9MMºC⼳Mm楮=and= w慴敲=qu敮捨ingF.=
䵩jros瑲u捴cr慬aan慬yses=of=th攠m慴敲楡汳=楮=as
J
捡s琠and=h敡t
J
瑲敡瑥t=捯n
d楴楯ns=慲攠é敲form敤=us楮g=
汩lh琠m楣ios捯éy=and=s捡nning=敬散瑲on=m楣ios捯éy=E卅pF.=䵥捨慮楣慬i捨慲慣瑥t楺慴楯n=of=瑨es攠
慬汯ys=is=b慳敤=on=瑥ns楬攠and=h慲dn敳s=瑥獴s.=qh攠r敳e汴s=indi捡瑥t瑨慴ath攠rou瑥tof=th敲mom散h慮楣il=
éro捥ss楮g=楳=av慩污a汥l瑯=ob瑡
楮=愠homog敮敯us=m慲瑥ns楴楣i



m楣ios瑲u捴u攠慮d good m散h慮楣il
pop敲瑩敳 fo 瑨攠慬汯ys, wh楣h 捡n b攠us敤 fo b楯m敤楣慬iapp汩捡瑩lns.











B
-
52

I乆N啅NC 䘠 䵉CLL匠 低 䡅 义RIC 佘䑅 R䅃I低匠 WI䠠 IR低
佒䡙剉乓

䘮F匮S䐮 匮S噩汨敮a
, 匮SR
. W. Louo, 䑥慲tm敮琠of hys楣i, Ru愠䵡uêd攠口S 噩捥n瑥, 225 R楯
d攠J慮敩eo, B慺楬i


ophy楮s hav攠b敥n w楤敬y stud楥i 慳as敮s楴楺敲s of 汩ving og慮楳ms, 楮汵ding hum慮s, w楴i
慰p汩捡瑩lns in th攠瑲敡tm敮t of sev敲慬ad楳敡ses. 䵯s琠of th攠pophy
楮s wh楣h h慶攠be敮 瑥t瑥t
bo瑨 楮 vi瑲o 慮d v楶o ex敲琠th敩e pho瑯慣瑩t楴y af瑥t p敦敲en瑩慬tasso捩慴楯n wi瑨 memban敳⸠hus,
b楮d楮g of pophyins and me瑡汬tpophyins 瑯 m楣敬汥s (simp汥lmemb慮攠mod敬猩eh慳a慴瑲慣瑥t
muh in瑥t敳琠du攠瑯 瑨攠poss楢
楬楴y of 慰p汩捡瑩lns fo dug 敮捡psu污瑩ln 楮 many b楯log楣慬i慮d
pho瑯捨em楣i氠po捥ss敳⸠ h攠楤敮瑩f楣慴楯n of m整慬e捯mp汥l敳eof pophy楮s 慳a瑡tg整猠fo n楴物i
ox楤攠 has g敮敲慴敤 mu捨 in瑥t敳琠 楮 瑨e th敩e s瑲u捴u慬a 慮d kin整楣e pop敲瑩敳 慳 poss
楢汥l
ph慲m慣eu瑩捡氠d敬楶敲y sys瑥ms. 乩瑲楣iox楤攠has s楧nif楣慮琠o汥猠楮 mamm慬楡n b楯汯gy 慳a慮
楮瑲慣敬eu污l sign慬ang agent 楮 b汯od p敳eu攠 敧u污瑩ln 慮d in y瑯瑯x楣i immune 敳eons攮
C汥慲ly, und敲s瑡nd楮g th攠int敲慣瑩tn b整w敥n 乏Nand m整慬a瑡t
g整猠is key 瑯 und敲s瑡td楮g 瑨攠in
v楶o m散han楳ms of n楴物i ox楤攮 In 瑨楳 wok th攠 influen捥 of m楣敬汥 楮瑥t慣瑩tns on kin整楣e
pop敲瑩敳 of 瑷o 楲on
-
pophy楮s (䙥F䵐y 慮d 䙥F偐匴) n楴牯sy污瑩ln was 數p汯敤. In瑥t慣瑩tn
w楴h oppos楴敬y 捨慲g敤 m楣敬
汥猠 po瑥捴猠 瑨攠 楲on pophy楮s fom n楴物i ox楤攠 b楮d楮g. W攠
popos攠 愠 supamo汥lu污l 楮t敲慣瑩tn mod敬e 瑯 數p污lns th攠 數p敲im敮瑡氠 敳u汴l, in wh楣h the
m楣敬汥ien捡psu污瑥猠lh攠pophyins.








28

B
-
P53

COMPOSITES HYDROXYAPATITE
-
COLLAGEN: A PRELIMINAR
Y MINERALIZATION
STUDY

LA. Sena
; G.A. Soares, COPPE/UFRJ, P.O. Box 68505, RJ, Brazil; V.C.A Martins; G. Goissis,
DQFM/IQSC, USP, São Carlos, SP, Brazil; R. Borojevic, ICB/UFRJ, 21941
-
590, RJ, Brazil; A.M.
Rossi, CBPF, Rua Dr. Xavier Sigaud, 150, 22290
-
180,

RJ, Brazil.


Natural bone is mainly composed by hydroxyapatite (Ca10(PO4)6(OH)2, HA) and type I collagen
(Col). The mineralization process of this biological composite has been studied for a long time.
Recently, many research have been done concerning the

nucleation and alignment of
hydroxyapatite inside collagen fibrils. In the present work HA/Col composites were produced by
co
-
precipitation method using native collagen and polyanionic collagen gel with HA:Col weight
ratio of 50:50. Polyanionic collagen w
ith approximately 45 carboxyl contents was prepared by
selective hydrolysis of carboxyamide side chain of asparagine and glutamine residues presents in
the collagen backbone. The materials were characterized by using X
-
ray diffraction (DRX),
scanning and t
ransmission electron microscopy (SEM, TEM), fourier transform infrared reflection
spectroscopy (FTIR). The results obtained in this work allow us to conclude that a calcium
deficient
-
apatite is produce using co
-
precipitation route. The HA crystals are need
lelike with
dimensions comparable to bone apatite.

Acknowledgments to CNPq, FUJB, CAPES, Millenium Institute for Tissue Bioengineering
(IMBT)/CNPq.



B
-
P55

MICROSTRUCTURE, AND MECHANICAL PROPERTIES IN TEST OF ISOTHERMAL
COMPRESSION OF THE ALLOY TI
-
35NB
-
5
TA
-
7ZR (TNZT) FOR IMPLANT

Oliveira, V. M.
, Ferreira, I. Authors, UNICAMP

䙅c

䑅䵁I==Ca楸a=mos瑡氠SNOOI=Camé楮慳
J
卐I=
Br慺楬
=

=
t楴i= 瑨攠 éuréos攠 of= study楮g= 瑨攠 influ敮捥= of= 瑨攠 th敲mo
J
m散han楣慬i 瑲敡tments= 楮= th攠
m楣ios瑲uc瑵r攠and= m散han楣慬a éroé敲瑩敳= o
f= 瑨攠慬汯y= qi
J
PR乢
J
Rqa
J
TwrI= wh楣h= ér敳en瑳= as= 慮=
慤v慮瑡g攬=楮=r敬慴楯n=瑯==o瑨er=瑩瑡tium=慬汯ysI=愠汥ls敲=modu汥lof=敬es瑩捩tyI=w楴hou琠捯méromis楮g=
瑨攠 m散han楣慬i éroé敲瑩敳I= 慮d= 瑨攠 f慣琠 th慴a 慬氠 瑨攠 cons瑩tuen琠 敬ements= of= 瑨攠 sam攠 慲攠
b楯捯mé慴楢汥l
=
qh攠work=w楬氠b攠d敶敬eé敤=s瑡t瑩tg=from=慬汯y=qi
J
PR乢
J
Rqa
J
Twr=ér数慲敤=楮=愠
vo汴慩挠慲捨=ovenI=wi瑨=an=慴aoséh敲攠ére
J
éurif楥i=w楴i=慲gonI=us楮g=慳araw=m慴敲楡氠m整慬猠w楴h=
h楧h=éur楴y㬠m慫楮g==瑨e=瑥獴=sh慰敳=in=agr敥men琠wi瑨=瑨攠䅓A䴠norms==for=瑥獴=c
oméress楯n;=
楳o瑨敲m慬a捯mér敳e楯n=of=the=amb楥i琠瑥mé敲慴ar攠samé汥s==慴aNMMMoC㬠survey=of=th攠m散h慮楣il=
éroé敲瑩敳= ob瑡楮敤= by= the= 楳o瑨敲m慬a 捯méress楯n= t敳琠 in= fun捴楯n= of= 瑨e= 瑥mé敲慴ur攻e
捨慲慣瑥t楺慴楯n=慮d=an慬ysis=of=th攠m楣ios瑲u捴cre=by=m敡ns=o
f=oé瑩捡t=慮d=sw敥éing=e汥捴lon楣i
m楣ios捯éy=of=th攠samé汥猠lubm楴瑥i=瑯=瑨攠瑥獴.
=
=
=
B
J
mRT
=
B低l= ob䵏䑅iif乇k 䅎A
iv卅匠 A䙔bo= f乓䕒qfl
丠 但l CAiCf啍= m䡏卐䡁
qb=
CERAMICS IN RABBIT’S
=
qfBfAp
=
B.= 䯶n楧= gr.I=
C.C.= ioé敳
I= 䑥a慲瑭en琠of= 䅮慴amyI= fCBI= 啮iv敲s楴y= of= 卡p= m
慵汯I= 䅶.= iineu=
mr敳瑥eI=O4NRI=MRRM8
J
9MMI=pmI=Br慺楬⸠i.=g.=䙡c楡igrI=Cb䑄䄠䅶.=口p=goI=89I=NOOOMI=匮p.=CaméosI=
卐I=Br慺楬⸠䴮=g.=C慲bon慲椬ig.C.=Br慧愬=丮B.=iim愬=伮=w.=e楧愬=fmb丬=m.=伮=Box=NNM49I=m楮h敩eosI=
MR4OO
J
9TMI=pmI=Br慺楬i
=
=
qh攠hos琠t敳eons攠瑯
=
bon攠subs瑩tu瑥猠tr=d敮瑡氠imé污n瑳=é污l敤=楮=bon攠楮vo汶es=愠numb敲=of=敶en瑳=
瑨慴aw楬氠b攠r敳u汴敤=楮=th攠楤e慬ar敳瑯r慴楯n=of=瑨攠bon攠s瑲u捴cr攮=䙯r=瑨楳=瑯=o捣urI=g慰s=shou汤=be=
f楬汥i=wi瑨=newly=form敤=bone=慮d=th攠bon攠damag攠b攠r数慩r敤.=䑵r楮g=th
攠h敡汩lg=é敲楯dI=慤v敲s攠
捯nd楴楯ns=such=慳aérema瑵re=汯慤楮g=or=m楣io=mob楬楴y=or=敶敮=愠chron楣i楮f污mm慴ary=éro捥ss=
捯u汤=汥慤=th攠form慴楯n=of=fibro瑩挠瑩tsu敳=r慴a敲=than=bone.=qh攠慩m=of=瑨楳=study=w慳=to=慮慬y穥=
瑨攠 bon攠 remod敬楮g= af瑥t= th攠 ins敲t
楯n= of= d楦f敲敮琠 捡l捩cm= éhoséh慴攠 捥ram楣i= EC慈a伴I=
Ca(HPO4)H2O, Ca2P2O7, Ca3(HPO4)2, Ca9(PO4)2(OH)2, Ca10(HPO4)6(OH)2 ) in rabbit’s
瑩t楡献i䙯r=瑨e=敶a汵慴楯n=of=th攠bon攠remod敬楮g=dur楮g=th攠8
J
w敥k=h敡汩ng=瑩m攬=éolyfluoro捨rom攠
s敱u敮瑩慬t 污l敬楮g= was
=
捡rr楥i= ou琮t qh攠A乏kA= v敲if楥d= 瑨慴a C愱ME䡐伴FSE佈lO= ér敳敮瑥t=
h楧h敲=d数os楴楯n=of=瑨攠污l敬s=慮d=C愹Em伴FOE佈lO=汯wer=d数os楴楯n.=f琠w慳a捯n捬uded=瑨慴a瑨e=
Ca/P ratio modified the bone deposition results in rabbit’s tibias.
=

