download - Electronic Journal of Comparative Law


1 Δεκ 2012 (πριν από 8 χρόνια και 8 μήνες)

482 εμφανίσεις


Resources of Life and Culture

Jerzy Koopman

Readers are reminded that this work is protected by copyright. While they are free to use the

ideas expressed in it, they

may not copy, distribute or publish the work or part of it, in any

form, printed, electronic or otherwise, except for reasonable quoting, clearly indicating the

source. Readers are permitted to make copies, electronically or printed, for personal and

sroom use.

1. Introduction

In the last decade, the application of modern biotechnology for agricultural, ecological and
medical purposes has sparked great hopes for the extent to which man can explore and
exploit biological resources for his well

Simultaneously, the commercial use thereof
has led to intense international and multicultural conflicts and debates. These conflicts and
debates hinge on the conflicting claims concerning two of the most important ‘resources of

genetic ma
terial and knowledge. These claims may have a proprietary
character, but too often also relate to spiritual, ecological and ethical considerations. The
proponents of one or the other claim may be driven primarily by commercial motives, but
may equally well

be inspired by cultural opinions. The way in which these claims are
awarded or rejected determines, to a large extent, the overall freedom of access to and use of
genetic material, whether modified or not. Also, it greatly affects the attribution of the
enefits that result from its commercial exploitation. Intellectual property law, and
particularly patent law, has a profound influence on the manner in which said claims may be
awarded. Patents on genetic inventions principally add to the information avail
able for
innovation through the disclosure of the invention in the patent application. At the same time,
though, they grant exclusionary rights to the patentee in regard to the commercial use of the
invention and the genetic material it consists of. Of cou
rse, also the benefits deriving from
such use are exclusively for the patentee. The manner in which genetic inventions can be
patented may be called the internal patent law perspective. It is determined by positive law
and has a technically legal character
. The consequences of the manner in which patents for
genetic inventions are granted may be called the external perspective. The external
perspective deals with broader social outlooks, such as the freedom of access and the use of
knowledge related to gene
tic material and the material itself. These perspectives are
interconnected and interactive. This is exemplified by the manner in which they are dealt
with in the Convention on Biodiversity (CBD) and the Agreement on Trade
Related Aspects
of Intellectual P
roperty Rights (TRIPS).

The implementation of these treaties determines to a


Centre for Intellectual Property Law, Molengraaff Institute for Private Law, Utrecht University, the
Netherlands. This paper is based on a presentation held
at the
Ius Commune

Research School workshop on
Intellectual Property at Edinburgh University School of Law, 19
20 June 2003. Reactions are most welcome.


Convention on Biodiversity, 1993,
available at
>. The Agreement on Trade


large extent the manner in which the ‘global commodity’ genetic material, and the knowledge
pertaining thereto, can be exploited commercially. Also, it directs the role of the gl
obal public
domain in innovation, traditional usages of genetic material and sustainable development.
This paper briefly highlights some of the mirroring interests in genetic material and related

‘the resources of life and culture’

and the im
pact patent law has on the manner
in which they could be safeguarded. Furthermore, national and international initiatives that
are taken for this purpose are briefly analysed. To conclude, some suggestion are presented
on how the seemingly conflicting inte
rests in this field can be reconciled. Also, issues that
would need further research and discussion are formulated, in an attempt to identify the steps
ahead in this highly dynamic field.

2. Biotechnology and the hunt for biopharmaceuticals

For thousand
s of years, human beings have exploited biological resources for medical,
agricultural and other purposes.

Modern biotechnology is only the latest fashion by which
man is able to use his natural environment to feed, cure and house himself. Nevertheless, i
t is
a special fashion in its ‘potential . . . to construct artificial conditions in which specific
variables can be known in such a way that they can be manipulated’.

Modern biotechnology
allows for the direct and tailored modification of the genetic bui
lding blocks of organisms,
their isolation from their uncultivated environments (the genomes) and their application for
new means

i.e. therapies of genetic predispositions of organisms, regardless of whether they
are humans or crops, and the development
of new medicines with advanced curative

The promises of modern biotechnology are reflected in the commercial valuation of
the products that it delivers. In 2002, the European Commission estimated that in 2004 the
world market for biopharmaceu
tical products would amount to EUR 506 billion.

It is
expected that plant biotechnological products, particularly in the pharmaceutical field, will
contribute most to the success of biotechnology. The proceeds generated through the sale of
these biopharma
ceuticals can be gigantic. For example, the pharmaceutical company Merck
& Co. generated over 4 billion US dollars through the sale of

in 1998, while in

Related Aspects of Intellectual Property Rights, 1994; Marrakesh Agreement Establishing the World Trade
Annex 1 C, Legal Instruments

Results of the Uruguay Round
available at


M. Weatherall,
In Search of a Cure: A History of Pharmaceutical Discovery
, Oxford University Press,
1990, p. 3. Aboriginals seem to have had modified organisms for

at least 100,000 years.
D. Posey,
‘Commodification of the Sacred through Intellectual Property Rights’,
Journal of Ethnopharmacology

2000, p. 6.


P. Rabinow,
Making PCR: A Story of Biotechnology
, Chicago University Press, 1998, p. 20.


For the

workings of biotechnology and its potential for a variety of goals,

P.J. Russel,
San Francisco: Benjamin Cummings, 2002, pp. 375 ff. In the remainder of this article, for illustrative reasons
references are made to medical biotechnological

products, particularly pharmaceuticals. Biotechnological
pharmaceutical products are generally referred to as ‘biopharmaceuticals’.


Commission of the European Communities,
Life Sciences and Biotechnology

A Strategy for Europe
COM(2002) 27 final, p. 7
available at


the same year Bristol
Myers Squibb sold over 1,5 billion US dollars worth of

3. The resources of biotechnology

Whilst profitable, the research and development (R&D) of these products is generally
expensive and risky. The successful development of a biopharmaceutical product may cost as
much as 800 million US dollars.

Equally bu
rdensome are the technical and legal risks
involved. The company making the financial investments always faces the risk that its efforts
will not lead to a concrete product after all. And if it does, it still has to overcome a variety of
regulatory hurdles

before it can commence to market and distribute the product.

Of course, money is not the only resource of biotechnology, albeit the only one that is
provided entirely by the developed world

countries such as the US, the UK, France and
Japan. These cou
ntries have a huge economic and technological advantage over other
countries, particularly in the cost
intensive field of biotechnology. They are commonly
referred to as ‘the North’.

The other resources used in bioindustry are, of course, labour,
e and genetic resources and they have a global and diverse origin.

Genetic resources are primarily found in developing countries with a tropical climate,
such as Brazil, Peru and Costa Rica. They are commonly referred to as ‘the South’.
Biodiversity is l
argest in these countries

the variety of genes, organisms and ecosystems.
Presently, most of it is neither publicly known nor easily accessible. The promises of
biotechnology make it worthwhile to intensely prospect this material, screen it for beneficia
properties and, if there is a ‘hit’ (a promising compound or activity), modify it in a variety of
ways to develop a concrete product.


