Module 230 – Pure and Applied MicroBiology - University of York

muskrateurekaΒιοτεχνολογία

12 Φεβ 2013 (πριν από 4 χρόνια και 6 μήνες)

341 εμφανίσεις











Module 230

Pure and Applied Microbiology

Enterprise Resource














In conjunction with




2

Module 230

Pure and Applied Microbiology

Enterprise Resource



INTRODUCTIO
N TO THIS RESOURCE

ERROR! BOOKMARK NOT
DEFINED.

AGRICULTURAL USES OF

MICROBIOLOGY

6

B
IOLOGICAL CONTROL

6

Fungal biocontrol of insects.

6

Bacterial biocontrol

6

Viral biocontrol

6

Company Case study:

6

Other References

6

F
UNGAL
I
NOCULATION

7

Arbuscular Mycorrhizal Fungi (Glomales)

7

Black Truffles

7

GM

R
HIZOBIUM
-

S
INORHIZOBIUM MELILOT
I

STRAIN
RMBPC
-
2

7

ENVIRONMENTAL USES O
F MICROBIOLOGY

9

S
EWAGE
T
REATMENT AND
B
IOGAS

9

B
IOFUELS

9

B
IOREMEDIATION OF HAZ
ARDOUS WASTES OR POL
LUTANTS

9

Land based bioremediation

9

Water based bioremediation

9

Bioremediation Case Studies

10

Further references and Links

11

M
ICROBIAL
S
UPPLIERS

11

R
EFERENCES

11

USES OF MICROBIOLOGY

IN FOOD

12

P
ROBIOTICS

12

C
HEESE

12

B
READ

12

B
EER

12

S
OY
S
AUCE

12

INDUSTRIAL SCALE FER
MENTATION

13

F
OOD

13

Cheese

13

Bread

13

Beer

13

Su
gar

13

Soy Sauce

13

E
NZYMES AND CONVERSIO
NS

14

Enzymes

14

Amino Acids

14


3

Steroids

14

C
ASE STUDIES OF INDUS
TRIAL FERMENTATIONS

14

Subtilisin

14

Glycerol (Glycerine)

14

Penicillin

14

PHB (Poly(3
-
Hydroxybutyrate)

15

Bovine Somatotrophin

15

Aspartame sweetener

15

USES OF MICROBES IN
OTHER INDUSTRIES

16

F
ERMENTATIONS

16

M
ICROBIAL
E
NHANCED
O
IL
R
ECOVERY
(
MEOR)

16

Exo
-
Polymer floods

16

Well acidising

16

Oil channel plugging

16

Paraffin wax and scale removal from well heads and pipelines.

16

Pipe and tanker cleaning

17

Additional MEOR Resources

17

M
ICROBIAL METAL RECOV
ERY FROM WASTE MININ
G ORE

17

Additional Microbial Mining

Resources

17

MEDICAL USES OF MICR
OBES

18

A
NTIMICROBIALS

18

Cephalospo
rin

18

Penicillin

18

Tetracycline

18

Erythromycin

18

B
ACTERIAL
D
IAGNOSTICS

18

B
IOSENSORS

19

V
ACCINES

19

POLYMERASE CHAIN REA
CTION

20

H
ISTORY OF
PCR

20

U
SES OF
PCR

20

M
ARKET FOR
PCR

20

PCR

E
QUIPMENT

20

DNA Polymerases

20

Thermocyclers

20

DNA

S
EQUENCERS

20

COMMERCIAL ASPECTS O
F THE PROTOZOA AND H
ELMINTHS

21

P
ROTOZOA

21

Amoebal Diseases

21

AntiMalarials

21

A
T
OVAQUONE
/
PROGUANIL
(P
ALUDRINE
®

FROM
A
STRA
Z
ENECA
)

21

Leishmania

21

Trypanosomiasis

21

Vaccines

21


4

H
ELMINTHS

21

Anthelmintics

21

Albendazole (
Albenza®)

22

Thiabendazole

22

Flukicide

22

Ivermectin (Stromectol®)

22

Others

22

Vaccines (Dictol)

22

COMMERCIALLY IMPORTA
NT ALGAE

23

R
ED ALGAE
(R
HODOPHYTA
)

23

Carrageenan

23

Agar

23

Nori

23

Maërl

23

B
ROWN ALGAE
(P
HAEOPHYTA
)

