Cognitive Biases I

paraderollΤεχνίτη Νοημοσύνη και Ρομποτική

17 Νοε 2013 (πριν από 3 χρόνια και 8 μήνες)

80 εμφανίσεις

Cognitive Biases I

Optional Reading

Today’s lecture is based
primarily on:


“How We Know What Isn’t
So,” Chapter 1.


By Thomas
Gilovich
, a
psychologist

Patterns

Pattern Recognition

Seeing patterns in your
data is a good thing, and
humans are natural
pattern finders.


Watson & Crick discovered
the structure of DNA by
recognizing the “fuzzy X”
pattern it left when
bombarded with X
-
rays.

Pattern Recognition

But sometimes we see
patterns when there’s
really nothing to see.


Consider this famous
photograph from 1976 by
the Viking I spacecraft.
Look! A face on the
surface of mars!

Pattern Recognition

But sometimes we see
patterns when there’s
really nothing to see.


But this was what we
were seeing…

Jesus Tree

Jesus Toast

Jesus Sock

Why do we see extra patterns?

Our brains are very good at finding patterns
when they exist, and this is important.


But part of our success comes by seeing
patterns everywhere, even when they don’t
exist, including in random data.

The Clustering Illusion

I flipped a coin (really!) 20 times in a row. ‘X’ is
Queen Elizabeth II and ‘O’ is the lion with the
crown.
H
ere is what I got:


XXXXOOXOOXXOOXOOXOOO


That doesn’t
look

random. But it is. The coin
lands the same as the previous toss 10 times
and different from the previous toss 9 times.

The Clustering Illusion

Ask anyone who watches
basketball whether this is
true:


“If a player makes a shot,
they’re more likely to
make the next; if they
miss a shot, they’re less
likely to make the next.”

The Clustering Illusion

Most people will say ‘yes, of course’. But it’s not
true, they’re subject to the clustering illusion.


Gilovich
,
Vallone

&
Tversky

(1985) analyzed
records of made and missed shots, and they
found:

The Clustering Illusion


Players who
made

a shot, on average, scored
on the very next shot 51% of the time.


Players who
missed

a shot, on average, scored
on the very next shot 54% of the time.


Players who
made

two shots in a row, scored
on the very next shot 50% of the time.


Players who
missed

two shots in a row, scored
on the very next shot 53% of the time.

Representativeness


INVENTING EXPLANATIONS

Split
-
Brain Patients

Split
-
brain patients are
individuals who have had
their corpus
collosum

severed (the part of the
brain by which the left
half of the brain
communicates with the
right half of the brain).

Split
-
Brain Patients

The right eye sends
information to the left half
of the brain and left eye
sends information to the
right half of the brain.

Split
-
Brain Patients

Speech is controlled by
the left half of the brain. If
a split brain patient is
shown something only to
her left eye, she cannot
describe it. That
information goes to the
right half of her brain, and
it can’t
communicate with
the left.

Confabulation

Researchers performed the following
experiment on split
-
brain patients.


They presented two pictures, one only to their
left eye (right brain, non
-
verbal) and one only to
their right eye (left brain, verbal).

Confabulation

Presented to left eye (right
hemisphere of brain):

Presented to right eye (left
hemisphere of brain):

Confabulation

The patients were then asked to point to
another picture (out of several others
presented) that went together with the ones
they were presented with.


Pointing is a non
-
verbal task, so it can be
accomplished by both the right and the left side
of the brain.

Confabulation

Subjects chose this picture to go
with the snow:

Subjects chose this picture to go
with the chicken:

Confabulation

But then the subjects were asked:


“Why did you pick the shovel?”


To answer the question, the subjects needed
their left brain (verbal), but the left half of the
brain did not see the snow picture.

Confabulation

In response, subjects would say things like:


“Oh, that’s easy. You need a shovel to clean out
the chicken shed.”


That is
not

why they picked the picture. But they
weren’t lying


they thought that was why they
picked it!

Confabulation

The human mind doesn’t just see patterns
where there is only randomness. It also freely
invents reasons and explanations to “make the
world make sense.”

When we encounter random data, we see a
pattern that isn’t there. And we explain why
there should be a pattern. This can make our
bad beliefs difficult to abandon.

REGRESSION TO THE MEAN

Variables

From the point of view of statistics, any measure
that can take on different values is a variable.


So for example, height is a variable, since people
can be different heights. Profit is a variable,
since companies can have different profits.
Spiciness is a variable since different foods can
be more or less spicy…

Perfect Correlation

We say that two variables are
perfectly
correlated

when knowing the value of one
variable allows you to know the value of the
other variable with certainty.


For example, the
area of a triangle whose base
is 5

(one variable) is perfectly correlated with
the
height of the triangle

(another variable).

Imperfect Correlation

Two variables are
imperfectly correlated

when
the value of one influences the value of the
other.


For example
height of parents

(one variable) is
imperfectly correlated with
height of children
(another variable). Tall parents have tall
children, on average, and short parents have
short children, on average.

Regression to the Mean

Whenever two variables are imperfectly
correlated, extreme values of one variable tend
to be paired with less extreme values of the
other.


Tall parents have tall children, but the children
tend to be less tall than the parents. Students
who do very well on Exam 1 tend to do well on
Exam 2,
but not as well as they did on Exam 1
.

Regression to the Mean

This is true of any two imperfectly correlated
variables.


Companies that do very well one year on
average do well the next year, but not quite as
well as the previous. Students who do well in
high school on average do well in college, but
not as well as in high school.

Regression Fallacy

The regression fallacy involves attributing a causal
explanation to what is nothing more than
regression to the mean.


If you feel very bad when you wake up hung over,
you will likely feel better in an hour. If you eat a
greasy meal when you wake up, and feel better in
an hour, you might commit the regression fallacy
and assume your meal made you feel better.

The
Sports Illustrated
Jinx

Some people believe in
the “
Sports Illustrated
jinx”: when you appear on
the cover of
Sports
Illustrated
, you do very
poorly in your sport.

The
Sports Illustrated
Jinx

For example, while this
was the cover of SI in
February, Jeremy Lin shot
1
-
for
-
11 in a game where
the New York Knicks lost
to the Miami Heat 102
-
88.

The
Sports Illustrated
Jinx

And when
this

was the
cover of SI, Lin’s team
snapped a 7 game winning
streak when they lost at
home in New York to the
New Orleans Hornets.

Regression to the Mean

But there is no SI jinx. This is just regression to
the mean.


You get on the cover of SI when you are the best
athlete in all sports (in America) during the
previous week. Your performance this week is
imperfectly correlated with your performance
last week. You’re unlikely to be the best athlete
in all sports two weeks in a row!

Reward and Punishment

We can see how people might become
convinced that punishment works better than
reward.


You punish someone when they do something
exceptionally bad. Even if the punishment does
nothing, we expect their behavior to regress
back to normal. So it will look like punishment
works.

Reward and Punishment

We can see how people might become
convinced that punishment works better than
reward.


You reward someone when they do something
exceptionally good. Even if the reward does
nothing, we expect their behavior to regress
back to normal. So it will look like rewards make
them behave
worse
.