29

B
-
P58

DEVELOPMENT AND CHAR
A
CTERIZATION OF CALCI
UM PHOSPHATE CERAMIC
S AS
BONE SUBSTITUTE

B. König Jr.,
C.C. Lopes
, Department of Anatomy, ICB, University of Sao Paulo, Av. Lineu
Prestes, 2415, 05508
-
900, SP, Brazil. L. J. Faria Jr, CEDDA Av. São João, 89, 12220, S.J. Campos,
SP, Braz
il. M. J. Carbonari, J.C. Braga, N.B. Lima, O. Z. Higa, IPEN, P. O. Box 11049, Pinheiros,
05422
-
970, SP, Brazil.


Calcium phosphate ceramics (CaHPO4, Ca(HPO4)H2O, Ca2P2O7, Ca3(HPO4)2,
Ca9(PO4)2(OH)2, Ca10(HPO4)6(OH)2 ) have been widely used as bone substit
ute due to its
similarity to mineralized bone. Synthetic Calcium phosphate ceramics (CPCs) exhibits strong
affinity to host hard tissues. Hydroxyapatite has become popular as a coating material for dental
and orthopedic implants due to the following advant
ages: faster adaptation of bone, absence of
fibrous tissues, better adhesion, reduced healing time and inhibition of ion release. Other calcium
phosphate coatings appear initially to provide this benefits, although, it’s fairly rapid resorption
r敳e汴s=楮=
d散r敡s敤=慴瑡ahmen琠瑯=瑨攠bon攠瑩tsues.=qh攠慩a=of=th楳=s瑵dy=was=th攠d敶敬oémen琠慮d=
慮慬ys楳=of=d楦f敲敮t=捡汣lum=éhoséh慴攠捥ram楣i=慳abone=subs瑩tu瑥t=qh攠CmCs=w敲攠捨ar慣瑥t楺敤=
by=u
J
oay=d楦fr慣瑩tn=慮d=瑥獴s=of=捹瑯瑯x楣楴y=w敲攠捡rr楥i=ou琠ér楯r=t
o installation in rabbit’s tibias.
佶敲h敡d=th攠CmCs=ér敳敮瑥t=no=瑯x楣ieff散ts=and=楴s=ér敳en捥=s瑩mu污瑥l=瑨e=bon攠gro睴w=in=th攠
medullar region of the rabbit’s tibias as well as the cortical bone.
=
=

B
-
P60

EVALUATION IN VITRO AND IN VIVO OF BIOMIMETIC
HYDROXYAPATITE COATED
ON TITANIUM DENTAL IMPLANTS

E.C. da Silva Rigo DEMa, UFSCar, Rod. Washington Luiz Km 235 C.P. 676 São Carlos
-

SP


13565905,
M.J.Carbonari
, IPEN, P. O. Box 11049, Pinheiros, 05422
-
970, SP, B.König Jr.,
Department of Anatomy, ICB, Univ
ersity of Sao Paulo, Av. Lineu Prestes, 2415, 05508
-
900, SP


Among several materials used as dental implants, metals present relatively high tensile strengths.
Although metals are biotolerable, they do not adhere to bone. On the other hand, bioactive cera
mics
are known to chemically bind to bone tissues, but they are not enough mechanically resistant to
tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive
ceramics. The aim of this work was to study the variables of
the biomimetic process, replacing G
glasses used during the nucleation stages by a solution of sodium silicate (SS). Titanium implants
were immersed in 12.5 cm3 of SBF and 12.5 cm3 of SS. All implants were left inside an incubator
at 37 °C for 7 days, foll
owed by immersion in 1.5 SBF and taken back to the incubator for
additional 6 days at 37°C. The coatings were analyzed by FTIR, and SEM. To check the
osteointegration, implants were inserted in rabbit’s tibia. The results showed that the SS solution
g楶e=c
ond楴楯ns=for=瑨e=forma瑩tn=of=慰慴楴攠nu捬c楳=as=愠捯ns敱uen捥=of=th攠pi
J
佈lbonds=慮d=w攠
捡n=捯n捬ud攠瑨慴ath攠捯慴楮g=éro捥ss=s敥ms=瑯=b攠敦f散瑩v攠in=楮du捩cg=bon攠form慴楯n.
=

B
-
P62

INVESTIGATION OF THE ELASTICAL PROPERTIES OF VASCULAR PROSTHESIS MADE
OF LATEX

W.F.P.Neves
-
Junior and
M. Mulato
, Departamento de Física e Matemática, Faculdade de Filosofia
Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão
Preto, SP, 14020
-
040, Brazil.



The use of biomaterials
involves candidates for applications such as band
-
aids, prosthesis, and
sensors. Preferentially, these materials must be easy to handle, process, mold and use. In addition to
that, the success of any new candidate is mainly dictated by the capability to av
oid any rejection of
the human body. In our work we are mainly interested in the use of natural Latex from the Hevea
brasiliensis for medical applications. As already demonstrated in the recent past, these material
complies with all the above requirements.

We have made several impermeable vascular prosthesis
using the dip
-
coating technique. As starting material we used a mixture of latex extracted from
several clones. The mixture was centrifuged and stored in ammoniac solution, with the addition of
4% sulf
ur and 2% polivinil
-
metil ether solution. The elastic properties of the prosthesis were
investigated using mainly the tension
-
deformation experiments. Tests were made using an
expansion/contraction rate of 10mm/min, and a distended dimension of 1,5cm. The
influence of
important fabrication parameters were studied such as: dip
-
coating velocity, final prosthesis
thickness, initial latex viscosity, etc. Single and cycled tension
-
deformation experiments were
performed with closed and open samples considering lo
ngitudinal and transversal directions.


30

B
-
P63

NATURAL LATEX AS A B
IOPOLYMER: A QUANTIT
ATIVE STUDY OF THE
ANGIOGENESIS STIMULA
TED BY NATURAL LATEX

IN THE QUAIL
CHORIOALLANTOIC MEMB
RANE

M. C. O. Alves
*, C. F. O. Graeff, DFM
-
FFCLRP/USP, Avenida Bandeirantes,
3900 14030
-
901
Ribeirão Preto, Brazil; * UNIP, Rib. Preto; J. C. Netto, FMRP/USP, Avenida Bandeirantes, 3900
Rib Preto, Brazil; M. S. Bernardes, DPV
-
ESALQ/USP, Av. Pádua Dias 11, Caixa Postal 9,
CEP13418
-
900 Piracicaba, Brazil.


Historically, the natural
latex has been widely used in the pneumatic industry to produce rubber
artifacts, tires for example. However, in the healthcare area a novel utilization of this material
promises to cause revolution in many kinds of medical treatments, like cutaneous ulcer

in diabetic
or common patients and esophageal stenosis. This is because the natural latex has the property of
the angiogenesis stimulation. Angiogenesis is the blood vessels arising and growth, from existing
vessels. Stimulating the angiogenesis, the natu
ral latex participates actively of the healing process,
rendering possible the neo
-
formation of damaged tissues. In this work, the chorioallantoic chick
embryos membrane test was evaluated as an instrument to quantify the angiogenesis activity
stimulated b
y the natural latex extracted from the rubber tree Hevea brasiliensis. Different clones of
the rubber tree, GT1 and RRIM600, were evaluated to verify variations among their properties of
stimulating the angiogenesis activity. Software was especially develo
ped to analyze the images of
the blood vessels taken from the regions of the chorioallantoic membrane where the natural latex
was in touch. The statistical results showed that the natural latex really stimulates the angiogenesis
activity and it was also po
ssible to see that the GT1 can stimulate angiogenesis activity more than
the RRIM600. This study is highly justified because it is possible to preview that this material can
improve the life quality of a great amount of people expending very few money once

the natural
latex is very cheap. This kind of utilization can also open new markets for the Brazilian natural
latex and improve significantly the product importance in the international scene.










