Essential Issues - Biology EOC Semester 2

onwardhaggardΒιοτεχνολογία

12 Δεκ 2012 (πριν από 4 χρόνια και 9 μήνες)

235 εμφανίσεις

Student Objectives


Semester II

Unit 4: Genetics


Inheritance Patterns

-

Essential Questions:



How can independent assortment and crossing over occur during meiosis?



Why is meiosis necessary for sexual reproduction and how does it allow for genetic
diversity?



How do the laws of segregation and independent assortment affect the analysis of
inheritance patterns?



How does the mode of inheritance (dominance, co
-
dominance, etc.) affect the
prediction and analysis of inheritance patterns?

Students will be
able to:

o

Describe the process of meiosis, including independent assortment and crossing over.

o

Describe the role of meiosis in sexual reproduction, including how these processes may
contribute to or limit genetic variation.

o

Use Mendel’s laws of segregation
and independent assortment to analyze patterns of
inheritance.

o

Identify, analyze and/or predict inheritance patterns caused by various modes of
inheritance.

DNA and RNA



Essential Questions:



How does the process of DNA replication enable genetic informati
on to be
transmitted and used to build proteins?



How do the processes of transcription and translation determine how genes are
expressed?



How is DNA alike in all organisms?

Students will be able to:

o

Describe the process of DNA replication and/or its role i
n the transmission and
conservation of genetic information.

o

Explain the basic process of transcription and/or translation, and their roles in the
expression of genes.

o

Explain
that

the basic components of DNA are universal in organisms.


Human Genetics



Essential Questions:



How can DNA mutate?



Why don’t all mutations result in visible change?

Students will be able to:

o

Describe gene and chromosomal mutations in the DNA sequence.

o

Explain how gene and chromosomal mutation may or may not result in a phenotypi
c
change.

Genetic Engineering



Essential Questions:



Why do scientists use DNA as evidence that all organisms are related?



How can biotechnology have positive and negative impacts on society?

Students will be able to:

o

Explain how similarities in the geneti
c codes of organisms are due to common ancestry
and the process of inheritance.

o

Evaluate examples and/or explain the possible impact of biotechnology on the
individual, society and/or the environment.


Unit 5: Evolution


Theory of Evolution




Essential Qu
estion:



How is the scientific theory of evolution supported by evidence?



How is a scientific claim evaluated?



How do you determine if a source is reliable according to scientific standards?



How do observations lead to scientific inferences in Biology?



How
does sci
ence differ from pseudo
-
science?



How is a theory developed?



How do you decide if something is a theory or a law?



What conditions must be present for natural selection to result in a difference in
reproductive success?



How do mechanisms like genetic

drift, gene flow and nonrandom mating result in
evolutionary change?



How do mutation and genetic recombination increase genetic variation?



How are molecular clocks used to estimate how long ago various groups of
organisms diverged from each other?



How doe
s the Hardy Weinberg equation predict genotypes in a population?

Student
s will be able to:

o

Identify evidence and/or explain how the scientific theory of evolution
is

supported by
the fossil record, comparative anatomy, comparative embryology, biogeography,

molecular biology and observable evolutionary change.

o

Identify ways in which a scientific claim is evaluated (e.g. through scientific
argumentation, critical and logical thinking and consideration of alternative
explanations).

o

Assess the reliability of so
urces of information according to scientific standards.

o

Describe how scientific inferences are made from observations and identify examples
from biology.

o

Identify what is science, what is not science and what resembles but fails to meet the
criteria for sc
ience.

o

Explain the development of a theory.

o

Recognize the differences between theories and laws.

o

Explain and/or describe the conditions required for natural selection that result in
differential reproductive success.

o

Explain and/or describe the scientific
mechanisms, such as genetic drift, gene flow, and
nonrandom mating, resulting in evolutionary; change.

o

Explain and/or describe how mutation and genetic recombination increase genetic
variation.

o

Discuss the use of molecular clocks to estimate how long ago v
arious groups of
organisms diverged evolutionarily from one another.

o

Use Hardy
-
Wei
nberg equation to predict genot
ypes in a population.

Geologic Time



Essential Questions:



How have hominids changed through evolution from early ancestors to modern
humans?



How do scientists explain the origin of life on earth?



What situations and conditions contributed to the origin of life on earth?

Students will be able to:

o

Identify examples of and basic trends in hominid evolution from early ancestry to
modern humans.

o

Des
cribe scientific explanations for the origin of life on Earth.

o

Identify situations or conditions contributing to the origin of life on Earth.

Unit 7: Ecology


Plants




Essential
Question:



How are the structures of plant tissues and organs directly related

to their roles in
physiological processes?

Students will be able
to:

o

Explain how the structures of plant tissues and organs are directly related to their roles
in physiological processes.

Cycles of Matter



Essential
Questions:



How does matter move throug
h different biogeochemical cycles (such as carbon
through the carbon cycle)?



How can energy be transformed from one form to another?

Students will be able
to:

o

Analyze the movement of matter through different biogeochemical cycles.

o

Differentiate among
various forms of energy and that they can be transformed from one
form to another.

Ecosystems and Communities



Essential
Questions:



How do organisms cooperate and compete in ecosystems?



How does energy move through a food web or energy pyramid?



How can
ecosystems be changed by seasonal variations, climate changes and
succession?

Students will be able
to:

o

Explain how organisms cooperate and compete in ecosystems.

o

Describe the energy pathways through the different trophic levels of a food web or
energy pyr
amid.

o

Describe the potential changes to an ecosystem resulting from seasonal variations,
climate changes and /or succession.



Populations



Essential
Questions:



What affects carrying capacity and how can it affect the population size of an
ecosystem?



How
does the chemistry, geography, light, depth, sali
nity and/or temperature of an
aq
uatic system affect what organisms can live there?



How can reducing biodiversity positively or negatively impact ecosystems and
humans?



How do you assess the reliability of so
urces of information according to scientific

standard
s?

Students will be able
to:

o

Use data and information about population dynamics, abiotic factors and/or biotic
factors to explain and/or analyze a change in carrying capacity and its effect on
population

size in an ecosystem.

o

Explain that different types of organisms exist within aquatic systems due to chemistry,
geography, light, depth, salinity and/or temperature.

o

Identify positive and/or negative consequences that result from a reduction in
biodiversit
y.

o

Assess the reliability of sources of information according to scientific standards.


Humans in the Biosphere



Essential
Questions:



How can the actions of humans impact environmental systems and/or affect
sustainability?



How can the environmental
impacts of using renewable and nonrenewable
resources differ?



How can scientific claims be evaluated?

Students will be able to:

o

Predict how the actions of humans may impact environmental systems and/or affect
sustainability.

o

Evaluate possible environmental

impacts resulting from the use of renewable and/or
nonrenewable resources.

o

Identify ways in which a scientific claim is evaluated (e.g., through scientific
argumentation, critical and logical thinking and/or consideration of alternative
explanations).