S. Laird (ed.),
Biodiversity and Traditional Knowledge
, London [etc.]: Earthscan, 2002, pp
. 250 ff.

the newsletters ‘Leading Biotechnology Drugs on the Market’ of the e
Med Ad News
available at

>. Apart from the end products, also components of

the genetically
modified organisms concerned could be commercially promising. For example, the biopharmaceutical
, used in the treatment of Hodgkin’s disease, is one of Eli Lilly & Co’s best
selling products. The
medicine is derived from the pl
ant ‘Cantharanthus Rosus’, and the seeds of that plant became highly priced
commodities as well. In 1993, the market price for a kilogram of seeds of this plant was worth 5 million US
A. Sasson,
Biotechnologies in Developing Countries: Present

and Future. Volume 2: International
, Paris: UNESCO, 1998, pp. 228


Nuffield Council on Bioethics,
The Ethics of Patenting DNA
, 2002, p. 14. Please note that these figures
are contested from time to time;
available at


See, e.g.,

M.H.M. Schellekens and J.E.J. Prins, ‘Regulatory Aspects of Genomics, Genetics and
Biotechnology: An Orientation on the Positions of Germany, the United Kingdom and the United Stat
es’, vol.

available at
>. On other risks involved,
A. Streltzer,
‘U.S. Biotechnology Intellectual Property Rights as an Obstacle to the UNCED Conventio
n on Biological
Diversity: It Just Doesn’t Matter’,

(6) 1993, p. 293.



Biotechnology Statistics in OECD Member Countries: Compendium of Existing and
National Statistics
, Paris: OECD, 2001,
available through


, on the resources of biotechnology, J. Janssen, ‘Property Rights on Genetic Resources: Economic
Global Environmental Change

(9), 1999, pp. 313


WEHAB Working Group,
A Framework for Action on Biodiversity and

Ecosystem Management


As indicated above, the genetic resources currently available were shaped in
thousands of years of evolution and human


For prolonged periods of time,
indigenous communities have shaped their environment and its organisms, and thus the
genetic resources embodied therein. Hence, they delivered part of the labour that ultimately
contributes to the development o
f biopharmaceuticals. The character and focus of the labour
of these communities, and its relevancy for the eventual biopharmaceuticals developed, differ
to a large degree from the labour that is conducted within the bioindustry, universities and

gardens. Nevertheless, the manner in which indigenous communities have lived in
and worked with the organisms in their traditional environment has endowed them with
extensive knowledge. Because the non
technological nature of that knowledge, it is
y referred to as ‘traditional knowledge’. Unlike ‘modern knowledge’, pertaining,
e.g., to biotechnology and the way it is applied in bioindustry, traditional knowledge is not
applied according to humanistic principles. It stems from holistic principles and

is applied
according to notions of biocentricism, co
evolution and equality. Its methodology and
approach differ from ‘modern science’ in the sense that it is very practical, does not rely on
empirical verification and connects the physiological character
istics of organisms with their
spiritual ones. For the physiological characteristics, the holders of traditional knowledge,
such as shamans and other types of healers, focus on the visible (phenotypic) properties. In
contrast, biotechnology directly addres
ses the biochemical (genotypic) properties.

For these
reasons, traditional knowledge usually does not contribute directly to the development of a
biopharmaceutical, which ultimately originates from biotechnologies and other ‘modern’
means. However, it is
helpful anyhow and is often indirectly involved in the R&D process of
bioindustry. Traditional knowledge holders regularly put Western scientists, such as botanists
and pharmacologists, on track, indicating to them particular organisms whose medical
ties are known to them. Also, and during later stages of the R&D process, they may
assist in finding beneficial use for the organisms or their compounds, and act as a source for
practical verification.

Clearly, the R&D process for a new biopharmaceutical

product involves many
participants from many disciplines, cultural backgrounds, countries and stages. Briefly stated,
it could commence by means of bioprospection in a biodiversity
rich country, with the help
of an indigenous community. It would further e
ntail extensive screenings of the material thus
collected, modifications and, in the end, clinical trials. After repetitive successful trials, the
company involved may apply for approval by the national authorities and, eventually, the

World Summit on Sustainable Development, 2002, pp. 1
available at
See further
P. Ehrlich and E. Wilson, ‘Biodiversity Studies: Science and Policy’,
(253) 1991, pp. 785
762. It is noted that the progress in biomatics, enabling the selection of recombination of countl
ess genes and
their purported functions, seems to diminish the need to work on the ‘natural material’ itself.


N.A. Campbell and J.B. Reece,
, San Francisco: Benjamin Cummings, 2002, pp. 426
Genetic change occurs without and by means of hu
man intervention. The former is called natural genetic drift.


Posey, ‘Commodification of the Sacred through Intellectual Property Rights’,
supra note 3
, and R.
Barsh, ‘Taking Indigenous Science Seriously’, in: S. Bocking (ed.),
Biodiversity in Canada
: Ecology, Ideas and
, Toronto Broadview Press, 1999, pp. 154


See, e.g.,

G.A. Cordell, ‘Biodiversity and Drug Discovery: A Symbiotic Relationship’,

(55) 2000, pp. 463
480; C. Weiss and T. Eisner, ‘Partnerships for Value Added th
rough Bioprospecting’,
Technology in Society

(20) 1998, pp. 483


biopharmaceutical ma
y be registered and reach the market. In view of the promises of these
products, societies would clearly want to stimulate their development. At the same time, the
complexity and costliness thereof may scare off potential investors and inventors. What
any would be willing to devote its resources to such a project, without being able to
earn back the investment after a successful product has been developed? Here patent law
comes in.

4. Patent law and genetic inventions

A patent grants the patentee the

right to exclude others from commercially using the patented
invention for a period of twenty years.

The underlying assumption is that, through
exclusivity, potential inventors are incited to devote their resources to R&D of new products
and inventions,
because of the prospect of acquiring patents and, therefore, exclusivity in the
exploitation for a limited period of time.

In view of the immensely high investments needed
for the development of biotechnological products, this presumption would particular
ly apply
to bioindustry.

Historically, an ambivalent patent practice existed in regard to inventions involving
biological materials.

In view of the emergence of modern biotechnology, the past decade
has led to a firm practice in this regard. Presently,
thousands of patents are granted for all
sorts of biological inventions every year in the US and Europe.

This development has sparked heated debates. The broadest debate concerns the
ethical and societal aspects of patenting genetic materials.

Some of t
he concerns expressed


Article 63(2) of the Convention on the Grant of European Patents (European Patent Convention

EPC), 1973, 1065 U.N.T.S. 199.