B
-
P64

IN VITRO COMPARATIVE STUDY OF THE MECHANICAL B
EHAVIOR OF A COMPOSITE
MATRIX REINFORCED BY TWO TYPES OF FIBERS (POLYETHYLENE AND GLASS)

S.M.M. SPYRIDES
, FO/UFRJ, Departamento de Prótese e Materiais Dentários, caixa postal
11667, Rio de Janeiro, RJ, CEP: 22022
-
970; Brazil; F.L. BASTIAN, COPPE/UFRJ, Prog
rama de
Engenharia Metalúrgica e de Materiais, caixa postal 68505, Rio de Janeiro, RJ, CEP: 21941
-
972l,
Brazil


Fiber
-
reinforced composites have been used to replace the metal framework in fixed parcial
dentures. This study evaluate and compare the influen
ce of two fiber reinforcements: polyethylene
(Connect) and glass (GlasSpan) on the mechanical properties of a commercial (Artglass)
particulated composite. Flexural, compression and fracture toughness testing were conducted. The
flexure tests were made by
three
-
point bending, with six samples of each material with a fiber layer
next to base. The compression tests were made in a universal testing machine with four samples of
each material with a fiber layer next to base. Fracture toughness testing was made b
y three
-
point
bending, with six samples of each material with a fiber layer 4mm upward away from the base and
a single notch cut transversal to fibers, without touching them. After statistical analysis, it was
concluded that the flexural strength is equal
for bars reinforced by polyethylene or glass fibers. The
compressive strength is higher in the composite reinforced by glass fibers. The flexural elastic
modulus is equal in both materials whereas the flexural deflection and the fracture toughness is
great
er in the composite reinforced by polyethylene fibers.







31

B
-
P66

RADIOLOGICAL EXPERIMENTAL RESPONSE AND COMPUTATIONAL DOSIMETRIC
EVALUATION OF HYDROXYAPATITE MACROAGGREGATES IMPLANTS

B.M. Mendes
and T.P.R. Campos, Curso de Pós Graduação em Ciênc
ias e Técnicas Nucleares
-

CCTN/UFMG, Av. Antônio Carlos, 6627, CEP: 31270901, Belo Horizonte, MG, Brasil,
bruno@nuclear.ufmg.br,
campos@nuclear.ufmg.br


Hydroxyapatite macroaggregates with incorporated radionuc
lides, namely M
-
HAP, present a great
potential for brachytherapy implants. HAP is biocompatible, presenting neither local nor systemic
toxicity and can have incorporated radionuclides. At the present work, experimental models were
setup to study the spatia
l distribution, radiological and ultrasound response of M
-
HAP (“M”=
m整慬汩e=r慤楯nu捬楤敳=su捨=as㨠89卲p=9M夬=NSR䑹I=NSS䡯=or=N88o攩=m慣ro慧gr敧慴敳=in瑲odu捥d=
by=high=v楳捯s楴y=C䵃j g敬ethrough=in瑥ts瑩瑩慬aimé污l瑳=into=k楤neyI=lungI=汩v敲I=br慩a=慮d=mus
c汥=
samé汥献lA=䵯n瑥tC慲汯=捯méu瑡瑩tn慬adosim整e楣i敶慬u慴aon=of=j
J
eAms=in瑥ts瑩瑩慬timé污l瑳=w慳=
慬獯= é敲form敤= 瑡k敮= 捯nv敮t楯n慬a NORf= s敥ds= 慳a 捯mé慲楳on.= qh攠 r慤楯汯g楣慬i imag敳e
d敭ons瑲慴敤= h楧h= 散ogen楣楴y= and= 敡sy= u汴牡sound= 楤敮瑩f楣慴楯n= 楮= a汬l e
v慬u慴ad= 瑩tsu敳=
數é敲imen瑡氠 mod敬献e qh攠 楮捯réor慴楯n= of= h楧h= 慴am楣i numb敲= EwF= r慤楯nu捬楤es= 瑯= 瑨攠
hydroxy慰慴楴攠 s瑲u捴ur攠 may= imérov攠 th攠 捯méos楴楯n= x
J
ray= 捯n瑲慳琮a qhe= j
J
eAm=
m慣ro慧gr敧慴as= ér敳敮瑥t= dos攠d楳瑲楢u瑩tn= 慤敱u慴敤= for= 瑵mor= 捯n瑲o氮l N
88oe
J
eAm= imé污n瑳=
ér敳敮琠t慤楯dos業e瑲楣i慤v慮瑡t敳ewhen=捯mé慲敤=w楴h=NORf=s敥ds.
=
=
=
B
J
mST
=
b䙆bCq= 但l 䅌h䅌f
J
qobAqb䐠 qfqA义啍= f乄啃b䐠 低l mobCfmfqAqf低l 但l q䡅=
䡉䑒佘lAmAqfqb
=
C.䴮Ass楳
I=i.C.佬lv敩e愠噥s捩kI=䴮嘮i楡i䙯okI=A.C.du慳瑡ad椻i啮iv敲s楤慤攠bs瑡tu慬
=
m慵汩l瑡t=Cm=
PRRI=Ar慲慱u慲愠

=
pmI=N48MN
J
9TMI=Br慺楬i
=
=
qh攠éuréos攠of=瑨楳=study=was=瑯=敶慬a慴攠瑨攠growth=慢楬楴y=of=慰慴楴敳a慦瑥t=慬a慬椠瑲敡瑥t=瑩瑡tium.=
卩mé汥l乡k䠠érov楤敤=愠捰
J
q椠wi瑨=愠b楯慣瑩v攠gr慤敤=surf慣攠s瑲u瑵r攠of=an=amoréhous=sod極m=
瑩t
慮慴攬=wh敲e=瑨e=sodium=瑩t慮慴攠on=th攠瑯é=surf慣攠gr慤u慬ay=ch慮g敤=in瑯=瑨e=捰
J
q椠subs瑲慴攠
瑲ough琠 瑩瑡nium= ox楤攠 séont慮敯usly= form敤= Eq楏iF.= qh攠 sod極m= 瑩瑡ta瑥t 瑲慮sformed= 楮瑯= a=
hydr慴敤=瑩瑡t楡iv楡i乡k=楯n=r敬敡s攠瑯=楮du捥=愠bon敬楫攠慰慴楴攠form
慴楯n=on=瑨攠捰
J
q椠subs瑲慴攠楮=
愠simu污瑥l=body=f汵楤=E卂䘩cw楴h=楯n=捯n捥n瑲慴楯ns=n敡rly=敱u慬a瑯=瑨os攠of=human=b汯od=é污獭a=
or=NIR=卂䘠汥l=瑯=瑨攠form慴ion=of=愠d敮s攠慮d=un楦orm=bon敬ek攠慰慴楴攠污y敲=on=瑨攠surf慣攮=qhe=
surf慣敳e of=chem楣慬i 瑲敡tmen
琠wi瑨=d楦f敲敮t=乡ke=捯nc敮瑲慴楯ns=E=R.MI=M.R=慮d=M.MR=䴩=慮d=
慰慴楴攠growth=w敲e=捨慲慣瑥ti穥d=by=s捡nning=敬散瑲on=m楣ios捯éy=E卅pF=w楴h=捯ué汥l=b䑓a=and=
堠ray=d楦fr慣瑩tn.=卯d極m
J
imé污l瑥t=瑩瑡n極m=surf慣攠sho睮=瑯=in捯réor慴攠sod極m
J
瑩瑡na瑥ton=捰
J

=
subs瑲慴攠慮d=érodu捥d=愠rough=surf慣攮=qh攠瑩瑡t楡ih楤rog敬e慣qu楲敤=瑨攠捡é慢楬楴y=of=楮du捩ng=
愠慰慴楴敳⁣a慴楮gs=from=卂䘮
=
=
=
B
J
mS8
=
C奔佔佘lC=b噁srAqf低l但⁓lifC低l义qof䑅=B䅓䕄=CboA䵉Cp
=
C.C.du敤敳e e= 卩pva
I= C敮瑲o= q散no泳g楣i= d愠䵡r楮ha= em= 口p= m慵汯I
=
Cq䵓jI= Av.= mrof.= i楮eu=
mr敳瑥eI=O4S8I=口p=m慵汯I=Bras楬㬠伮w.=䡩g愠攠g.C.=Br敳e楡i椬ifns瑩tu瑯=d攠m敳eu楳慳abn敲g楣és=e=
乵捬敡r敳Ⱐfmb丯k久丬=䅶.=mrof.=i楮eu=mr敳瑥eI=OO4OI=口p=m慵汯I=Br慳楬.
=
=
卩p楣in= n楴物i攠b慳敤= 捥rami挠楳= 愠good= 捡nd楤慴攠for= or瑨oé
敤楣i imé污lts= du攠瑯= 楴s= 捨em楣慬=
s瑡t楬楴y= asso捩慴cd= 瑯= su楴ib汥l fr慣瑵r攠 瑯ughn敳s= 慮d= éroé楴楯us= 瑲楢o汯g楣i 捨慲a捴敲楳瑩捳.=
qh敲敦or攬= 楮= 瑨is= workI= dens攠 s楬楣in= n楴物i攠 捯méonen瑳= ob瑡tn敤= by= norm慬a s楮t敲楮g= 慲攠
楮ves瑩g慴敤=as=b楯ma瑥t楡氮=fn楴楡i
lyI=two=diff敲敮t=捯méos楴楯ns=of=s楬楣in=n楴物i攠w敲攠捯ns楤敲敤I=
using=y瑴敲b極mI=y瑴物um=慮d=慬am楮um=ox楤敳eas=sin瑥ting=慩as.=qh攠ma瑥t楡汳=w敲e=sint敲敤=楮=愠
捡rbon=r敳楳瑡n捥=furn慣攠und敲=norm慬=ni瑲og敮=慴moséh敲攠慮d=w敲e=慮慬y穥d=by=m敡ns=of=u
J
r
ay=
d楦fr慣瑩tn= and= s捡nn楮g= 敬散瑲on楣i m楣ios捯éy= in= ord敲= 瑯= 捨慲慣瑥t楺攠 th攠 m楣ios瑲u捴cr攮=
fnd敮瑡瑩tn=m整eod=was=慰é汩敤=楮=ord敲=瑯=ob瑡楮=h慲dn敳s=慮d=fr慣瑵r攠瑯ughn敳s=m敡suremen瑳I=
慮d=楮=v楴牯=cy瑯瑯x楣ity=瑥獴=was=é敲form敤=for=愠ér敬emin慲y=bi
o汯g楣i氠敶a汵慴楯n.=qh攠r敳u汴l=
h慶e=shown=a=m楣ios瑲u捴ur攠捯méos敤=by=gr慩ns=of=b整e
J
si汩捯n=n楴物i攠d楳瑲楢u瑥t=in=a=s散ond慲y=
éh慳攠慮d=fr慣瑵r攠瑯ughn敳s=v慬aes=h楧h敲=th慮=4=䵐愮mN⼲.=卩p捥=愠non瑯x楣ibeh慶楯r=h慳ab敥n=
obs敲v敤=dur楮g=the=cy瑯瑯xi捩
ty=瑥獴s=w楴h=瑨e=samé汥猬=th楳=f楮ding=sugges瑳=th慴as楬楣on=n楴物ie=
b慳敤=捥r慭楣i捡n=b攠us敤=慳a愠m慴敲楡氠for=捬cn楣慬i慰é汩捡瑩ons.=
=