24

Alginate

24

G
REEN ALGAE
(C
HLOROPHYTA
)

24

Chlorella

24

G
ENERA
L
R
EFERENCES FOR
A
LGAE

24

COMMERCIAL USES OF V
IRUSES

25

V
IRAL BIOCONTROL

25

V
IRAL
V
ACCINES

25

V
IRAL CONTROL PRODUCT
S

25

V
IRAL
P
ROMOTERS

25

G
M

C
ROPS


V
IRUS
R
ESISTANT

25

Papaya

26

Squash (Pumpkins)

26

Potato

26

Tobacco

26

COMMERCIAL USES OF R
ECOMBINANT DNA TECHN
OLOGY.

27

S
OME EXAM
PLES OF COMMERCIALLY

SUCCESSFUL RECOMBINA
NT PROTEINS

27

Insulin

27

DNase I

27

Factor VIII

27













5



Introduction to this resource


This resource is designed with one aim in mind, that being to help the students taking module 520
appreciate the diverse ways in which biological knowledge ha
s been harnessed to create wealth and
resolve problems.


The facts and examples are by no means exhaustive, but they should help illustrate the biological and
economic importance of the topics covered within the module. This is also written for the studen
ts rather
than academics, and all of this material, including that for other modules is on the York BioEnterprise
website.







http://www.york.ac.uk/depts/biol/bioenterprise/



























6

Agricultural uses of microbiology


Biological control

Where the application of chemical insecticides is not viable, perhaps for environmental reasons, a
biological alternative often exists, though biological control is usually most successful
in enclosed
controlled environments such as glasshouses. Global crop protection sales are in excess of $30 billion
annually, biological control takes some 1% of this.


Fungal biocontrol of insects.

Various fungi are sold commercially, to be seeded into the

soil or area of control. For example
Metarhizium anisopliae

is registered in the U.S. for control of household cockroaches.
Beauveria
bassiana

is registered to control grasshoppers, locusts,
Paecilomyces fumosoroseus

has been approved
to manage whiteflies
, aphids, thrips, and spider mites. Nematode worms also damage crops and
various nematophagous fungi are now on the market, for example,
Verticillium lecanii

is used to
control the soybean cyst nematode
Heterodera glycines

which cost farmers an estimated $
420 million
a year (1980 figures).

http://www.emeraldbio.com/

-

Mycotrol® and Botaniguard® fungal insecticides.

http://www.barc.usda.gov/psi/nem/pellet
s.htm

-

Soybean cyst nematode control.

http://www.biological
-
research.com/philip
-
jacobs%20BRIC/

-

Overview of nematophagous fungi.


Bacterial biocontrol

Bacillus thuringiensis

(bt)


The gene coding for the toxin produced by this bacteria has been
successfully inserted into seed crops such as cotton, potatoes and maize. In
2004
Monsanto
sold over
1.3 million packets of transgenic cotton seeds in India alone. GM is a highly contentiou
s area of
bioscience, but supporters of bt transgenic crops highlight increased yields, lower use of chemical
pesticides and supposedly better returns for the farmers. The 2003 turnover of the big four GM seed
producers
Aventis, Monsanto, Syngenta and DuPo
nt were $17.8, $4.9, $5.5 and $26.9 billion
respectively.

What part of this is due to bt crop sales is not known.


Viral biocontrol

Baculoviridae


Insecticidal viruses such as
Cydia pomonella
granulovirus used to kill larvae of the
codling moth,
Cydia pom
onella.

Baculoviruses represent 0.2% of the market for biological pesticides,
which is itself only 1% of the insecticide market. i.e. approximately $600,000 out of a $30 billion (or
more) market.


Company Case study:

http://www.certisusa.com/


Certis annual sales are approximately $30 million. It is a leading producer many biological control
products including foliar
Bacillus thuringiensis

(Bt) bioinsecticides, Neem
-
based botanical
biopesticides, and various baculo
viruses, nematodes and pheromones. The company’s products are
sold under the brands Agree®, Deliver®, Javelin®, Thuricide®, and Teknar®. Bt bioinsecticides
include Azatin® and Neemix®. They also market a botanical insect growth regulator, Trilogy®, and
an
insecticidal nematode, BioVector®.


Other References

http://www.ippc.orst.edu/biocontrol/biopesticides/address.cfm

-

Database of over 60 Biopesticide
companies.