See, generally,

P. Drahos,
A Philosophy of Intellectual P
, Aldershot: Dartmouth, 1996.


the economic analysis provided in S.J.R. Bostyn,
Enabling Biotechnological Inventions in Europe
and the United States
, Munich, EPOscript, 2001, chapter I, and K.W. McCabe, ‘The January 1999 Review of
Article 27 of

the TRIPS Agreement: Diverging Views of the Developed and Developing Countries Towards the
Patentability of Biotechnology’,

(6) 1998, pp. 47


In 1873, Louis Pasteur was granted a patent on ‘. . . improvements in the manufacture and in the
ent of yeast and wort, together with apparatus for doing the same . . .’, US patent 141, 072 (1873), whilst
others were denied patents for inventions working on or consisting of biological materials.
See, e.g.,

A History of Patenting Life in t
he United States with Comparative Attention to Europe and Canada
European Group on Ethics of Science and New Technologies, 2002, pp. 3
available at


See, e.g.,

Genetic Inventions, Intellectual Property Rights and Licensing Practices: Evidence
and Policies
, 2002,
available at

>. For the application of the
requirements of patentability,
see, among others,

Enabling Biotechnological Inventions in Europe and
the United States
supra note 18
(genes and related compounds); G. Van Overwa
Octrooieerbaarheid van
Plantbiotechnologische Uitvindingen

[The patentability of plant biotechnological inventions], Brussel: Bruylant,
1996; J. Koopman, ‘The Patentability of Transgenic Animals: A Proposal for Harmonization’,
(XIII/1) 2002, p
p. 103
204 (animals).


These debates usually focus on the exclusion of patentability for violation of the
ordre public

morality, as incorporated in Art. 53(a) EPC.
See, e.g.,

P. Drahos, ‘Biotechnology, Patents and Morality’,


in that debate are not only related to the consequences of particular inventions

not the primary focus during the examination of a patent application

but also to the manner
in which the criteria for patentability ar
e applied. It mostly concerns the novelty and non
obviousness requirements, and, additionally, the manner in which patent applicants are
required to disclose information to enable others to repeat the process.

Also, the manner in
which the exclusion of pa
tentability of discoveries is applied is intensely debated in the field
of biotechnology.

Despite the existing practice of patenting biotechnological inventions, it
shows that several primary questions continue to be posed, and the controversy has not
eted down.

A debate which is held separately, but is more or less intertwined with both the ethical
and the technical controversy surrounding the patenting of genetic inventions, addresses the
manner in which claims to some of the resources of biotechnol
ogy can be recognized by
means of patent law. At the heart of this debate is the question whether the manner in which
today’s bioindustry prospects biological resources and commercializes the products deriving
from them through patent law amounts to the ‘t
heft’ of knowledge of indigenous
communities and genetic material from the provider countries. Some hold the opinion that
these commercial activities amount to cultural piracy and biopiracy.

5. Piracy?

Two circumstances are supposed to enable the North

to conduct its piracy. First, current
patent law does not readily allow the recognition of different types of knowledge used in
arriving at an invention. Also, the origin of the biological material and the manner in which it
was acquired are irrelevant to

the patentability of an invention or the rights related to a patent
granted. Second, TRIPS has rendered the Northern patent regimes into a global regime, also
where biotechnological inventions are concerned.

1999, p. 441; Nuffie
ld Council on Bioethics,
The Ethics of Patenting DNA
supra note 8
. A recent report of the
European Commission emphasizes that these issues have not been solved yet; European Commission,
Sciences and Biotechnology
supra note 6,

and the efforts of the

European Group on Ethics in Science and New


Articles 52(1) and 83 EPC.


Article 52(2)(a) EPC.
ee, e.g.,

J. Conley and R. Makowski, ‘Back to the Future: Rethinking the
Product of Nature Doctrine as a Barrier to Biotechnology Patents’,
J. Pat. & Trademark Off. Soc’y

(85) 2003,
pp. 301 ff.


It seems to concern all types of biotechnological inventions
, albeit one category, such as ESTs and
SNPs more than any other, for example transgenic plants.
See, e.g.,

. See also,
different types of biotechnological inventions, Nuffield Council on Bioethics,
The Ethics of Patenting DNA
supra no
te 8
; L. Demaine and A. Fellmeth, ‘Reinventing the Double Helix: A Novel and Nonobvious
Reconceptualization of the Biotechnology Patent’,
Stan. L. Rev
. (55) 2002, pp. 303
462; D.M. Gritter,
‘International Conflicts over Patenting Human DNA Sequences in the

United States and the European Union:
An Argument for Compulsory Licensing and a Fair Use Exemption’,
NYU L.R. (
76) 2001, pp. 1623
1691, and
supra note 18.


The term ‘biopiracy’ was introduced in 1994 by the FAO’s Assistant Director
General Obaidullah
ana. ‘FAO Official Blasts Western Biopiracy’, Reuter, 6 June 1994.


5.1 Traditional knowledge and genetic resource

The claim of cultural piracy is established on the following basis. For a variety of reasons,
traditional knowledge can hardly be recognized, let alone rewarded, in present patent
procedures. Recognition of traditional knowledge in a patent procedure is

hampered by the
fact that it is usually not codified, categorized and structured in manners that are common in
the Western world. Languages and methodology are completely different from the languages
and methods of ‘modern science’ with which scientists c
reating biotechnological inventions
work. Hence, it is almost impossible for patent examiners to ‘translate’ traditional knowledge
concepts into those of Western science

and subsequently recognize them in a patent
application. Although some traditional k
nowledge has been described, both by indigenous
communities themselves and by Western scientists, it is not yet done in a coherent and
structured fashion. The same applies to most databases that contain traditional knowledge.

Hence, the information patent

examiners would want to investigate is fragmentized and often
not reliable. However, even if such information would be more readily accessible, it may just
as well not bear any light on the patentability of an invention. There may be a causal relation
ween the use of traditional knowledge and the invention for which a patent application is
filed, but it is likely not to show from the invention. Not only the translation of concepts
‘hides’ traditional knowledge, but also the fact that highly technical pr
oducts, such as
biopharmaceuticals, are the sum of the parts, and traditional knowledge may be the most
indirect one of them. Therefore, even if traditional knowledge contributed directly to the
development of a biopharmaceutical product, it is likely that

it would not be recognized as
such during the patent procedure. It is likely that the patent office will grant a patent for the
invention involved, while it should not, or restrictively, do so because part of it lacks novelty
and/or is obvious.

The so
alled appropriation of traditional knowledge by means of patenting certain
products that partially derive from that knowledge is one side of this problem. Clearly,
indigenous communities and representative organizations seem to have possibilities to fight
outright unjustified patents.