32

B
-
P69

FORMATION OF CALCIUM PHOSPHATE LAYER ON CERAMICS WITH DIFFERENT
RESORBABILITY

C. Ribeiro
, P. Sepulveda, J. C.
Bressiani, A. H. A. Bressiani. IPEN
-

Instituto de Pesquisas
Energéticas e Nucleares, Centro de Ciências e Tecnologia de Materiais. Av. Prof. Lineu Prestes,
2242, Cidade Universitária. CEP 05508
-
000, São Paulo, SP, Brasil; E.C.S. Rigo. UFSCar
-

Universidad
e Federal de São Carlos, DEMa, BioLab. Rod.Washington Luis, Km 235 CP 676, CEP
13565
-
905, São Carlos, SP, Brasil.


Ceramic samples of different resorbability were prepared using hydroxyapatite (HAp) and
tricalcium phosphate (TCP) in different ratios. The p
owders were mixed, uniaxially and
isostatically pressed. Different parameters of sintering in normal atmosphere furnace were defined
after dilatometric studies. The densification was increased with the decrease of TCP content. The
sintered bodies were char
acterized by X
-
ray diffraction (XRD) and scanning electron microscopy
(SEM). The dissolution kinetics and in vitro reactivity of ceramics were investigated using
simulated body fluid (SBF) at 37oC for 3 weeks. The surfaces of the ceramics were investigated

by
FTIR and SEM in order to observe the formation of calcium phosphate layer, which is an indicative
of the bioactivity degree. The results of dissolution in SBF demonstrated that a layer is successfully
formed with different kinetics on the surface of th
e samples within the immersion period. The
reactivity was more evident for biphasic ceramics, even the TCP samples present faster dissolution.













B
-
P70

PROCESSING OF POROUS ALUMINA BASED BIOMATERIAL

J. Marchi

,C. Ribeiro, P. Sepúlveda, J. C. Br
essiani, A. H. Bressiani

=
fmb丠fns瑩tu瑯=d攠m敳eu楳慳=
bn敲g楣és=攠乵捬敡r敳Ⱐ䅶=mrof.=i楮敵=mr敳瑥eI=OO4O=C楤慤攠啮楶敲s楴楡i=Cbm=MRRM8
J
MMMI=口p=
m慵汯I=卐I=Br慳楬.
=
=
A汴hough= b楯楮敲琠 ch慲慣瑥t= of= 慬amin愠 b慳敤= 捥ram楣猬= 瑨敳e= 慲攠 捯ns楤敲敤= 慳a 愠 éo瑥t
捩慬c
m慴敲楡汳=in=m敤楣慬if楥汤I=due=瑯=慢s敮捥=of=捩瑯瑯x楣楴y=and=b楯捯mé慴楢汥=n慴ur攮=morous=慬amin愠
捥ram楣猠慬汯ws=oss敯in瑥tr慴楯n=慮d=b楯汯g楣慬i f楸a瑩tn.=qh敳攠ch慲慣瑥t楳瑩ts=慲攠suéél楥i=by=愠
h楧h= éorous= m楣ios瑲u捴ur攬= wh楣h= h敬es= 瑨攠bon攠m整e
bo汩lm= éro捥ss.= = fn= this= é慰敲I= s敶敲慬=
v慲楡i汥猠w敲攠敶慬u慴敤= in= ord敲= 瑯= érodu捥= éorous= 慬amin愠b慳敤= 捥ram楣猠by= g敬
J
捡s瑩tg= of=
foamsI= such= 慳a sor琠of= monom敲㨠O
J
eydroxy整hylme瑨慣ry污瑥l E䡅jAF= or= 慭monium= 慣ry污瑥l
E䅁F㬠 ammonium= é敲sulf慴攠 捯n捥n瑲慴
楯n㬠 捲oss汩lker= m整hy汥n敢ys慣ry污m楤攠 E䵂A䴩=
concentration; N, N, N’ tetramethyl ethylene diamine (TEMED) concentration. Alumina powder
was=ch慲慣瑥t楺敤=by=堠ray=diffr慣瑩tnI=s捡nning=敬散瑲on=m楣ios捯éyI=é慲瑩捬t=s楺i=d楳瑲楢u瑩tn=慮d=
sé散楦楣isurf慣攠
慲敡=慮慬ysis.=䝲敥n=bod楥猠w敲攠瑨敲m慬a瑲e慴敤=慴aPMMºCI=楮=ord敲=瑯=敬業楮慴攠瑨e=
org慮楣im慴敲楡氮=卩n瑥t楮g=睡猠r敡汩穥l=in=a=i楮db敲g=furn慣攠慴aNSMMºC.=morous=捥rami挠samé汥s=
w敲攠ch慲慣瑥t楺敤=by=卅pI=塒䐠and=eg=éorosim整ey.=qh攠éro捥ssing=v慲楡i汥
=
慰é汩敤=楮=this=
work=慦f散t=瑨e=r敡捴楯n=kine捴楣献cqh攠b敳琠捯nd楴楯ns=捡n=éromo瑥t a=fas琠indu捥=瑩m攠for=foams=
g敬ef楣慴楯n.=C敲am楣im楣ios瑲u捴cr攠is=捬敡ry=r敬慴ed=瑯=瑨攠r敡捴楯n=k楮散t楣i=r敶敡汬lng=愠su楴慢汥l
éorous=s楺攬=慩m敤=瑨is=ma瑥ti慬猠慳⁡=
b楯m敤楣慬iimé污n琮t
=
=
=
=
=
=
=
=
=

33

B
-
P73

NEW APPROACH OF MUCOADHESIVE POLYMER OF CHLORHEXIDINE OF
HYDROXYETHYLCELLULOSE AND CARBOXYPOLYMETHYLENE

PEDROSO, Maria Auxiliadora Guerra
; CORTES, Maria Esperanza Segura; SANTOS, Wagner
Rodrigues; SINISTERRA
, Rubén Dario. Laboratório de Microbiologia Faculdade de Odontologia
UFMG.UFMG. Antônio Carlos Avenie, 6627
-

Pampulha 31270
-
000

=
B敬e= 䡯r楺in瑥t


J
=
Br慺楬i
=
=
qh攠mos琠捯mmun攠mu捯慤h敳楶e=éolym敲s=us敤=瑯=慰ély=捨汯rhex楤楮e=慲攠thos攠wi瑨ou琠ch慲ges=
b散a
us攠th攠d楣慴h楯n楣= 捨汯rh數楤in攮= Al瑨oughI= th楳= 捨em楣慬i 楮捯méa瑩t楬楴y
=
r敳u汴s= 楮= a= 汯w=
adhesiveness, readiness, adsorption and shortest effect. The use β
J
Cy捬cd數瑲楮= EBCaF= forming=
楮捬us楯n=捯méound=w楴h=Ce堠h慳ab敥n=show敤=imérov攠瑨攠solub楬楴y=and=s瑡t楬楴y=of=瑨攠drug.=
qh攠obj散瑩t攠of=瑨is=study=was=瑯=ér数慲攠C䡘eg敬
s=N┬BM.R┠Bnd=M.OR┠Bnd=捯mé慲攠瑯=楮捬us楯n=
捯méound=g敬s=楮=two=v敨楣汥s㨠P┠eydroxye瑨y汣敬lu汯s攠E䡅CF=慮d=N┠C慲boxyéolym整hy汥n攠
ECm䴩=瑯=d整敲m楮e=th攠an瑩m楣iob楡氠慣瑩t楴y=
in vitro
against
Streptococcus mutans
. The gels using
HEC or CPM were: 1.
CHX
-
Acetate; 2. CHX
-
Chlorhidrate; 3. CHX
-
Digluconate; 4. BCD
-
Acetate;
5. BCD
-
Chlorhidrate; 6. BCD
-
Digluconate; 7. gel without drugs (control) and the antimicrobial
activity was tested by agar diffusion. Results showed that in the HEC 1% group S. mutans was

more susceptible following decreased form: 4>3>5 and CPM group 2=4>1>3. Gels concentrations
0.5% and 0.25% presents more inhibition the 3>4>5 (0.5%) and 5=4>3 (0.25%). No significant
differences were found between the analyzed groups at all concentrations
(p>0.05) as Kruskal
-
Wallis test. Contrarily, was verified a difference statistically significant among gels HEC and CPM
(p<0,01). In conclusion was possible to prepare a the CHX and inclusion compound gels in anionic
polymer with antimicrobial activity

in
vitro

at low drug concentrations.