7

http://www.biosupplynet.com/cfdocs/products/prod_supp.cfm?prod_id=1778

-

List of over 40
Baculovirus suppliers

http://www.
nysaes.cornell.edu/ent/biocontrol/

-

Biocontrol website by Cornell University. Has links to
hundreds of other biocontrol related sites.


Fungal Inoculation

Many companies now sell symbiotic or otherwise useful fungi for the purposeful inoculation of land

or
plants. Examples include Mycorrhizals and Truffles.

http://www.world
-
of
-
fungi.org/

-

And you thought Fungi were boring?




Arbuscular Mycorrhizal Fungi (
Glomales)

Massively important due to ancient (400my
) symbiosis with over 90% of the worlds plant species.
They invade the plant root system, but rather than just take organic carbon compounds from the plant,
they act as a source of inorganic carbon and other nutrients for the plant. In effect, the plant ga
ins a
secondary root system
. There is also evidence

that Mycorrhizal fungi produce Glomalin, a soil
glycoprotein
important for the structure and nutrient retaining capability of soils worldwide. It is in
effect a glue capable of binding the inorganic and o
rganic components of the soil together.

http://www.mycorrhizae.com/

-

Sells MycoApply® inoculums to agricultural and forestry sectors.
Coat seeds or inject fungus into soil.

http://www.ars.usda.gov/is/AR/archive/sep02/soil0902.htm

-

Details about glomalin from the USDA


Black Truffles


An example of a student enterprise from the
University

of Sheffield
-

Paul Thomas won the 2004
WRCE busine
ss plan competition and is now setting up his black truffle farms. Paul developed a
method of cultivating the valuable black truffle commercially and having won £2500 from the WRCE
is looking for backing for his first plantation. A 5 hectare plantation cou
ld eventually yield over
10,000kg of truffles per year, worth over £1,000,000 on the wholesale market.

http://www.mycorrhizalsystems.com



GM Rhizobium
-

Sinorhizobium meliloti

strain RMBPC
-
2

Rhizobia are

a group of bacteria, encompassing the genera
Rhizobium
,
Sinorhizobium

and
Bradyrhizobium
, normally found in soil, which establish mutually beneficial
(symbiotic) relationships with legumes. Rhizobia form growths called nodules
(nodulation) on the roots of

the legumes, and provide usable nitrogen to the plants. In
return, the plants provide a carbon and energy source for the rhizobia.

Rhizobia have
been used commercially as seed inoculants in the form of seed coatings for over one
hundred years. Currently,
about 80% of alfalfa grown in the United States is inoculated
with rhizobia prior to planting. Traditional strains though have been supplemented by a
GM version, which has 5 new genes and is sold
by
Becker
-
Underwood. Their
Dormal PLUS

strain
increases alfa
lfa production by an estimated 6%.


However,
as with any GM product there has been a long debate over whether a GM bacterium should
be released at all. The
RMBPC
-
2 strain has an extra copy of the nifA regulatory gene. NifA has a
positive regulatory role o
n the expression of the other genes necessary for nitrogen fixation. The nifD
promoter from
Bradyrhizobium japonicum
, the rhizobium that nodulates soybeans, was inserted
upstream of the additional copy of nifA to control and prevent deleterious excess expr
ession. In
addition it was noticed that the C4
-
dicarboxylate transport system which is encoded by the dctA gene,

8

was enhanced by addition of dctB and dctD genes. Thus a dctABD sequence from
Rhizobium
leguminosarum
(the rhizobium that nodulates peas and bea
ns) was added to the RMBPC
-
2 genome.
Finally, resistance to streptomycin and spectinomycin was added so the strain could be tracked during
field trials.


The GM debate focuses around the key issues of whether the antibiotic resistance would spread to
other

bacteria, especially human pathogens, as well as what other plants the rhizobia could inoculate.
Several
scientists submitted evidence that
Rhizobium meliloti
can inoculate not only alfalfa, but also
other

legumes such as sweet clover or mesquite, which a
re both known as weeds in US agriculture.