They may act defensively. The other side of the problem may
be that they cannot adequately protect their knowledge and the tangible manifestations
thereof. They lack offensive measures to protect their interests, as their kno
wledge and the


See, e.g.,

> and <


This happened with the notorious neem tree patents of W.R. Grace Inc. It concerned the Indian plant
Azadirachta indica
, locally known as the
roga nivarini
. This plant has been used by Indian farme
rs and
traditional healers for thousands of years, and seems to have characteristics that are useful both agriculturally
and medically. W.R. Grace received several patents on the plant and certain of its compounds and derivative
products, and enforced its
patent proactively. Several groups of ‘traditional users’ in India were threatened with
infringement suits and ordered to halt the commercial exploitation of the plant. Only after prolonged battles in
the media and before the EPO, one of W.R. Grace’s Europ
ean patents (no. EP 436 257 B1) was revoked because
of lack of novelty. The corresponding US patent, no. 512,4349, however, was sustained.

hereon G. Dutfield,
Intellectual Property Rights, Trade and Biodiversity
, London: Earthscan, 2000, pp. 65


n Europe, for example through Article 99 EPC, opposition to the patent, among other things for lack
of novelty.


products deriving therefrom are either not suited for patenting or are considered to have fallen
into the public domain. The public/private domain paradigm and the manner in which certain
information or goods are considered to be public or p
rivate is, at least in the field of
intellectual property, determined mostly by the notion of ‘communication’. This can be
exemplified by the definition of ‘novelty’ in Article 54(1) and (2) of the EPC, according to
which publicly communicated information
belongs to the state of the art and cannot be
patented. This implies that Northern bioindustry generally keeps its knowledge, and certain
inventions, secret until it applies for a patent. It is very conscious of the danger of losing its
claims, and pursues

to make effective use of the law of trade secrets and, ultimately, patent
law to safeguard its interests.

Traditionally, indigenous communities have treated their
knowledge differently. Although traditional knowledge is often held exclusively as well, th
exclusivity does not hinge on the Western concept of communication or secrecy, but rather
on attributes of the keeper of the knowledge. For example, shamans and traditional healers
may hold and apply particular knowledge exclusively, though not because
they themselves
developed it or held it secret from other community members, but because they fulfil certain
spiritual or cultural requirements. Therefore, much of the traditional knowledge relevant for
the development of biopharmaceuticals has fallen into

the public domain. However, even if it
has been kept secret and is first communicated publicly upon filing a patent application, it
would still not be eligible for patent protection. Traditional knowledge has been developed
over generations and in communi
ties over prolonged periods of time. Therefore, it is
impossible to identify the individual inventor

which is necessary for patent protection.
Often, the communities concerned do not even wish to appoint a representative as such since
they feel that the
knowledge involved belongs to all and cannot be attributed to an individual.
A community patent does not exist, however. Also, other patent requirements prevent
traditional knowledge, and certain products deriving therefrom, from being patented. For
e, most of the time the innovations concerned are not immediately industrially

It is important, however, that some indigenous communities do not only
endeavour to prevent others from appropriating their traditional knowledge through patent
, but do not want to make use of that exclusive proprietary right themselves either. Many
indigenous communities do not recognize the concepts of individual ownership, exclusion
and competition that underlie Western property law regimes.


P. Drahos and J. Braithwaite, ‘Intellectual Property, Corporate Strategy, Globalisation: TRIPS in
Wis. Int’l L.J.

(20) 2002, p. 451.

Drahos and Braithwaite analyse the manner in which large Western
corporations have become dependent on intellectual property law and tailor their commercial activities and
conduct accordingly.


On the difficulties of offensively protecting traditional kn
owledge and related products through patent
see generally
N. Roht
Arriaza, ‘Of Seeds and Shamans: The Appropriation of the Scientific and Technical
Knowledge of Indigenous and Local Communities’,
Mich. J. Int’l L.
(17), 1996, pp. 919
965 and F.W.
heide and J.J. Brinkhof (eds.),
Intellectual Property Law: Articles on the Legal Protection of Cultural
Expressions and Indigenous Knowledge
, Antwerp [etc.]: Intersentia, 2002 (Molengrafica Series, 13).


The Crucible Group II,
Seeding Solutions: Optio
ns for National Laws governing Access to and
Control of Genetic Resources
, vol. 2, Rome: IPRC
IPGRI, 2001; J. Boyle,
Of Shamans, Software and Spleens
,Cambridge, Mass.:

Harvard University Press, 1996; D. Posey and G. Dutfield,
Beyond Intellectual Property

Ottawa: International Development Research Centre, 1996. This is also expressed in various statements made by
indigenous communities and their representatives.
Statement from the International Workshop on
Indigenous Peoples and Development
, 1997;
Sabah Statement on the Protection and Conservation of


The diverse orig
in of traditional knowledge makes the protection thereof even harder.
Cultures and their manifestations

whether they are scientific, spiritual or artistic

generally accessible, open and dynamic. Like human beings from all cultures, indigenous
nities have exchanged much knowledge and many customs over time. Therefore, it is
difficult to identify the communities to which the knowledge should predominantly be
attributed. The fact that many communities, sharing similar knowledge, reside in differen
countries further complicates the matter.

A similar situation exists in regard to genetic resources and reflects upon the claim of
biopiracy. As stated above, most genetic resources are found in the South

in developing
countries with a tropical clima
te. Presently, the origin of the material used in the development
of an invention or the manner in which the inventor acquired it is irrelevant for

Indication of the origin of the material used is only required if it concerns a
rare materia
l, which the patent examiner needs to acquire himself to check whether the
invention can be repeated (enablement).

Consideration 27 of the European Biotechnology
Directive states that the geographical origin of biological material must be disclosed in the

patent application if the invention deals with such material.

However, this consideration has
not been repeated and included in the Directive itself, and can therefore not be applied. Also,
Consideration 27 explicitly states that the obligation to disclo
se the origin of biological
materials used in the development of the invention does not affect the examination of patent
applications or the validity of the rights related to patents granted. The origin of the

materials used in the development of
an invention is irrelevant for the patentability of the
invention since the latter focuses on the novel intellectual effort, contributing to technological
progress. The societal aspects of a particular technological step forward, for example the
of the patent applicant when acquiring the material used in the invention or the
danger of application of a certain invention, are deemed irrelevant and are to be regulated by

Indigenous Knowledge,
1995; the
Suva Statement on Indigenous Peoples’ Knowledge and Intellectual Property
, 1995; the
Statement from the COICA/UNDP Regional Meeting on Intellectual Property Ri
ghts and
, 1994; the
Julayinbul Statement on Indigenous Intellectual Property Rights
, 1993;
Declaration and Indigenous Peoples Earth Charter
, 1992;
Mataatua Declaration on Cultural and Intellectual
Property Rights of Indigenous Peoples
, 1992; the
Declaration of Principles of the World Council of Indigenous
, 1984;
availabe at
>. These declarations have in common that
they consider knowledg
e, land and natural resources, such as genetic material, to be inseparable. Indigenous
communities have responsibilities for their natural environment which relate to ‘guardianship’ or
‘custodianship’ and are not considered to be rights that could be alien
ated or otherwise exploited for one’s
individual benefit, like a property right.


On the natural exchange between cultures,

R.J. Coombe, ‘The Properties of Culture and the
Possession of Identity: Postcolonial Struggle and the Legal Imagination’ in: B.

Ziff and P.V. Rao (eds.),
Borrowed Power: Essays on Cultural Appropriation
, New Brunswick: Rutgers University Press, pp. 74 ff.
Attempts to solve these problems have been made, for example by the establishment of representative
organizations, which would
be entitled to decide upon transfer and the future commercial use of the knowledge
and would divide the proceeds thereof to the communities they represent;
supra note 31.