B
-
P74

COMPARATIVE STUDIES BETWEEN DLC AND DIAMOND IN BIOCOMPATIBLE TESTS

Santos L.V.
1,2
,

A. F. Azevedo
1

,V. J. Trava
-
Airoldi
1
, N. G. Ferreira
3
, F. Pascoalin
4
, J.Taliari
4
, S.
Durrant
4
;
1
Instituo Nacional de P
esquisas Espaciais

=
f乐b⽍䍔㬠
2

Instituto Tecnológico de
Aeronáutica

=
fqA⽃qA㬠
3

Instituto Tecnológico de Aeronática

=
A䵒⽃qA㬠
4

Universidade do
Vale do Paraíba

=
啎r噁m⽉ma
=
=
䅭oréhous=hydrogen慴敤=d楡mond
J
汩k攠捡rbon=EaiCF=and=d楡mond=f楬ms=慲攠捨慲慣t
敲楺敤=by=high=
w敡r=r敳楳瑡n捥I=汯w=fr楣瑩in=co敦f楣楥nts=慮d=捨em楣慬i楮敲tn敳s=慮d=瑨us=high
J
捯rros楯n=r敳楳瑡n捥.=
qh攠f楬ms=捡n=b攠d数os楴敤=as=v敲y=smoo瑨=污y敲s=of=汯w=roughness.=qh敳攠éroé敲瑩敳=m慫攠the=
f楬ms=good=捡nd楤慴敳aas=b楯捯mé慴楢汥l捯慴ang
s=for=b楯med楣慬id敶楣敳iand=瑯o汳.=fn=瑨is=work=the=
䑌C=慮d=s楬楣in=in瑥t污y敲=films=w敲攠ér数慲敤=by=o䘠m慧n整eon=séu瑴敲ing=慮d=d楡mond=f楬ms=
w敲攠ér数慲敤=楮=愠surf慴aon=sys瑥m.=Bo瑨=f楬ms=w敲攠grown=on=瑩瑡nium=慬汯y=Eq椶AN4嘩.=qhe=
s楬楣in=in瑥t污y敲=
捨慲慣瑥tis瑩捳c慮d=th攠h慲dn敳e=b整w敥n=楴=慮d=瑨攠䑌C=f楬ms=hav攠b敥n=慮慬y穥d=
by=oaman=sé散瑲os捯éy=慮d=m楣io=楮d敮t楯n=r敳e散瑩tely.=䑌C=慮d=d楡mond=f楬ms=w敲e=慮慬y穥d=
by=sé散瑲os捯éy=瑯=捯mé慲攠f楬m=qu慬楴y㬠A䙍c瑯=obs敲v攠f楬m=morého汯gy=and=roughne
ss.=f琠was=
us敤= 瑯= obs敲v攠th攠 morého汯gy= in= fun捴楯n= of= surf慣攠 d敧r慤慴楯n= by= env楲onmen瑡氠慧en瑳.=
Con瑡捴t ang汥lm敡surem敮瑳=w敲攠捯rr敬慴ed=w楴h=surf慣攠w整瑡e楬楴y=慮d=hen捥=b楯捯mé慴楢楬楴yI=
b敩eg=sim楬慲=瑯=捨os攠of=o瑨er=捡rbon=s瑲u捴cr敳eus敤=慳a
bio汯g楣慬isuéé污n瑳.=qh攠r敳e汴s=of=瑥獴s=

J
vi瑲o=慮d=é污瑥汥琠慤h敳楯n=慲攠慬獯=ér敳敮瑥t=慮d=d楳捵ss敤

=





34

B
-
P76

PRODUCTION OF NEW TITANIUM ALLOY FOR ORTHOPEDIC IMPLANTS

Taddei, E.B
; Instituto Tecnológico de Aeronáutica (ITA), Centro Técnico Aeroesp
acial, São José
dos Campos
-
SP, 12228
-
904, Brazil; Henriques, V.A.R; Cairo, C.A.A; Silva, C.R.M, AMR
-

Divisão de Materiais
-

Instituto de Aeronáutica e Espaço (IAE),Centro Técnico Aeroespacial, São
José dos Campos
-
SP, 12228
-
904, Brazil.


The beta titaniu
m alloys is one of the most promising groups of the titanium alloys. This fact is due
to the good precessability, properties and potential applications; moreover, these alloys present the
highest level of mechanical, fatigue and aggressive environment stre
ngth. The beta titanium alloys
presents the lowest elastic modulus, an interesting property for orthopedic implants. An


慬汯y
散敮瑬y dev敬ep敤 fo 瑨is 慰p汩捡瑩ln 楳 i
-
35乢
-
7Z
-
5愮 In 瑨楳 wok, th攠慬汯y w慳⁰odu捥d by
powd敲 me瑡汬ugy, un楱u攠慶
慩污a汥l慬瑥an慴楶攠fo ob瑡楮楮g p慲瑳 w楴h poous s瑲u捴ue (un瑩氠50
┠of poos楴y), 瑨慴 楳 on攠impo瑡t琠捨慲慣瑥t楳t楣ifo 瑨攠os瑥t楮瑥g慴楯n. h攠i
-
35乢
-
7Z
-
5a
samp汥l w敲攠manuf慣tu敤 by b汥ld敤 敬em敮瑡氠m整hod fom 愠s敱u敮捥 of un楡x楡i 慮d

捯汤
楳os瑡瑩挠p敳e楮g w楴h subs敱u敮琠tensif楣慴楯n by s楮瑥t楮g among 900 慴a1700

C, 楮 v慣uum. he
obj散瑩t攠 of th楳 wok 楳 th攠 慮慬ys楳 of 慬汯y m楣ios瑲u捴慬a evo汵瑩tn fom the powd敲s
d楳so汵瑩tn und敲 th攠楮捲敡s攠of 瑨攠sin瑥t楮g 瑥mp敲慴a攮

h攠慬汯y w慳⁣h慲慣瑥t楺敤 by s捡nning
敬散瑲on m楣ios捯py, X
-
ay d楦f慣瑩tn 慮d 噩Vk敲s m楣ioh慲dn敳e m敡suem敮瑳. 䑥ns楴y was
m敡su敤 by A捨im敤敳 m整eod. h攠 敳el瑳 shows 瑨慴a 愠
-
homogen敯us m楣ios瑲u捴e 楳
ob瑡楮敤 楮 th攠who汥lsamp汥 數瑥nsi
on w楴h th攠in捲敡s攠of 瑨e sin瑥t楮g 瑥mp敲慴a攮 W楴i th攠
b敧楮ning of 瑨e
-
s瑡t楬楺敲s (乢 慮d 愩 d楳so汵瑩tn, 慴alow s楮瑥t楮g 瑥mp敲慴aes, 瑨敲攠楳 the
fom慴楯n of 愠楮瑥tm敤楡iy W楤m慮s瓤瑴tn (



) ph慳攮











B
-
77

協啄夠但⁃䡅IC䅌 卐
CI匠䙒䅇A乔AI低
低䑉䝌奍 L䅓A䅓⁆

BI位ARI䅌匠ALICA
I低

C. C. 慴敲n楡i椠 R楴愬
䴮 A. Alg慴瑩
, 啎U卐
-
䙅F
-
䑆儬 Av. A楢敲瑯 敲敩ea d愠 Cunh愬 333,
12516410, 䝵
慲慴楮gu整e
-

-
B慺楬i


R䘠ex捩瑥 汯w p敳su攠楧lyme p污lm慳a慲攠impo瑡t琠in b楯m慴敲楡is synth敳es and 瑲敡tmen琠
s楮捥 楴i may be us敤 fo d数os楴楯n of polym敲楣i f楬ms w楴h non
-
fou汩ng pop敲瑩敳. h攠
impovem敮琠 of non
-
fou汩ng f敡瑵敳e of th敳攠 polym
敲s 楳 慣h楥i敤 敮h慮捩ng 瑨e p敯
-
汩l攠
捨慲慣瑥t of th攠 film d数os楴敤 und敲 瑡楬t敤 p污lm愠 捯nd楴楯ns. h攠 know汥lg攠 of how gas
p敳eu攬 RF pow敲 慮d monom敲 flux d整敲min攠th攠捨em楣慬ikin整楣猠 w楴h楮 瑨攠d楳捨慲g攠is
impo瑡t琠fo fu瑨敲 捯敬慴楯n
of plasma features with film’s structures. Plasmas were generated
w楴hin=愠s瑡tn汥ls=s瑥敬t é污lm愠r敡捴cr.=䵡ss=sé散瑲愬=for=d楦f敲敮琠v慬u敳=of=th攠o䘠éow敲I=w敲攠
捯汬散瑥l=by=愠mass=sé散瑲om整敲.=o敳u汴s=of=r敬慴ev攠捯n捥n瑲慴楯n=for=diff敲敮t=捨em楣i氠s
é散楥i=
w楴h=o䘠éow敲=v慲y楮g=from=R=瑯=RM=t慴瑳=慴a愠ér敳eur攠of=NMM=mqorrI=show敤=瑨攠in捲敡s楮g=of=
fr慧men瑡瑩tn=éro捥ss=due=the=ér敤omin慮捥=of=楮e污獴楣=敬e捴con楣i捯汬楳楯ns.=qhis=is=in=agr敥men琠
w楴h=th攠d散r敡s楮g=of=h敡v楥r=捨em楣慬isé散楥猠w楴hin=
瑨攠é污lm愠for=high敲=v慬aes=of=o䘠éow敲.=
qh敳攠r敳el瑳=show=th慴adiglym攠é污lma=éolym敲楺慴楯n=und敲=汯w=oc=éow敲=汥v敬s=is=th攠b敳琠for=
k敥é楮g=the=monom敲=f敡tures=w楴hin=瑨e=f楬m=s瑲u捴ur攮=qh敳e=r敳e汴l=慬獯=show=th攠eff散瑩ten敳e=
of=mass=sé散瑲om整ey
=
for=é污lm愠éro捥ss敳⁣on瑲o氮
=
=
=
=
=
=
=
=

35

B
-
P79

SUPERFICIAL FEATURE STUDY OF TiO
2

CERAMIC WITH MgO ADDITION

C.E.S. AMORIM

1
, E.F.LUCENA
2,3

, F.P. SANTOS
3

, E. CAMPOS
2,3

, R.Y.HONDA
1

, R.P.
MOTA
1
.