Could these become inoculated “superweeds”? The EPA and the manufacturers say there is no
evidence; the environmentalists don’t believe them…

http:/
/www.epa.gov/opptintr/biotech/factdft6.htm

-

US EPA risk assessment of RMBPC
-
2

http://www.researchseeds.com/

-

Research Seeds Inc.

http://www.alfalfa.org/

-

US Nationa
l Alfalfa Growers Alliance.

http://archive.greenpeace.org/geneng/reports/bio/rhizobium.pdf

-

Greenpeace arguing against the release of RMBPC
-
2

http://www.beckerunderwood.com/inoculants/productdisplay.asp?product=dpa



Dormal PLUS and other products

http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=201891



Paper (available free) detailing the results of field
trials for RMBPC
-
2

































9

Environmental Uses of MicroBiology


Sewage Treatment and
Biogas

Sewage treated with anaerobic a
nd aerobic bacteria in several stages where the sewage is first aerated and
mixed then left in large ponds where solids are precipitated. Globally, waste
-
water/sewage treatment
accounts for some 15
-
25% of the $655bn world water market, which in itself acco
unts for almost 2% of
the annual global GDP.


Methane from landfills and sewage treatment can be collected and used in power stations. There are over
7 million small sewage
-
powered biogas plants in China alone! Many UK landfills also have methane
powered
generators, including the landfill at Garforth, Leeds. Globally, biogas from human waste meets
about 14% of the worlds energy needs. (slightly less than hydro
-
electric power).

http://www.twm.co.nz/wtrmark.h
tml

-

World water market figures

http://www.eere.energy.gov/RE/bio_biopower.html

-

Information on Biopower from the US government


Biofuels

Bioethanol or “gasohol” produced from fermentati
on of crops
such as sugar
-
cane or maize. As oil prices soar past $50 per
barrel, biofuels become increasingly more attractive and
commercially sound. Production costs for bioethanol are
currently approx $29 per barrel.


http://www.iogen.ca/index.html

-

partnered with shell, sells EcoEthanol® on Canadian market

http://www.jxj.com/magsandj/rew/2000_03/bioethanol.html

-
Review of potential o
f bioethanol

http://www.novozymes.com/cgi
-
bin/bvisapi.dll/biotimes/one_article_green.jsp?id=30698&lang=en


Bioremediation of hazardous wastes or p
ollutants


Land based bioremediation

The current UK bioremediation market is worth in the region of £120

£130 million. Contaminated
land consultancy work has a value of approximately £130

£140 million per annum.


The variety of sites where bioremediation
is required is huge. For example, military land is often
contaminated with explosive and hydrocarbon residues. NATO has estimated that 217,000 sites in the
US require remediation, costing approx. $187 billion over the next 20 years. Brownfield sites and si
tes
of industrial pollution also often require extensive remediation as they are increasingly targeted for
housing development and the strict environmental regulations this incurs. The sources of pollution on
contaminated lands are v
aried e.g. heavy metals
, hydrocarbons or
other
chemicals, often meaning that
a combination of approaches to a single site have to be taken.


B
ioreactor landfills also use bioremediation techniques to rapidly transform and degrade organic
waste. The increase in waste degradation
and stabilisation is accomplished through the addition of
liquid and air to enhance inherent microbial processes. Anaerobic processes release methane which
can be captured for energy processes. (BioGas, see above.)


Water based bioremediation

Oil companies

have used bioremediation since the first studies in 1989 after the Exxon Valdez disaster
at Prince William Sound in Alaska. Environmental legislation and huge negative publicity promoted

10

industry research into effective and environmentally friendly remedi
ation technology. A large number
of companies market products aimed at cleaning oil spills on the shoreline, but products also exist for
cleaning out oil tankers while in port. Microbes also play a part in cleaning water supplies and aquifers
of heavy meta
ls and excess concentrations of chemicals. One example recently highlighted has been
the link between arsenic concentrations in aquifers and the absence of s
ulphate
-
reducing bacteria
which normally reduce sulphate into sulphide which then reacts to precipi
tate arsenic from the water


http://oil
-
spill
-
pollution
-
control
-
degreasing
-
bioremediation.co.uk/home.asp

-

large list of products for
industrial bioremediation pu
rposes

http://www.checkbiotech.org/root/index.cfm?fuseaction=news&doc_id=8940&start=1&control=229&
page_start=1&page_nr=
101&pg=1