See, e.g.,

Article 27 TRIPS. Patents can be granted for inventions in all areas of
technology, and
regardless of the location of invention and whether components thereof are imported or not.


WIPO/GRTKF/IC/4/11, p. 27; WIPO/BIOT/99/1; WIPO/SCP/3/11, §208.


European Council Directive 98/44/EC, 1998 OJ L 213, pp. 13


other regimes.

However, even if one is inclined to include considerations about

the origin of
the material and the manner in which a patent applicant has acquired such in the examination
procedure, the legal ramifications thereof would be hard to determine. Should the provider of
such material benefit from the invention? If so, how s
hould this be accomplished? One may
doubt the basis therefore as the provider did not actually contribute intellectually to the
invention. Also, his exclusive claim to the tangible material concerned may be controversial.
The same genetic material is prese
nt in many countries. Giving preference to a benefit
sharing claim from one or the other country may lack a legitimate basis.

5.2 Globalization of intellectual property

The second circumstance supposedly enabling the North to conduct its cultural piracy

biopiracy is related to the implementation of the TRIPS. The TRIPS was concluded in 1994,
in the course of the establishment of the World Trade Organization (WTO). Ratification of
TRIPS is a prerequisite for membership of the WTO. Of course, developin
g countries
practically had no choice but to adhere to TRIPS. Their economic development made it
absolutely necessary to join the WTO, which allows them to freely trade their products
around the world. Hence, they were forced to implement TRIPS in their na

The North insisted on the connection between TRIPS and the WTO as it would
enable it to effectively enforce the intellectual property rights pertaining to some of its most
important export products, i.e. technology and artistic creati
ons such as medicines and

At the same time, it is clear that developing countries do not have the means to
participate in the ‘race to innovation’. The state of their technological and economic
development does not allow them to compete with equal

Therefore, the South feels


See, e.g.,

Convention on the International Trade in Endangered Species of Wild Fauna and Flora,
1973 (CITES). CITES regulates the import and export of endangered species;
available at
>. On the stance that paten
t law is not the appropriate instrument to deal with all sorts of
societal aspects of inventions,
see e.g.
R. Crespi, ‘Patenting and Ethics: A Dubious Connection’,
J. Pat. &
Trademark Off. Soc’y

(85) 2003, p. 47; U. Schatz, ‘Patentability of Genetic Engine
ering Inventions in EPO
Int’l Rev. Indus. Prop. & Copyright L.
(1) 1998, p. 2.
But see, e.g.,

Arriaza, ‘Of Seeds and
supra note 30,
pp. 942


J. Vogel, ‘The Successful Use of Economic Instruments to Foster Sustainable Use

of Biodiversity:
Six Case Studies from Latin America and the Caribbean’,
Biopolicy Journal
(2) 1997, pp. 5
7. Vogel analyses
among other things the relation between the lack of scarcity of genetic resources and the economic valuation
thereof in benefit
aring agreements.


The grace periods that were granted to certain developing countries pursuant to Articles 65 to 67
TRIPS are expired now, or about to expire, or are, for most countries, not applicable given the exclusion of
pharmaceuticals in Article 70
(8) and (9). The Declaration on the TRIPS Agreement and Public Health (‘Doha
declaration’), allowing further postponement to 2016, is only applicable to the least developed countries.
WT/MIN(01)/DEC/2, 20 November 2001.


For an extensive overview of the c
ircumstances leading to the conclusion of TRIPS,
see, among others,

Drahos and Braithwaite, ‘Intellectual Property’,
supra note 29
, and S. Sell, ‘Post
TRIPS Developments: The
Tension between the Commercial and Social Agendas in the Context of Intellectual
Fla. J. Int’l L.
(14) 2002, pp. 193 ff.


Machlup already concluded that developing countries should not implement intellectual property law
F. Machlup,
An Economic Review of the Patent System
, Washington: US Government Printing


that it is not only confronted with cultural piracy and biopiracy, but that it is even forced to
collaborate. It not only finds that its genetic and knowledge resources are appropriated, but
that it must even legitimize th
e ‘theft’ through granting and enforcing intellectual property
rights. In view of this, some of these countries have made national legislation providing
measures against the appropriation of those resources through intellectual property law.

6. National
legislation to prevent piracy

In the past few years, many developing countries have implemented
sui generis
regimes for
both the offensive and the defensive protection of their genetic resources and the traditional
knowledge of their indigenous communitie
s. For example, Costa Rica, Brazil, Peru and India
have implemented legislation for that purpose.

These statutes have in common that they
condition access to genetic resources and traditional knowledge upon the fulfilment of certain
requirements, such as
prior informed consent of a national office governing the country’s
biological resources and the indigenous communities involved. Furthermore, biological
samples and knowledge can only validly be transferred if proper benefit
sharing agreements
are conclud
ed, allowing the source country and the indigenous communities involved to share
in the proceeds deriving from the commercial exploitation of the material or knowledge
concerned. The statutes presuppose the existence of intellectual property rights in the
materials and knowledge concerned, and often negate the existing public/private domain
paradigm. Even the transfer of biological samples or of traditional knowledge does not
exhaust the proprietary rights pertaining thereto

the provider usually remains e
ntitled to
exploit the object of transfer regardless of any subsequent intellectual property rights of the
acquirer. Most importantly, these statutes generally indicate that within the countries
concerned no intellectual property rights can be obtained if
the aforementioned requirements,
such as benefit sharing, are not fulfilled. Sometimes, violating the requirements of these
statutes amounts to a criminal offence and may be prosecuted accordingly.

Obviously, these statutes violate TRIPS in various manne
rs, most importantly by
negating the distinction between the public and the private domain, adding additional
requirements to the patentability of inventions and apparently providing for continuous
licenses to the transferors by operation of law. However,
these statutes seem to correspond
more or less with another treaty which existed before the conclusion of TRIPS


ice, 1958.

See also
C. Juma, ‘Intellectual Property Rights and Globalisation: Implications for Developing
Countries’, Center for International Development, Harvard University, 1999 (Science, Technology and
Innovation Discussion Paper No. 4), and J. Lerner,

‘Patent Policy Innovations: A Clinical Examination, 53

(53) 200, pp. 1841 ff.


Costa Rica implemented the
Ley de Biodiversidad
, A.L. No. 7788 (1998),
available at
>; Brazil implemented its
PM 2.186
available at
>; Peru implemented the
Ley sobre la conservación y
approvechamiento sotenib
le de la diversidad biológica,
C. no. 26839, 2002,
available at
>; India implemented the
Biological Diversity Act
, B. 93/2000, 2002,
available at


The Brazilian statute illustrates this. Recently, a German national was suspected of committing
biopiracy, and was arrested in Brazil. M. Astor, ‘German Man Arrested in Brazil Accused of Biopiracy’,
Associated Press, 4 September 20


Convention on Biodiversity.