1
Departamento de Física e Química (DFQ)
2

Laboratório de M
ateriais Cerâmicos

=
䑥a慲瑡m敮瑯=d攠䵡瑥t楡楳=E䑍qF=啎r卐I=Caméus=d攠䝵慲慴angu整
J

䅶= Ar楢敲瑯= m敲敩e愠da=
Cunh愬= PPP= Cbm.= NORNS
J
4NM=

=
䝵慲慴楮gue瓡t

=
卐=
3

Es c o l a d e Es p e c i a l i s t a s d e Ae r o n á u t i c a
-

Gu a r a t i n g u e t á

=
卐=amorim@ f 敧.un敳e.br
=
=
o散敮t lyI =works=
on=瑩瑡nium=d楯x楤攠捥ram楣=Eq楏
2
) h a v e b e e n p r e s e n t e d s h o wi n g t h e f e a s i b i l i t y o f
i t s u s e a s b a c t e r i c i d a l a g e n t a n d b i o ma t e r i a l. T h e r e f o r e, t h e s t u d y o f s u r f a c e f e a t u r e s o f c e r a mi c s
b e c o me s a v e r y i mp o r t a n t f a c t o r i n t h e b a c t e r i c i d a l c a p a c i t y r e s e a r c h, s i n
c e t h e mo s t o f k n o wn
b a c t e r i a l c o l o n i e s f o r ma t i o n s wa s b e e n s e n s i t i v e u n d e r t h e s u r f a c e c h a r a c t e r i s t i c s. I n t h i s wo r k, t h e
s u p e r f i c i a l f e a t u r e s o f t h e T i O
2

c e r a mi c wa s mo d i f i e d b y t h e a d d i t i o n o f d i f f e r e n t a mo u n t s o f
ma g n e s i u m o x i d e ( Mg O). T h e s a mp l e s we r e

ma d e b y c o mme r c i a l s t a r c h c o n s o l i d a t i o n p r o c e s s.
S a mp l e s c h a r a c t e r i z a t i o n wa s ma d e i n a c c o r d a n c e wi h t AS TM n o r ms a n d i t s we t t a b i l i t y wa s
i n v e s t i g a t e d b y me a s u r i n g o f c o n t a c t a n g l e a n d s u r f a c e e n e r g y. T h e s u r f a c e c h a r a c t e r i z a t i o n wa s
ma d e u s i n g a Mi t u t o y o
S u r f s e t 3 0 1 r u g o s i me t e r, a n d a p p l y i n g a d e p t h f r o m f o c u s me t h o d ( b a s e d o n
I ma g e J ). F r o m t h e r e s u l t s, i t wa s o b s e r v e d t h a t t h e p r o g r e s s i v e a d d i t i o n o f a mo u n t s i n ma s s o f
ma g n e s i u m o x i d e i s a e f f e c t i v e me t h o d t o p r o mo t e mo d i f i c a t i o n s o n t h e s u r f a c e f e a t u r e s
o f t i t a n i u m
o x i d e c e r a mi c.





B
-
P 8 0

F UNCI ONALI ZAT I ON OF P OLY( 3
-
HYDROXYBUT YRAT E) BY ACI D CAT ALYS I S

Ce䅒ACqbof wAqf 低l Ak䐠m䡙卉CAi =C䡅䵉協o夠mo佐boqf bp
=
䴮C.䴮=Ant un敳
I =䴮=f.=䙥汩cb敲瑩Ⱐf ns瑩t u瑯=d攠nuí m楣愠d愠啎r CA䵐I =C慩x愠mos瑡氠SNR4I =NP
J
〸M
J
9TMI=C慭éin
慳a卐I=Br慺楬i
=
=
qh攠éo汹= EP
J
hydroxybutyr慴aF= 楳= 愠瑨敲moé污s瑩挠b楯d敧r慤慢汥l éo汹敳瑥e= wi瑨= v敲y= in瑥t敳瑩ng=
f敡tur敳⁡s=b楯d敧r慤慴楯nI=bio捯mé慴楢楬ity=and=syn瑨es楳=from=renew慢汥lsour捥s.==f瑳=ch楲慬a捥n瑲攠
is in R configuration, which means it’s comp
汥瑥ly=楳o瑡瑩t=w楴h=high=捲ys瑡t汩l楴y=and=morého汯gy=
捨慲慣瑥t楺敤= by= few= and= b楧= séh敲u汩瑥s= wh楣i= d敡汳= 瑯= 愠br楴瑬攠m慴敲楡氠and= iméos敳e s敶敲慬=
汩mi瑡瑩tns= 瑯= 楴s= 慰é汩捡瑩lns.= qh攠 éuréos攠 of= this= work= was= 瑯= fun捩cna汩穥l th攠 m䡂= by=
瑲慮s敳瑥t楦楣i瑩
on=w楴h=整hy汥n敧ly捯氬lr敳e汴lng=in=éolymers=w楴h=érim慲y=hydroxy氠groués=楮=th攠
捨慩n= ends= and= 捯n瑲o汬敤= mo污l= m慳s.= qh楳= 瑲慮s敳e敲楦楣慴楯n= wou汤= mak攠 éoss楢汥l th攠
捯ns瑲uc瑩tn=of=b汯捫=捯éolym敲s=w楴h=mor攠sui瑡t汥lm慴敲楡汳=慮d=th攠慴瑡anm敮琠of=mor
攠慤敱u慴攠
éroé敲瑩敳.=qh攠r敡捴楯n=h慳捣urr敤=by=慣楤=捡瑡tysis=楮=ch汯roform=so汵瑩tn=慮d=th攠érodu捴猠w敲e=
捨慲慣瑥t楺敤=by=
1
H RMN, FTIR, GPC, DSC, TGA, X
-
rays difratometry and optical microscopy.
The PHB funcionalization occurred as planned, decreasi
ng the molar mass and inserting primary
hydroxyl groups in the chain ends which caused considerable changing in the morphology and
crystallinity.

The thermal degradation kinetics of obtained materials reinforce the hydroxyl
insertion hypothesis
.




B
-
P81

Co
-
Cr
-
Mo PROTHESIS MICROSTRUCTURE STUDY

S.C.Baldissera,

E.N.Codaro, R.Z.Nakazato, H.Felipe, L.R.O.Hein, Rua Ariberto P. da Cunha, 333
Bairro Pedregulho CEP: 12516
-
410 Faculdade de Engenharia de Guaratinguetá
-
UNESP;Brazil,
L.K.Kabayama, FAENQUIL/DEMAR, Bra
zil


Co
-
Cr alloys are used in manufacturating dental prostheses due to its very good mechanical
properties and corrosion resistance in biological environments. It is being studied, in this work, Co
-
Cr alloys microstructure variation after two types of reca
sting: flame melting and high frequency
induction. Microstructures have been analyzed by optical microscopy, SEM and EDS microanalysis
in order to identify and quantify the present phases in two samples with different secondary
elements concentrations. Mor
phological study has revealed dendritical matrix dispersed equiaxially
or in column shape, containing carbides precipitated and intermetalic compounds in lesser ratio.
Recasting have modified volumetric ratio, probably due to cooling process, changing micr
o
hardness and corrosion resistance.


36

B
-
P82

POROSITY OF OCTENYLSUCCINATE STARCH AND/OR DEXTRIN
-
BASED
MICROCAPSULES CONTAINING BOVINE LACTOFERRIN

MAIA, L.H.
1
, ALMEIDA, S. L.
2
, ROCHA LEÃO, M.H.
3 1
Prog. Pós
-
graduação em Ciência de
Alimentos, IQ/UFRJ.
2

Lab.

de Tecnologia de Pós, INT.
3
Depto. de Engenharia Bioquímica,
EQ/UFRJ.


Microencapsulation of food ingredient is aimed, among others things, at controlling drug delivery
from core to environment. Many food products are porous and the porosity of the wall
matrix has a
major effect on a material’s mechanical properties, wetting and dissolution properties of powders.
䡯wev敲I= 楮form慴楯n= 慢ou琠 éoros楴i= of= m楣io敮捡ésu污瑥l= food= 楮gr敤楥n瑳= is= 汩m楴敤.=
䵩jro捡ésu汥猠 捯n瑡楮ing= 污捴lf敲r楮= OM┠ w敲e= érodu捥d= by=
séray= dry楮g= using=
d數瑲楮㩯捴cny汳u捣楮a瑥ts瑡t捨=楮=d楦f敲敮琠éroéor瑩tns㨠NMM㨰I=TR㨲RI=RM㨵MI=OR㨷R=慮d=M㨱MM┠慳=
w慬氠m慴敲楡汳.=moros楴y=捨慲a捴敲楳瑩捳=of=séray
J
dr楥i=m楣io捡ésu汥猠w敲攠楮v敳瑩g慴敤=by=n楴牯gen=
慤soré瑩tn.= qh攠sé散楦楣i surf慣攬= 瑨攠
vo汵m攠of= mesoéor敳e 慮d= 瑨攠 m敡n= éor攠d楡i整敲= w敲攠
d整敲m楮敤= using= th攠Bbq= m整hod.= o敳u汴l= 楮d楣慴i= 瑨at= 慬氠m楣io捡ésu汥l= ér敳敮ts= 慤soré瑩tn=
楳o瑨敲m=of=tyée=ff.=佮=th攠b慳楳=of=th攠f楲s琠éhas攠of=慤soré瑩tn=楳o瑨敲m=and=捯ns楤er楮g=sm慬氠
v慬aes=of=瑨e
=
sé散if楣isurf慣攬=on攠捡n=捯n捬cd攠瑨攠m楣ioéor敳eon=瑨攠m楣io捡ésu汥猠surf慣攠w楬氠
b攠v敲y=few=or=non攮=o敳u汴l=楮d楣慴i=th慴a數捥é琠瑯=m楣io捡ésu汥猠捯n瑡tn楮g=RM㨵M┠EOI9S=m
O
g
J
N
FI= 瑨攠sé散if楣i surf慣攠慲敡= d散r敡s攠w楴h= in捲敡s攠of= o捴敮y汳u捣in慴攠éro
éor瑩tn= 楮= 瑨攠w慬氠
sys瑥m=of=m楣io捡ésu汥献lmor攠捨慲慣瑥t楳瑩捳=for=v慲楯us=mi捲o捡ésu汥猠慲攠found=瑯=b攠diff敲敮琮
=
=
=
=
=
=
=
=
=
=
=
B
J
m8P
=
b䙆bCq=但⁓佉i=qb䵐boAq啒b=低lq䡅=Bf佄l䝒AaAqf低l但⁐CiI=m䡂=A乄km䡂
J
s
=
䐮=匮poosa
I=C.=䜮=䘮c䝵敤敳e=䴮=o.=C慬楬Ⱐ丮=q.=i
o瑴t㬠i慢or慴ar楯=d攠mo泭l敲os=B楯d敧r慤敩猠攠
卯汵敳e 䅭b楥n瑡tsI= mrogram愠d攠mós
J
䝲慤u懧=
Stricto Sensu

em Engenharia e Ciência dos
Materiais, Universidade São Francisco, Rua Alexandre Rodrigues Barbosa, n
o

45, Centro, CEP
13251
-
900, Itatiba, SP, Braz
il.