-

Arsenic in groundwater



Bioremediation Case Studies

Decontamination of housing project Bedford.
-

Response Bioremediation Contracting had to degrade
1,1,1 trichloroethane at 213 mg/kg to a target value of 5 mg/kg using their Bio
-
Gel™ product.
Bio
-
Gel
was manually injected under positive pressure into the target areas of contamination to act as a nutrient
substrate for selected microbial cultures, promoting the growth of the culture and metabolizing the
pollutant. Within 11 weeks the maximum con
centrations of 1,1,1 trichloroethane were <0.02 mg/kg

http://www.biowise.org.uk/detail.asp?menucode=001000030004&type=industrialexample&i
d=818&c
urrentPage=1

http://www.response
-
uk.com/bio_gel.htm


Queen Mary II
-

Orelis membrane bioreactor: Orelis membrane bioreactor chosen
to act as the liners sewage plant, filtering and biodegradin
g the effluent before
releasing clean waste water into the ocean
enabling the ship to operate in waters
protected by stringent wastewater discharge regulations.


http:
//www.ship
-
technology.com/contractors/separators/rhodia/index.html


Contaminated land in Essex


Cleanaway Ltd: The 64 hectare site contained significant contamination
including volatile organic compounds, oils, polyaromatic hydrocarbons, red
-
list organic

substances
and heavy metals. Cleanaway installed a 200 m3/day
-
capacity continuous feed treatment plant using a
combination of anoxic and aerobic treatments.

http://www.biowise.org.uk/detail.asp?menucode=001000030004&type=industrialexample&id=819&c
urrentPage=1


Magnadata International, a Lincolnshire
-
based printing company, was faced with a
requirement to abate Volatile Organic Compound (
VOC) emissions from its magnetic
ticket coating process. A Sutcliffe Croftshaw SC Bioscrubber system was installed at
the factory to treat the 30,000 m
3
/hour of process exhaust air. The system strips the
solvents from the air into water and passes them to
a biotrickling filter where a selected
microbial biomass degrades them to carbon dioxide and water. Operating costs for the
system are less than £4/day.

http://www.sutcliffespeakman.com/techfrmr
.htm


EcoRem won a $20million NATO contract for remediation of the
“van Oss” fuel storage depot in
Holland. EcoRem had to reduce concentrations of mineral oil in the groundwater and soil from
5000mg/kg
to

900mg/kg

They chose to Biovent the area (pump air
into the soil and mechanically mix

11

it in), and within 12 months the mean contamination was at 475ppm exceeding a target value of
900ppm.

http://www.epa.gov/tio/download/partner/
2002_annual_report.pdf

http://www.ecorem.be/defaulten.html


Further references and Links

http://www.dynamax.com/

-

Bioremediation sensors: Engineering solutions
and remote data logging
capability for remediation sites.

http://www.kavlico.com/library/sensorsmag.html

-

BioSensors

http://www.environment
-
agency.gov.uk/subjects/landquality/113813/?version=1&lang=_e

-

Environment agency bioremediation and contaminated land page

http://www.clarrc.ed.ac.
uk/link/links.htm

-

Environment agency site covering UK environment laws
and policy.

http://www.ciwm.co.uk/pm/316

-

chartered institute of wastes management, details on all regulations
and laws on waste manage
ment.

http://www.biowise.org.uk

-

Many case studies from around UK

http://www.wws.princeton.edu/cgi
-
bin/byteserv.prl/
~ota/disk1/1991/9109/9109.PDF

-

Study into
bioremediation of oil spills by the US congress office of technology assessment.

http://www.oil
-
spill
-
web.com/oilspill/direct
ory/products.asp?query=p2

-

Large list of private sector
companies offering bioremediation solutions.

http://clu
-
in.org/

-

The Hazardous Waste Clean
-
Up Information (CLU
-
IN)


Plenty of information
about innovative trea
tment technologies in hazardous waste remediation


Remediation Consultancies

http://www.erm.com/ERM/SVC/Brownfields.NSF

http://www.wspgroup.com/uk/

http://www.vhe.co.uk/

http://www.aeat.com/html/business/environment.htm

http://www.shanks.co.uk/

http://www.micro
-
bac.com/

http://www.obio.com/

http://www.regenesis.com/

-

Look in Resources section for some good case studies

http://www.cytoculture.com/index.html

-

Academics who started their own company.