7. The Convention on Biodiversity: Connecting innovation with conservation?

The Convention on Biodiversity
was concluded in 1993, one year before the conclusion of

Its main goals comprise the conservation of biodiversity, sustainable exploitation of
its components and the equitable and fair sharing of the benefits deriving therefrom.
Referenced national

sui generis

regimes are mostly based on a few provisions in the CBD.
Most importantly, Article 3 of the CBD states that states have sovereign rights over their
biological resources. Article 8(j) of the CBD obliges states to:

Subject to its national legis
lation, respect, preserve and maintain knowledge, innovations and
practices of indigenous and local communities embodying traditional lifestyles relevant for the
conservation and sustainable use of biological diversity and promote their wider application
ith the approval and involvement of the holders of such knowledge, innovations and
practices and encourage the equitable sharing of the benefits arising from the utilization of
such knowledge, innovations and practices.

Article 8(j) is related to Articles

15 and 16 of the CBD, which are generally considered to be
the ‘heart’ of the convention.

Article 15(1) and (2) repeat that states have sovereign rights
over their biological resources insofar as they are the country of origin or have acquired them
in co
mpliance with the CBD. Pursuant to Articles 15(4) and (5), access to biological
resources is conditioned upon prior informed consent of the source country. Furthermore,
Article 15(7) states that the countries involved should provide for a mechanism that al
fair and equitable sharing of the benefits arising from the commercial and other utilization of
genetic resources. Article 16 of the CBD concerns access to and transfer of technology.
Article 16(2) states that developing countries are to have access t
o technology under ‘fair and
most favourable terms’, albeit consistent with the ‘adequate and effective protection of
intellectual property rights’.

Clearly, both bioprospecting activities and the commercialization of the products
resulting therefrom

ong other things by means of intellectual property law protection

are subjected to both TRIPS and the CBD. It is the interface between these treaties that
determines the manner in which various commercial and other interests in genetic resources
and vari
ous types of knowledge can be safeguarded. Nevertheless, it is clear that the CBD
and TRIPS are not easily implemented fully at the same time. Some of their provisions do not
seem to correspond or are even outright in conflict with each other. For example,

in principle,
the exclusive rights of the patentee (Article 28 of TRIPS) would not allow ‘fair and equitable’
sharing (Articles 15 and 16 CBD).


Supra note 2.


Given the scope of this paper, only brief references are made to these Articles.


See, generally,

on the interface between the CBD and TRIPS S.R. King et al., ‘Biological Diversity,
Indigenous Knowledge, Drug Discovery and Intellect
ual Property Rights: Creating Reciprocity and Maintaining
Journal of Ethnopharmacology

(51) 1996; Ch. McManis, ‘The Interface between International
Intellectual Property and Environmental Protection: Biodiversity and Biotechnology’,

76) 1998, pp.


Nevertheless, and on a general level, both the CBD and TRIPS allow the
consideration of interests tha
t, strictly speaking, fall outside their scope. Hence, Article 16 of
the CBD explicitly states that intellectual property rights should be recognized and respected.
Similarly, Article 7 of TRIPS emphasizes one of the underlying aims of the global
ual property law regime:

The protection and enforcement of intellectual property rights should contribute to the
promotion of technological innovation and to the transfer and dissemination of technology, to
the mutual advantage of producers and users of t
echnological knowledge and in a manner
conducive to social and economic welfare, and to a balance of rights and obligations.

Moreover, Article 31 of TRIPS provides for granting compulsory licenses if the potential
licensor has unsuccessfully made reasonab
le efforts to acquire such a license from the
patentee, or a situation of national emergency exists.

In my opinion, it is from these
ambivalent and unclear interfaces that a fully integrated international bioprospecting regime
should be developed.

8. In
itiatives to reconcile TRIPS and the CBD

Several international governmental organizations (‘IGOs’) have taken initiatives to that
extent; however, to discuss them falls outside the scope of this paper. Briefly, the
characteristics and aims of the most rel
evant initiatives

those taken by the World Intellectual
Property Organization (WIPO) and the Secretariat of the CBD

will be considered.

and the Secretariat of the CBD

through its working groups and expert panels

work closely
together in pursu
ing to integrate the two instruments and to reconcile some of the interests

WIPO has conducted an extensive fact
finding mission, to inquire into possible means


Also, the Preamble and Article 8 of TRIPS emphasize the importance of social and public interests and
show that this instrument is not narrowly tailored to trade issues only. It is noted, however, that these provisions

not offer developing countries means to redress certain effects of TRIPS. Past conflicts about the
implementation of TRIPS caused the US to consider the imposition of severe trade sanctions on the developing
countries that allegedly were not fulfilling t
heir international obligations,

Argentina, Brazil, Thailand and
South Africa.
See, e.g.,

K. Maskus,
Intellectual Property Rights in the Global Economy
, Institute for
International Economics, 2002, p. 178,
available at
> and E. ’t Hoen, ‘TRIPS,
Pharmaceutical Patents, and Access to Essential Medicines: A Long Way from Seattle to Doha’,
Chi. J. Int’l L.
(3) 2002, p. 2. The North thus has an effective tool enabling it to force developing countries to com
ply with its
wishes, perhaps sometimes even when the latter do not have to comply strictly pursuant to TRIPS or other
international instruments.


Other IGOs addressing the issues related to the interface between CBD and TRIPS are (with reports
and keyword
s): WTO (IP/C/W/195; IP/C/W/228; WT/GC/W/233; IP/C/M/32 (§128); IP/C/M/33 (§121);
IP/C/W/347/Add.1; IP/C/W/370; trade, medicines); UNCTAD (TD/B/COM.1/EM.13.3 (§17); trade,
development); FAO (CPGR/91/12’ CPGR
95/8; CGRFA
Ex3/96/LIM/2; CGRFA
BSP1,2,4 and 8; food, agriculture, genetic resources); UNESCO (CLT
2002/CONF.203/5; CLT
2002/CONF.203/3 (and Rev.); CLT
2002/CONF.205/5; CLT
culture, natural sciences, traditional knowledge); WHO (EB111.R12/2003; W
EB87.R24/1991; WHA41.19/1988; traditional medicine).


for the protection of the interests of traditional knowledge holders.

Clearly, most

manifestations of traditional knowledge cannot be protected pursuant to current intellectual
property law. Therefore, WIPO suggests to develop of a
sui generis

regime. Its most
important requirements would be that it concerns


edge with
which the applying community has a
cultural association
. Rightholders would have the right
to prevent the reproduction and fixation of literary and artistic expressions, and the
exploitation of technical elements.

sui generis


for traditional
knowledge may solve some of the conflicts, many problems remain, and further study is
required. It would be good to clarify the relation of such a regime with existing intellectual
property law, delineate the subject matter, develop method
s to identify the proper
communities, monitor infringements and mechanisms for enforcement and provide sufficient
legal certainty given the dynamic nature of the knowledge protected.

Also, the proposed

regime would not address non
economic int
erests in the subject matter, which, as was
noted above, is of great importance to the communities involved.