The interest for the biodegradable plastic has been growing in the last years, for being considered a
good alternative front to the serious environmental problems caused by the conventional plastics.
Some biodegradable polymers such as
poly(

-
捡po污l
瑯n攩 (CL),
po汹
-

-
(hydoxybuty慴攩
(䡂) 慮d po汹
-

-
(hydoxybuty慴a
-

-

-
v慬敲慴攩 (䡂
-
嘩 hav攠 b敥n d敶e汯p敤. 啮d敲
慰pop楡瑥i捯nd楴楯ns of mo楳瑵攬 瑥mp敲慴u攠慮d oxyg敮 av慩污a楬楴y, b楯d敧慤慴楯n 捡n b攠
敬慴楶敬y u楣i.


th楳 wok 楴iwas e
xamin敤 瑨攠敦f散琠of 瑨攠瑥mp敲慴u攠of 瑨攠so楬i捯mpos琠on
瑨攠b楯d敧慤慴楯n of 瑨攠CL, 䡂 慮d 䡂
-
嘠by mass 整敮瑩tn 慮d oughn敳s m敡suem敮琮
h攠po汹m敲s w敲攠慧敤 楮 so楬i捯mpos琠(䅓A䴠䐠4129 慮d A協䴠䐠1293) 慴aoom 瑥tp敲慴ue
(24 끃) 慮d 慴a 4
6 °C. h攠 b楯d敧慤慴楯n 楮 so楬i 捯mpos琠 慴a 46 끃 w慳a b整瑥e than 慴a oom
瑥mp敲慴a攠fo 慬氠th攠polymes s瑵d楥i. h攠瑥mp敲慴a攠慴a46 끃 d楤 no琠楮h楢楴ith攠慣瑩tity of the
m楣ioog慮isms, on th攠 捯n瑲慲y, 楴i s敥ms 瑯 f慣i汩瑡瑥 瑨攠 hydolys攠 and 捯nse
u敮瑬y, 瑨e
b楯d敧慤慴楯n h慰p敮s. In a捣od慮捥 瑯 瑨攠 m慳s 整ent楯n, 瑨e 敳u汴l of th攠 oughn敳s 慬獯
敶楤敮捥d th攠敦f散琠of th攠瑥mp敲慴u攠of th攠so楬i捯mpost on 瑨攠b楯d敧慤慴楯n of th攠po汹m敲s,
楮d楣慴ing an 慣捥ntu慴敤 in捲敡s攠of 瑨攠oughne
ss in so楬⁣ompos琠t琠t6 끃.










37

B
-
P84

EFFECT OF GELATINIZED STARCH ON THE RHEOLOGICAL AND MORPHOLOGICAL
PROPERTIES OF POLY(

-

CARL䅃低)⽃佒丠SARC䠠BL乄N

䐮 匮SRosa
, C. 䜮 䘮F䝵敤敳ⰠA. 䜮 敤oso, 䴮 R. C慬楬㬠L慢o慴aio d攠偯泭l敲os B楯d敧慤
敩e
攠卯汵敳 䅭b楥n瑡ts, ogam愠d攠ós
-
䝲慤u懧
Stricto Sensu

em Engenharia e Ciência dos
Materiais, Universidade São Francisco, Rua Alexandre Rodrigues Barbosa, n
o

45, Centro, CEP
13251
-
900, Itatiba, SP, Brazil.


Traditionally, plastic materials ar
e very resistant to environment influences such as humidity or
microbial attack. This durability poses a serious environmental problem because of the large
amount of waste produced, especially in urban centers. The development of biodegradable
polymers hav
e been studied as a possible solution. Blends of poly(

-
捡po污捴ln攩 (CL)
捯n瑡楮ing 25, 50 慮d 75 (w琮┩ g慮u汥猠 s瑡t捨 and g敬慴en楺敤 s瑡t捨 w敲攠 p数慲敤 by
m散han楣慬 po捥ssing 慮d h慲慣瑥t楺敤 by m敬琠f汯w ind數 (䵆M), 慣捯d楮g 瑯 䅓䴠䐱238

o捥du攠A) 慮d by op瑩捡氠m楣ios捯py in od敲 瑯 敶慬a慴攠瑨攠s瑡th g敬慴楮楺i瑩tn eff散琮the
敳e汴s show敤 th慴a瑨攠慤d楴ion of s瑡t捨 瑯 CL 敤u捥d 瑨攠䵆M v慬u敳⸠h攠敤u捴楯ns w敲攠
mos琠ev楤敮琠楮 g敬e瑩t楺敤 s瑡捨. h攠m楣iopho瑯g慰hs of CL a
nd CL/s瑡t捨 b汥lds ev敡汥l 愠
g慮u污l 慲慮gem敮琠 of s瑡t捨 wi瑨in 瑨e CL m慴a楸 in diff敲en琠 popo瑩tn 慮d p敳敮瑥t
homog敮敯us d楳p敲s楯n. 佮 th攠o瑨敲 h慮d, g敬e瑩t楺敤 s瑡t捨 h慤 no g慮u污l s瑲u瑵攠b散慵s攠of
楴i g敬e瑩t楺慴楯n.


B
-
85

協啄U
匠 但

IN VITRO

DEGRADATION OF POLY
(LACTIDE
-
CO
-
GLYCOLIDE) ACID/
POLY (LACTIC ACID) P
LATES


C. A. Rezende
, Instituto de Química, Unicamp, Campinas, Brazil; E. A. R. Duek, Centro de
Ciências Médicas e Biológicas, PUC
-
SP, Praça Dr. Ermírio de Moraes, 290, CEP
18030
-
230,
Sorocaba, Brazil.


Poly (lactic acid) and poly (lactide
-
co
-
glycolide) acid are two polymers of the

-
hydoxy 慣楤s
捬慳. h楳 捬慳s of polym敲s p敳敮瑳 impo瑡t琠捨慲慣瑥tis瑩捳 of d敧慤慴楯n and 捡n b攠us敤 慳a
瑥mpo慲y imp污lts in ogan楳m.

Imp污nts wh楣h d敧慤慴楯n podu捴猠捡n b攠慢sob敤 by th攠host
og慮楳m 慲攠慤v慮瑡g敯us 楮 捯mp慲楳on 瑯 m整慬e楣iimp污l瑳. In th楳 wok, p污瑥猠of 瑨攠b汥ld
po汹 (污捴楤e
-

-
gly捯汩l攩 a捩⼠ poly 污捴楣 慣楤 (LG䄯ALLA) w敲攠 p数慲敤 by fus楯n and
捨慲
慣瑥t楺敤 du楮g th敩e
in vitro

degradation process. It was verified that the blend was
immiscible and that PLGA degraded faster than PLLA. The morphology of the blend changed
according to PLLA proportion in blends. Mechanical tests of flexion showed that

Young Modulus
increased with the increase in PLLA proportion in blends before and after degradation, indicating a
bigger rigidity of the blend as the quantity of PLLA increases. Young Modulus values tend to
decrease after degradation. X
-
Ray analysis resul
ts indicated that the crystallinity degree also
increases with the amount of PLLA in blend and with the degradation time.


B
-
P89

EXPERIMENTAL STUDIES OF DIFFERENT SURFACE TREATMENTS APPLIED TO
TITANIUM DENTAL IMPLANTS

R. V. Bathomarco
1
;
I. G. Solórzano
1

a
nd R. Prioli
2
, Rio de Janeiro, Brazil; 1 Department of
Materials Science and Metalurgy; 2 Department of Physics; Pontifícia Universidade Católica do
Rio de Janeiro, Brazil.


Titanium alloys are widely used in dental implants in virtue of clinical evidences

of the excellent
biocompatibility performance shown by this alloys. However, there are still a number of
unanswered questions regarding the ideal physicochemical properties of titanium surfaces used in
dental implants aiming at an appropriate integration
with the bone. Furthermore, in the literature
there are not still available standards defining superficial properties of dental implants. These
characteristics are a fundamental importance since biocompatibility is strongly depended upon the
connections be
tween host cells and the titanium surface implant. The present work has as objective
the analysis of three processes use for surface treatments of dental implants based on titanium of
commercial purity, namely mechanically
-
induced erosion, chemical etching

and the combination of
both. Such methods applied to titanium cylinders, have permitted one to estimate more closely their
physical and chemical surfaces properties, such as surface morphology, surface topology and
contact angle (wet ability). It is also

identified the factors and methods allowing to obtain the
optimal surface conditions for this purpose.


38

B
-
P90

CATION SUBSTITUTION IN HYDROXYAPATITE


J. Terra

and A. M. Rossi, Centro Brasileiro de Pesquissa Físicas, Rua Dr. Xavier Sigaud 150,
22290
-
180 R
io de Janeiro, R.J., Brasil; D. E. Ellis, O. Warschkow and M. Jiang, Department of
Physics and Astronomy and Materials Research Center, Northwestern University, Evanston, Illinois
50208, USA; J. G. Eon, Instituto de Química, Universidade Federal do Rio de
Janeiro, Cidade
Universitária, Ilha do Fundão, 21945
-
970 Rio de Janeiro, R.J., Brasil; C. B. Boechat, Instituto de
Química, Universidade Federal Fluminense, Niteroi, R. J., Brasil.


