Fixed-Point Modeling in an Ultra Wideband (UWB)

safflowerpepperoniΚινητά – Ασύρματες Τεχνολογίες

24 Νοε 2013 (πριν από 2 χρόνια και 11 μήνες)

39 εμφανίσεις


Point Modeling in an Ultra Wideband (UWB)
Wireless Communication System


Martin Clark
Mike Mulligan
Dave Jackson
, and
Darel Linebarger

Ultra wideband (UWB) wireless technology is poised to replace high
speed data cables in
homes and offices (Stroh 2003). UWB technology will be capable of transmit
ting hundreds of
megabits per second over distances of several meters. Target applications include connecting
digital cameras to computers and DVD players to HDTV screens. Companies expect to ship
commercial UWB products by the end of 2005.

UWB range is f
undamentally limited by low
power, high
speed transmission, and so there is
little margin for implementation losses. However, the success of UWB in the marketplace also
hinges on low
cost implementation. The difference of a few meters in range, or a few do
llars in
cost, could make or break UWB.

point engineering is critical in managing this all
important tradeoff between UWB
range and cost. First, fixed
point word lengths strongly influence hardware size and cost. The
silicon area of a multiply opera
tion, for instance, is roughly proportional to the
of word
length. Second, word lengths and scaling strongly influence the signal
noise ratio (SNR)
degradation of the communication link. Decreasing the SNR degradation by 1 dB can increase
e by up to 25%.

Unfortunately, fixed
point engineering is also very challenging and time
typically demanding 25%

50% of the total design time. In this article, we explore fixed
design using Simulink® with a focus on a UWB technology propo
sal. We demonstrate techniques
and offer tips for accelerating the design process.

Simulink Model


We base our Simulink model on the
multiband orthogonal frequency division multiplexing

(Heiskala and Terry, 2002) UWB proposal submitted to the
IEEE 802.15.3a
group in September 2003. Subsequent proposals have not changed the essential technology

The proposal supports seven data rates in the range 55

480 Mb/s. The highest mandatory rate
is 200 Mb/s. OFDM signals are transmitted using a frequency hopping (multiband) scheme. Our
Simulink model captures the end
end physical layer (PHY) for the
highest mandatory data rate
and for the mandatory frequency hopping mode.

Key Characteristics of Multiband OFDM PHY

200 Mb/s Mode

RF transmission bandwidth

528 MHz

Frequency hopping ("Mode 1 device")

3 sub
bands (3.43, 3.96, 4.49 GHz centers)

Error co
rrection coding

Convolutional with puncturing

Code rate



Quaternary Phase Shift Keying (QPSK)

OFDM transmission

point IFFT; zero


Payload symbols per OFDM symbol


Time spreading

2x (across frequency hops)

h resistance from cyclic prefix

60 ns

The multiband OFDM proposal is, in many ways, similar to the IEEE 802.11a/g WLAN
PHY standards. Leveraging this similarity, we adapted our
UWB model

(see Figure 1) in just a
few days, from an existing
802.11a model
. Our adapted model also includes th
e UWB channel

programmed by Intel and used by the IEEE 802.15.3a group.

Figure 1: Top level of Simulink model. Click on image to see enlarged v

The transmitter and receiver each comprise three sections (Figure 1):

binary data processing (blue)

digital baseband processing (orange)

baseband model of the analog front
end and channel (purple).

We are interested primarily in the fixed
point d
esign of the digital baseband section. You can
think of the rest of the model as a test harness: it enables us to quickly assess the impact of the
point design on end
end link performance.

OFDM Transmitter

The purpose of this subsystem (Figure 2)

is to transform a payload of QPSK symbols into a
large frame of OFDM symbols (165 samples each) to be passed along to the transmitter’s

Figure 2: OFDM transmitter. Click on image to see enlarged view.

The blue
Convert block

at the subsystem input converts the incoming signal into a
point data type. In reality, this operation wouldn't exist; rather, the QPSK modulator would
translate incoming bits directl
y into fixed
point data. The purple block at the subsystem output
converts to double
precision floating point (for our purposes, you can think of it as a D/A

We highlight (orange) the inverse fast Fourier transform (IFFT) block and gain block


they perform fixed
. All other blocks (white) are simply fixed
point "data
shufflers." The orange highlighting throughout the UWB model helps you quickly identify which
blocks will be involved in the fixed
point design process.

DM Receiver

The OFDM receiver (Figure 3) involves more signal processing

and, thus, more fixed

than the transmitter. The receiver requires arithmetic in four sections:

cyclic processing


channel estimation/compensation

time despread

Cyclic processing and channel estimation/compensation are necessary to mitigate the effects
of multipath channel dispersion.

Figure 3: OFDM receiver. Click on image to see enlarged view.

Figure 4 shows our channel estimation/compensation subsystem. It implements a simple,
cost phase
compensation scheme. (More sophisticated schemes exploit the channel's
frequency coherence, and thus improve noise averaging [2].) It does not compensate for channel
magnitude variations across the OFDM tone set because such schemes are computat
expensive and also unnecessary for QPSK. Our scheme avoids division with a complex divisor,
and ensures that the magnitude of the division output has a small dynamic range.

Figure 4: Channel estimation and compensation. Click on image to see enlarged view.

Point Reference

type override

feature makes it straightforward to switch between fixed point
and floating point for any subsystem or for the entire model. Our m
odel also automatically runs a
script that highlights (in green) arithmetic subsystems/blocks that use floating
point override.

For our initial floating
point reference, we set the channel SNR to a high value (60 dB),
which helps us isolate the impact of f
point effects on symbol distortion. Figure 5 shows two
scopes from the UWB simulation: (a) the
power spectrum

of the baseband
equivalent received
over all three sub
bands, and (b) the
signal constellation

after channel phase estimation and


Figure 5: UWB simulation scopes. Click on image to see enla
rged view.