Another part of the WIPO initiative is aimed at allowing patent examiners to consider
traditional knowledge when they inquire into the novelty and

obviousness of

For this purpose, WIPO has started an experiment with the Traditional
Knowledge Digital Library, which in the future could be integrated in its Intellectual Property
Digital Libraries.

The Traditional Knowledge Digital Lib
rary is to provide concise,
categorized and standardized information on prior traditional knowledge and to allow patent
examiners to apply the novelty and non
obviousness requirements accurately. Whilst
increasing the chance that appropriation of tradition
al knowledge will be noticed during
patent procedures, this initiative has one important downside. It puts the traditional
knowledge concerned in the public domain, disabling the communities concerned even more
in their attempt to obtain protection offensi

Also the working groups and expert panels of the CBD, pursuing to pave the road for
implementation, have made considerable efforts. A major achievement is the conclusion of
the Bonn Guidelines on Access to Genetic Resources and Fair and Equitable Sh
aring of the
Benefits Arising out of their Utilization in 2002.

The Bonn Guidelines may give providers
of genetic material and/or knowledge and the acquirers and users thereof directions in the
drafting of agreements that comply with both the CBD and TRIP
S. These so
called Material
Transfer Agreements are to safeguard ethical and users’ interests of indigenous communities,
to regulate the acquisition and enforcement of intellectual property rights in common consent,


Report on Fact
Finding Missions on Intellectual Property and Traditional Knowledge

Intellectual Property Needs and Expectations of Traditional Knowledge Holders

Geneva, April
See also
ABS/1/4, p. 8.


Report on Fact
Finding Missions
, p. 226.


WIPO/GRTKF/IC/4/8, pp. 22


Report on Fact
Finding Missions
, p. 217.


WIPO/GRTKF/IC/2/6, p. 26. The database is
available at


UNEP/CBD/COP/6/20 and COP Decision VI/24,
available at


yo provide accurate descriptions of the
genetic material and related traditional knowledge
concerned and to specify the ways in which such may be exploited commercially (Articles
44 A). Pursuant to Articles 44
50 A, Material Transfer Agreements are also to provide
specified ways of benefit
aring. However, the Bonn Guidelines go further than providing
suggestions for the contents of Material Transfer Agreements only. They also propose to link
directly the patentability of an invention consisting of or made by using of genetic material
traditional knowledge, to prior informed consent of provider countries and/or
indigenous communities and fair and equitable benefit
sharing (Articles 1 and 2 C). Clearly,
several of the referenced
sui generis
regimes in the South already provide for these
requirements for patentability.

Despite the steps made by the promulgation of the Bonn Guidelines, several key
problems remain. The competence of indigenous communities and provider countries with
respect to the traditional knowledge and genet
ic material subjected to the Material Transfer
Agreements remains uncertain. As indicated above, this uncertainty derives from the diverse
origin of both genetic material and traditional knowledge. This will directly affect the validity
of the agreements a
nd raises the question whether courts of law will be inclined to uphold and
enforce them. Also, the manner in which the ethical interests of communities should be
aligned with the enforcement of intellectual property law pursuant to TRIPS remains unclear.
Furthermore, although the rights and obligations in regard to the initial knowledge and
material may be specified in the agreements, the legal ramifications thereof for derived
inventions and products are not articulated. In regard of the purported additio
nal requirements
for patentability

prior informed consent and benefit sharing

questions remain as well.
What would be the extent of these requirements in view of the indirect relation between
initial material and knowledge, and the eventual invention (
end product)? When are the rights
of the provider countries and communities exhausted? And what is the legal status of these
requirements? Are they formal or substantive ones, i.e. affecting the validity of patents?

Nevertheless, several botanical gardens
, controlling a lot of the
ex situ

material originating in developing countries, adhere to the Common Policy Guidelines for
Participating Botanical Gardens that correspond with important elements of the Bonn

Also, collaborations betwe
en public and private participants in bioprospecting
activities have led to grassroots initiatives through which some of the interests concerned
may be reconciled. For example, the projects of the International Cooperative Biodiversity
Group (ICBG) aim to
conduct bioprospecting activities in a variety of developing countries,
among which Peru and Surinam, in compliance with Articles 8(j), 15 and 16 of the CBD. The
ICBG consists of universities, companies, indigenous communities’ representative

and national governmental institutes, both from the North and the South. By
means of a combination of contractual instruments, such as prospecting, transfer of know
how, and trade secret agreements, and the sharing of intellectual property rights eventual
obtained, the ICBG pursues to integrate both the CBD and TRIPS.

Nevertheless, the ICBG


For a national initiative to reconcile both treaties in the
country Belgium,

G. Van Overwalle,
‘Belgium Goes Its Own Way on Biodiversity and Patents’,
2002, p. 233.


Available at
>. Botanical gardens from around the
world followed these guidelines. Thus far, however, no Dutch botanical garden participates.


> and J.P. Rosenthal,
The International Cooperative


projects are severely criticized, mostly because they do not address the non
importance of traditional knowledge. Also, from a commercial perspective the re
latively low
royalty rates and other financial benefits awarded to developing countries and indigenous
communities have led to complaints.

9. Where to go from here?

The manner in which present
day biopharmaceuticals are developed shows that the classic
concept of centre and periphery is no longer applicable, neither economically nor culturally.
Local, regional and global interests are inherently connected. The globalization of patent law
pursuant to TRIPS greatly adds to this interconnection.

In my o
pinion, one should,
however, not ignore the monoculturally determined precept of intellectual property law.
Patent law is supposed to stimulate certain types of innovation. It is one of the means by
which societies, with a certain level of technological de
velopment, can strive to arrange
economic growth. Conversely, patent law is the ‘product’ of a cultural arrangement as well. It
seems to me that the application of a monocultural legal concept, such as patent law, to a
multicultural world, where different
countries have different policy aims and economic
needs, is problematic. One may doubt whether the rigid application of TRIPS leads to
justified outcomes. This doubt may even increase given the particular features of
biotechnological inventions. Other than

many other types of inventions, such as mechanical
or electronic ones, they seem to build on a combination of substantial intellectual and
practical contributions. Many of these go unnoticed when the innovator is awarded for his
beneficial efforts through

the grant of a patent. Hence, indigenous communities have
modified biological materials in their environment for thousands of years, but are mostly left
handed. The efforts made, for example by WIPO and the Secretariat of the CBD, to
provide them wi
th a share in the benefits of exploitation may be inappropriate. They may not
correspond with the needs and expectations of these communities, especially because of their
differing cultural perspectives on how one could appropriately exploit natural resour
Another complicated matter relates to the claims of biodiversity
rich countries to the genetic
resources present in their territories. These claims have been honoured in the CBD, and
countries now have sovereign rights over their genetic resources. Th
e actual basis for this
sovereignty is, in my opinion, extremely ambiguous. Increasingly, calls are made to treat
genetic resources as the common heritage of mankind.