Products

BioGel
-

http://www.response
-
uk.com/bio_gel.htm


SpillSorb
-

http://www.spillsorb.com/


SC Bioscrubber
-

http://www.sutcliffespeakman.com/techfrmr.htm


Microbial Suppliers

http://altivi
a.com


References

Caplan, J.A. (1993). The worldwide bioremediation industry: Prospects for profit. Trends in
Biotechnology
11

(8) 320
-
323.




12

Uses of Microbiology in Food


Probiotics

The Probiotic dairy market was valued at over £3.3 billion in 2004. This

includes Marketed Probiotics
themselves as well as Yoghurts and Cheeses. Examples include BioPot, Onken,
Yakult, Danone, Actimel.
Products generally contain species of the Lactobacillus and Bifidobacterium genera

http://news.scotsman.com/features.cfm?id=362982004

-

Great article on everything Probiotic.


Cheese

Worldwide sales of cheese topped $22bn in 1980. Various
fungal

cultures are used eg P
enicillium
roqueforti
. Biotechnology has made

an impact on the market, for example


the use of recombinant
Chymosin for the curdling of milk. The traditional source of Chymosin, also know as Rennin, is calves
stomachs but due to BSE there has been a global fall in cattle production and a resulting s
hortage of
Chymosin. Therefore Chymosin
-
encoding DNA has been introduced into three different microorganisms:
the yeast
Kluyveromyces lactis
, the fungus
Aspergillus niger

var.
awamori,

and a strain of the bacterium
Escherichia coli.

50% of US cheddar is no
w produced using recombinant Chymosin. Companies such as
DSM market recombinant chymosin eg “Maxiren®”

http://www.ncbe.reading.ac.uk/NCBE/MATERIALS/ENZYMES/maxiren.html

-

Ma
xiren chymosin

http://www.dsm.com/

-

Search for chymosin to see their product.


Bread

Yeast sales were $860m in 1981. The traditional bakers yeast is
Saccharomyces cerevisiae
but
Various
species are used in baking aroun
d the world.



Beer

Combined sales of the top 10 global brewers and top 10 distilled spirits companies totalled nearly $200
billion in 1999.
Saccharomyces uvarum

(Also know as
S.carlsbergensis
) is vital for lager production.
Different cultures and processi
ng methods lead to different tastes. One report on the components of a lager
identified 96 different substances contributing to aroma and taste. Only 30 of these compounds could be
characterised

however.


Biotech is helping the process of beer making. Cetu
s Corp along with Guinness, fused the membranes of
S. uvarum

with a genetically constructed
S. diastaticus

to introduce a novel glucoamylase into the yeast.
The end result was a stable yeast that retained the taste and characteristics they were looking fo
r, but
increased the fermentation rate and lowered production costs accordingly.

http://www.nal.usda.gov/bic/Biotech_Patents/1995patents/05422267.html

-

Patent applicati
on


Soy Sauce

Aspergillus oryzae

is added to a soy bean mash, then aerobically fermented. S
everal high profile
companies produce soy sauce such as Kikkoman and Wanjashan, and world production is over 1 billion
litres.

http://www.kikkoman.com/

http://www.wanjashan.com







13

Industrial scale fermentation


Food

Oldest use of fermentations. Current world markets are huge and profitable.


Cheese

Worldwide sales of cheese topped $2
2bn in 1980. Various
fungal

cultures are used eg P
enicillium
roqueforti
. Biotechnology has made an impact on the market, for example


the use of recombinant
Chymosin for the curdling of milk. The traditional source of Chymosin, also know as Rennin, is cal
ves
stomachs but due to BSE there has been a global fall in cattle production and a resulting shortage of
Chymosin. Therefore Chymosin
-
encoding DNA has been introduced into three different
microorganisms: the yeast
Kluyveromyces lactis
, the fungus
Aspergil
lus niger

var.
awamori,

and a
strain of the bacterium
Escherichia coli.

50% of US cheddar is now produced using recombinant
Chymosin. Companies such as DSM market recombinant chymosin eg “Maxiren®”

http://www.ncbe.reading.ac.uk/NCBE/MATERIALS/ENZYMES/maxiren.html

-

Maxiren chymosin

http://www.dsm.com/

-

Search for chymosin to see their product.



Bread

Yeast sales were $860m in 1981. The t
raditional bakers yeast is
Saccharomyces cerevisiae
but
Various
species are used in baking around the world.