The DC null in the power spectrum is from the OFDM transmission, but the rest of the
spectrum approximately follows the frequency
selective fading characteristic of the multipath
channel. The dynamic range over the OFDM tone set is about 30 dB,
which is also evident in the
spread of the phase
compensated signal constellation. A clean "X" indicates almost
perfect phase compensation.

Point Design Methodology

The next phase is to set word lengths and scaling for
every fixed
point ar
ithmetic block

in the
system. Together, the word length and scaling constrain the dynamic range of a signal. If poorly
engineered, they will introduce overflow or underflow, and degrade link performance. It makes
sense, therefore, that one of the most usef
ul things you can analyze in a fixed
point design is the
dynamic range of signals.

We used the following methodology for the UWB fixed
point design:


Work through the system in the order of signal processing, enabling floating
overrides for downstrea
m subsystems.


For a given arithmetic (orange) subsystem or block:


Enable floating
point override and analyze the output signal’s dynamic range


Adjust word length and scaling to minimize overflow and underflow


Disable floating
point override, re

dynamic range, and assess the
impact on link performance

This procedure is an iterative process, and the work flow can be tedious and time
Fortunately, MATLAB and Simulink provide a number of tools to help accelerate the process. To
analyze dy
namic range, for instance, you can use one or more of the following:

min/max logging

Model Verification


in scopes

MATLAB analysis/visualization (via
Signal To Workspace

block or an

We demonstrate the last approach in the following section.

Example: Transmitter Design

For the UWB model, we built a block that automatically outputs a Simu
link signal to a
histogram, which is an invaluable way to visualize dynamic range. Figure 2 shows this block
(labeled "Fixed
Point Analysis") attached to the transmitter gain’s output. Figure 6 shows the


associated histogram for the floating
point referenc
e (both in
phase and quadrature). The base
log scale is useful for visualizing dynamic range in terms of number of bits, i.e., word length.

Figure 6: Histogram of OFDM transmitter output; floating
point reference. Click on image to see
enlarged view.

Excluding zero
valued samples (which

are mapped to 2

in the plot), the signal magnitude
lies in the range 2

to 2

for more than 99.9% of the time, and so the signal can be represented
adequately with 16 bits (signed). This large dynamic range

90 dB

is typical in OFDM, and is
y the result of passing a random signal through an IFFT.

The analysis block also automatically estimates that 2

might be a reasonable scale factor to
minimize overflow and underflow. The Fixed
Point settings dialog provides a similar estimation
ity, and can even
automatically set fixed
point scaling

for user
selected blocks.

Based on this analysis, we initially set the word length to 16 bits and the sca
ling factor to 2

arithmetic blocks (orange) in the transmitter. We do this by explicitly setting the fixed
parameters of the input gateway block and selecting "Same as input" for the fixed
parameters of all other arithmetic blocks in

the transmitter (Figure 7). We maintain floating
overrides in the receiver subsystem to isolate and diagnose potential problems in the transmitter

Figure 7: Dialogs for (a) Gateway block at transmitter input and (b) Gain block. Click on image
to see enlarged view.

Figure 8 shows
the resulting histogram and phase
compensated signal constellation. Notice
that the constellation is somewhat distorted compared with our floating
point reference (Figure 5).
The histogram reveals that the highest values are saturated to a value of 2. (The

dashed lines in the
histogram represent the floating
point reference.) While these high
power transmitted values
occur only about 1% of the time, this is enough to cause

with high probability

distortion at the output of the 128



Figure 8: Results for 2

scaling. Click on image to see enlarged view.

We need to increase the scaling by one or two bits. Such an increase will cause underflow for
the small values at the gain’s output, but the effect should be minimal because transmitted signal
values smaller t
han 2

will be buried in the channel noise. Figure 9 shows the improvement with


Figure 9: Improved results for 2

scaling. Click on image to see enlarged view.

Favoring the high end of a signal's range is not always the right strategy. Small signal values
sometimes pla
y a significant role, for instance, in channel estimation and compensation algorithms.
The point is that setting fixed
point scaling requires some finesse, particularly when it comes to
engineering for smaller word lengths. Auto
computation tools provide c
oarse estimates. However,
fine tuning often calls for a combination of visualization and insight.

The above example covers the basics of setting word lengths and scaling factors. The next
steps involve analyzing output signal dynamic ranges of individual
blocks in the transmitter,
tuning each block's fixed
point settings, and moving through the receiver using the same design

Smaller Word Lengths

Beginning with 16 bits throughout the system lets you approach design issues incrementally
and the
n apply what you learn to smaller word lengths. For instance, when you care more about
overflow than about underflow, as is often the case, the desired
integer length
tends to be similar
for different word lengths.

Using the tools and methodology discussed

here, we were able to get a 10
bit design working
at a bit error rate of 0.1%, with only a 0.5 dB SNR degradation compared with the floating

Figure 10 illustrates how you can capture multiple fixed
point designs in a single model. The
kspace variable

stores the word length. The

function selects
point scaling (or fraction length) based on the word length. For 16 bits, it uses a fraction
length of 14; for 12 bits, a fraction length of 11; and so on.


Figure 10: Capturing multi
ple fixed
point designs in a single model. Click on image to see
enlarged view.

Using variables and selector functions in this way, you can quickly switch between different
point designs. You can also write simple MATLAB® scripts to run simulations o
ver a range
of word lengths and channel conditions to explore tradeoffs between chip size (or power
consumption) and wireless range.


S. Stroh, "Ultra
wideband: multimedia unplugged," IEEE Spectrum, October 2003.

J. Heiskala and J. Terry, "OFDM
wireless LANs: a theoretical and practical guide," SAMS, 2002.