Even more so, the legal

Biodiversity Program: A Benefit
Sharing Case Study for the Conference of the Parties to the Convention on
Biological Diversity
ailable at


See, e.g.,

interview with J. Martínez Alier,
Deuda ecológico y biopiratería
, 2002,
available at



on the concept of economic and cultural centres and peripheries, F. Lionnet, ‘
Logiques métisses
Cultural Appropriation and Post
olonial Representations’,
College Literature
, (10) 1992, p. 116.


See, e.g.,

The International Undertaking on Plant Genetic Resources for Food and Agriculture (FAO,
available at

>; the Universal Declaration on the Human Genome
and Human Rights (UNESCO, 1997),
available at


D.A. Cleveland and S.C. M
urray, ‘The World’s Genetic Resources and the Rights of Indigenous Farmers’,
Current Anthropology

(38/4) 1997, p. 481; The Council for Responsible Genetics,
The Blue Mountain
available at
See also


ramifications of national sovereignty over genetic resources are

unclear and may lead to
equivocal rights and obligations. It is my opinion that both the CBD and the Bonn Guidelines
on Access to Genetic Resources and Fair and Equitable Sharing of the Benefits Arising out of
their Utilization wrongly mix rights and obli
gations pertaining to tangible objects and
intangible ones

intellectual innovations. This conceptual confusion will not facilitate a
further integration of the CBD and TRIPS and may diminish the chance that present conflicts
will be resolved in the futur

Probably, the reconciliation of the various interests in genetic resources and
knowledge, used in the development of biopharmaceuticals, can only occur through a change
of conduct of all participants. Patent examiners should pursue to enhance their mea
ns of
accurately examining the novelty and non
obviousness of inventions. Bioindustry should
recognize the contributions of others to the inventions they develop and patent. The North

the developed world

should seek to stimulate its industries in doing

so and may find ways of
approaching the TRIPS obligations of developing countries with some leniency. The South

the developing world

may want to benefit from its genetic resources, while simultaneously
recognizing the difference between ‘raw’ tangible

material and the eventual invention
deriving therefrom. Indigenous communities should pursue to protect their interests
proactively, either through
sui generis

regimes or by other means, but should also allow
others to continue their activities and recogn
ize that legal uncertainty may have detrimental
effects on the interests of bioindustry. Hence, if they participate in global commercial
activities, they should also attempt to play by the rules and, for example, organize them in
such a manner as to allow
others to have legal certainty.

Obviously, it is the rules that complicate the endeavoured change of conduct; and it is
the rules, which, in my opinion, do not suit the present situation of bioprospection and
commercialization of the products deriving the
refrom. Where to go from here? I would
suggest the following.

First, attempts to protect the interests of developing countries in reaping some of the
benefits obtained through exploitation of their genetic resources should be distinguished from
s to protect the interests of indigenous communities. The former may have control
over tangible resources, whereas the latter have intellectually contributed to the development
thereof. In my opinion, only the claims of indigenous communities may affect th
patentability of inventions, because they influence the novelty or non
obviousness thereof.
The claims of developing countries are hard to recognize in the realm of patent law

it would
open the door to a variety of claims of the ‘owners’ of tangible ob
jects used in the making of
an invention and may therefore blur the distinction between the intangible (intellectual
creation) and the tangible (the manifestation of such a creation). The former is subject to
intellectual property law, whereas other legal
instruments may apply to the latter.

Second, if one concludes that indigenous communities have indeed significantly
contributed to the formation of particular genetic resources, one may want to reward these
communities. If this cannot be done according to

day patent law, one should consider
changing that regime or develop an alternative instrument. Before initiating this, it is
recommended that the actual contributions of the communities concerned be clarified. The
same applies to the relevancy of
their traditional knowledge for the development of
biopharmaceuticals. When becomes the assistant a co
inventor? Subsequently, the standards
for patentability

and perhaps the ‘technical focus’ of that law

may need alteration in order
to allow the prote
ction of more types of innovations. A
sui generis
system may be developed



instead. However, given the manner in which the contributions to the actual biotechnological
invention may be blurred, one may consider developing such a system for the


hand, instead of for one of its resources, i.e. traditional knowledge; a
sui generis

tailored to, for example, plant biotechnological inventions. The present initiatives to develop
sui generis

regime particularly for traditional knowledge may sho
w to be unworkable. How
is it to be integrated into the present patent law regime? How should the non
cultural considerations be dealt with?

The claim of cultural piracy and biopiracy needs to be analysed. According to
Law Dictionary


edition), piracy consists in ‘the unauthorized and illegal reproduction or
distribution of materials protected by copyright, patent or trademark law’. Also, and related to
tangible objects, it could mean: ‘robbery, kidnapping or other criminal offence com
mitted at
sea’ or ‘the crime of using force or threat to seize control of an aircraft, especially one in
flight’. Clearly, these definitions, neither under present general property law nor under
intellectual property law, directly apply to genetic resource
s and traditional knowledge. A
clear understanding of the question whether developing countries and indigenous
communities have a justified ‘proprietary’ claim to the resources concerned is necessary

if so, whether the conduct of certain bioprospecto
rs amounts to piracy.

Extensive analysis of the application of the novelty and non
obvious requirements to
the inventions concerned is required. Moreover, a full
blown analysis of the differing
concepts and methodologies of ‘traditional’ and ‘modern’ scie
nce is needed. Also, in the
approach suggested cultural perspectives on the exploitation of natural resources, innovation
and proprietary concepts would have to be compared. Do the principles underlying patent law
necessarily differ from the principles und
erlying the concepts of guardianship or
custodianship, applied in other cultures? Legal
philosophical analysis would offer the insight
required, and possibly show that these perspectives, and therefore the claims deriving from
them, are not so much in conf
lict as may seem at the outset.

I would recommend focusing on the potential consequences of any possible change in
the manner in which inventions may be protected by patent law. These changes may
drastically influence the speed of innovation in the highly

promising field of biotechnology.
While seeking to shape new concepts, embodying new approaches to innovation and the
exploitation of knowledge and genetic resources, one should not ignore the presupposed
positive effects of present
day patent law.

To co
nclude, I recommend that the North and its bioindustry participate actively in
the debate and contribute constructively thereto. One reason may be that the bioindustry
would not want to be confronted with opposition procedures in which the validity of its
patents is disputed. It needs legal certainty to be able to conduct its activities successfully.
Another reason may be more fundamental. Decency may require a positive approach to the
claims of developing countries and indigenous communities. The North has

initiated both the
global prospecting of genetic resources and the global application and enforcement of
intellectual property law. As the famous Dutch Admiral Piet Heyn once observed, referring to
the original inhabitants of the areas under Dutch colonia
l rule: ‘De vriendschap moet van
onse zijde beginnen: Want wij soecken haer ende niet zij ons.’


Freely translated: ‘Friendship should be initiated by us, because we are looking for them, whereas they
are not lo
oking for us’; quoted in C.R. Boxer,
Zeevarend Nederland en zijn wereldrijk 1600
, Amsterdam:
Maarten Muntinga, 2002 (Rainbow pockets), p. 322 (original title:
The Dutch Seaborne Empire 1600
London: Hutchinson, 1977).