Hydroxyapatite (Ca
10
(PO
4
)
6
(OH)
2
), the main component of vertebrate hard t
issues, is a strong
absorber of metallic cations. Fe and Zn stored in bone play a critical role in the metabolism of
mammals, while Pb is a dangerous toxin. Absorbed metals can play also an important role in "green
catalysis". Here we present theoretical s
tudies, using a combination of a first
-
principles density
functional scheme and atomistic simulations to model hydroxyapatite with low content of Fe, Zn
and Pb at Ca sites and V at the P site, considering experimental results from IR, XRD, ENDOR and
EPR sp
ectroscopies. Mulliken population analyses, magnetic moments, partial densities of states,
and charge and spin density contour maps are presented and discussed in the light of experiments.
















B
-
P93

POWDER METALLURGY PROCESSED NITI SHAPE MEMO
RY ALLOY

J. Otubo
,

ITA
-
CTA, 12228
-
900, S. J. dos Campos, SP, Brazil,
jotubo@ita.br
; V. A. R. Henriques,
AMR
-
IAE
-
CTA, 12228
-
904, S. J. dos Campos, SP, Brazil; O. D. Rigo, FEM
-
UNICAMP, 13083
-
970, Campinas, SP, Brazil; C.

A. A. Cairo, AMR
-
IAE
-
CTA, 12228
-
904, S. J. dos Campos, SP,
Brazil.


NiTi shape memory alloys present applications in several areas such as: aerospace, naval,
automobile industry, house appliances, robotics, biomedical, etc. However it is a high cost mater
ial
requiring special vacuum melting process such as VIM and EBM to produce the alloy. Its further
thermomechanical processing also presents some difficulties requiring special procedures. Beside
that the alloy composition should be controlled very closely

because small composition deviation
could result in drastic variation on martensitic transformation temperatures mainly in the nickel rich
side of the phase diagram. In the sense to minimize the fabrication cost and to obtain the product as
near as possib
le to the final shape (near net shape) powder metallurgy process is being used to
produce NiTi alloy. This work will present some preliminary results relating processing procedure
and final microstructure. Samples were produced by mixing of initial metalli
c powders followed by
uniaxial and cold isostatic pressing with subsequent densification by sintering, in vacuum.













39

B
-
P94

TERNARY HYBRID ORGAN
O
-
INORGANIC COMPOSITES

BASED ON SILICA, CHI
TOSAN
AND POLYMONOMETHYLIT
ACONATE

a
P.Jaime Retuert
,
a
Yadienka

Martínez,
b
Mehrdad Yazdani
-
Pedram; Centro para la Investigación
Interdisciplinaria Avanzada en Ciencia de los Materiales (CIMAT) and

a
Facultad Cs. Físicas y
Matemáticas, Universidad de Chile, Av.
Beaucheff 850, Casilla 2777, Santiago, Chile
b

Facultad
C
s.
Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007,Casilla 233, Santiago, Chile.


Using the sol
-
gel method, a network
-
forming precursor sol and organic compounds can be
combined to develop materials with interesting characteristics, in particul
ar good optical,
mechanical and thermal properties as well as chemical stability.

In this work chitosan and poly(monomethyl itaconate) (PMMI) were used as organic polymers to
obtain silica (SI)
-
based hybrid films by the
sol

g敬e瑥thn楱u攮=
qh攠慤d楴楯n=of=
m䵍f=慳aan=慮楯n楣=
éo汹敬散瑲oly瑥t 瑯=瑨攠b楮慲y=sys瑥m=C䡉⽓䤠h慳ab敥n=don攠楮=ord敲=瑯=mod楦y=瑨攠éhys楣慬i 慮d=
m散han楣慬iéroé敲瑩敳=of=瑨ese=f楬ms=b散慵s攠new=in瑥t慣瑩tns=慲攠g敮敲慴敤.
=
䡯mogen敯us= 瑲慮sé慲敮t= f楬ms= 捯ns楳瑩ng= of= ch楴isanI= éo汹= Emonome
瑨y氠楴慣in慴攩= 慮d= si汩捡l
EC䡉⽐䵍f⽓䤩= w敲e= ér数慲敤.= qh攠 楮organ楣i éh慳攠 睡猠 ob瑡楮敤= by= sol
J
g敬e éro捥ssing= of=
瑥瑲慥瑨oxysi污le=Eqb体l=w楴h=慣楤=捡瑡lys瑳.
=
䙩cms=of=NR
J
㈰O

m w敲e ob瑡楮敤 by solu瑩on 捡s瑩ng
on 愠po汹popy汥l攠f楬m and 汥瑴楮g 瑨攠so汶
en琠瑯 敶慰o慴攮
h攠敳e汴楮g 瑥tn慲y m慴敲楡汳 have
b敥n ob瑡楮敤 慳a瑲慮sp慲敮琠f汥x楢汥lf楬ms in sp楴攠of high s楬楣愠捯n瑥n琮t卥S敲慬a捯mpos楴楯ns
w敲攠p数慲敤 慮d 慮慬y穥d to f楮d th攠捯mp慴楢楬楴y 汩mi琠of 瑨攠th敥 捯mponen瑳 and to 敶慬a慴攠
瑨攠
fom慴楯n of 愠poly捯mpl數 sys瑥m in wh楣h
楴i楳 poss楢汥l瑯 gow th攠inog慮楣iph慳a

併
敳e汴s 捯nf楲m th攠 fom慴楯n of 瑨攠 poly敬散瑲oly瑥t 捯mp汥l b整w敥n C䡉 慮d 䵍I 慮d 瑨攠
mo汥捵污l 楮瑥t慣瑩tn eng慧敤 楮 th楳 s瑲u捴e w楴h th攠楮og慮楣 捯mponen
琮t䅬氠捯mpon敮瑳 hav攠
慮 influen捥 on th攠b敨av楯 of 瑨攠hyb楤 sys瑥m, bu琠th攠pop敲瑩敳 of 瑨攠捯mpos楴攠hyb楤 f楬ms
慲攠 d楦f敲敮琠 fom 瑨e楲 p慲en琠 捯mponen瑳.
oous s楬楣愠 f楬ms w敲攠 ob瑡楮敤 by 慬捩a慴楯n
(700ºC⼲h) of f楬ms typ楣慬ly w楴h 愠捯m
pos楴楯n 卉SC䡉㩐䵍I 㴠1㨰.6:0.3 mo污l 慴楯. h攠poous

f楬ms 慲攠捯ns瑩tu瑥t by 2.5 nm s楬楣i nanop慲瑩捬敳⸠
h攠sp散楦楣isuf慣攠慲敡 (S
BET
) (600m2/g),
mean pore diameter (3.3nm)) and specific desorption pore volumes of
calcined samples (0.43
cm3/g)
wer
e determined by nitrogen physisorption at 77 K
.
The mean pore diameter (d
p
)
correspond to the extent of the polymer domains observed (TEM) in the pristine hybrid films.




B
-
P95

QUANTITATIVE XRD RIETVELD ANALYSIS OF ZIRCONIA POLIMORPHIC PHASES IN
ALUMINA
-
ZIRCONIA FOR CERAMIC ABUTMENTS

M. C. C. S. B. Moraes

(1); C. N. Elias (1); J.B de Campos.(2); J. D. Filho (2) R.R. Avillez (3)

e
-
mail:josebran@int.gov.br; (1) Departament of Mechanical and Materials Engineering (DE
-
4),
IME, Rio de Janeiro; (2) LATEP/DPCM
-

I NT, Ri o d e J a n e i r o; ( 3 ) DCMM
-
P UC
-
Ri o, Ri o d e
J a n e i r o, Br a z i l.


T h e t o u g h e n i n g me c a n i s m i n c o mp o s i t e s c o n t a i n i n g z i r c o n i a i s r e l a t e d wi t h t h e s t r e s s i n d u c e d
t r a n s f o r ma t i o n o f z i r c o n i a p a r t i c l e s f r o m t e t r a g o n a l f a s e t o mo n o c l i n i c f a s e, wh i c h i s a c o mp l i s
h e d
o f a v o l u me t r i c e x p a n s i o n ( 3 % a 5 %). T h e t r a n s f o r ma t i o n a b s o r b s p a r t o f t h e e n e r g y n e c e s s a r y f o r
c r a c k p r o p a g a t i o n a n d p r o mo t e s a n i n c r e a s e i n f r a c t u r e t o u g h n e s s. Al u mi n a a n d z i r c o n i a a r e
b i o c o mp a t i b l e a n d a c o mp o s i t e b a s e d o n t h e s e ma t e r i a l s i s a p r
o mi s i n g c a n d i d a t e f o r u t i l i z a t i o n i n
t h e ma n u f a c t u r e o f c e r a mi c a b u t me n t s u s e d i n p r o s t h e t i c r e a b i l i t a t i o n s wi t h o s s e o i n t e g r a t e d d e n t a l
i mp l a n t s wh e r e t h e e s t e t i c p l a y s a ma j o r r o l e. I n t h i s p r e s e n t wo r k, Ri e t v e l d me t h o d wa s u s e d t o
d e t e r mi n e t h e mo n o c l i n
i c p h a s e i n a l u mi n a
-
z i r c o n i a c o mp o s i t e s. XRD me a s u r e me n t s we r e
p e r f o r me d a n d t h e c h a r a c t e r i s t i c p e a k o f t h e t e t r a g o n a l a n d mo n o c l i n i c p h a s e we r e d e t e r mi n e d a n d
u s e d f o r q u a n t i t a t i v e c a l c u l a t i o n s. T h e c o mp o s i t e c o mp o s i t i o n v a r i e d b e t we e n 5 a n d 8 0 % o f
z i r c o
n i u m. T h e Ri e t v e l d c a l c u l a t i o n s h a v e s h o wn t h e c o r r e l a t i o n b e t we e n t h e p r e s e n c e o f t h e
mo n o c l i n i c p h a s e i n t h e c o mp o s i t e a n d i t s t e n a c i t y. F o r c o mp a r i s o n, q u a n t i t a t i v e c a l c u l a t i o n s u s i n g
i n t e r n a l me t h o d we r e a l s o p e r f o r me d a n d t h e r e s u l t s s h o we d t h e s a me b
e h a v i o r o f t h o s e a c h i e v e d
b y Ri e t v e l d me t h o d. Ho we v e r, t h e i n t e r n a l me t h o d h a s a l o we r p r e c i s i o n a n d i t i s a t i me c o n s u mi n g
me t h o d.