Beer

Combined sales of the top 10 global brewers and top 10 distilled spirits companies totalled nearly
$200 billion in 1999.
Saccharomyces uvarum

(Also know as
S.carlsbergensis
) is vital for lager
production. Different cultures and processing methods lead to subtly different tastes. One report on the
components of a lager identified 96 different substances contributing to aroma and taste and more
s
urprisingly only 30 of these compounds could be
characterised
!


Biotech is helping the process of beer making. Cetus Corp along with Guinness, fused the membranes
of
S. uvarum

with a genetically constructed
S. diastaticus

to introduce a novel glucoamylas
e into the
yeast. The end result was a stable yeast that retained the taste and characteristics they were looking for,
but increased the fermentation rate and lowered production costs accordingly.

http://www.nal.usda.gov/bic/Biotech_Patents/1995patents/05422267.html

-

Patent application


Sugar

Microbial sources of fructose have cut over $1 billion from the world sucrose market. Glucose
Isomerase from
Streptomyces olivaceo
us
produces high
-
fructose syrup which has a higher perceived
sweetness and fewer calories than sucrose.


Soy Sauce

Aspergillus oryzae

is added to a soy bean mash, then aerobically fermented. S
everal high profile
companies produce soy sauce such as Kikkoma
n and Wanjashan, and world production is over 1
billion litres.

http://www.kikkoman.com/

http://www.wanjashan.com




14

Enzymes and conversions

A huge number of commercial and
industrial enzymes exist, taken from various microbes. Over 80% of
these enzymes are hydrolases. Market figure for the commercial worth of industrially produced enzymes
as of 2000 was $1
.5
bn.


Enzymes

Thermostable enzymes such as Subtilisin (See the cas
e study below)


Amino Acids

Most are produced from bacterial systems. For example l
ysine and glutamic acid are produced by
Corynebacterium glutamicum. Used in food supplements, medicines, or as precursors for industrial
products. Optically Pure Amino Acid
s are also produced using microbes, such as L
-
aminoacyclase
from
Aspergillus oryza
e. Microbes can also perform conversions, such as acylating and de
-
acylating
various L
-
amino acids. The products are differentially soluble and can be separated with high
spe
cificity.


Steroids

Huge variety and usually far more specific, efficient and cost
-
effective than chemical transformations.
EG


Plant steroids such as diosgenin and stigmasterol are converted into progesterone by
Rhizopus
spp
. From progesterone they are t
ransformed into virtually all medically important steroids. The
human body cannot use stigmasterol, this metabolic capability is unique to bacteria. Steroids are used
in a variety of applications from Medicine to Farming to Body Building, unfortunately no
figures for
the size of the market were found, but it is presumed to be large.




Case studies of industrial fermentations


Subtilisin


Discovered by Centre for Advanced Research in Biotechnology (CARB). Used bisulphite mutagenesis
of bacterial plasmids. T
hen plated the mutants, and tested for enzyme product for thermostability.
They gained a 4 fold increase in stability at 65C. Used in washing powders such as Ace, Bold and
Ariel. Patent owned by Procter & Gamble.
http://householdproducts.nlm.nih.gov/cgi
-
bin/household/brands?tbl=chem&id=2167


Glycerol (Glycerine)

Production pioneered by Germans during war. Prior to fermentation methods it was obtained from
vegetab
le oil. Then it was found that yeast produces glycerol rather than alcohol if sodium bisulphate
is added.


Penicillin

DSM fermented a modified strain of
Penicillium chrysogenum,

providing large quantities of high
quality penicillin. Process of modificati
on patented and used on other products. Process called
PlugBug
tm

by DSM. Company made profits of E194m on sales of E1.24bn in 2003. Proportion of this
solely due to penicillin is not known.
http://www.dsm.com/



15

PHB (P
oly(3
-
Hydroxybutyrate)

An energy storage medium in many bacteria, eg
Alcaligenes eutrophus
. Accumulated and stored as
granules in intracellular compartments. Cultures are permitted to grow, then a essential nutrient such
as N, O, P is withheld. The bacteri
a then switch to PHP production, with eventual concentrations of up
to 100g per litre. Applications include: biodegradable plastic, scaffold for tissue re
-
growth, coating on
surgical devices, disposable packaging, coatings for paper and boards, blow and in
jection moulded
containers.
http://www.fmcbiopolymer.com/



Bovine Somatotrophin

BST gene expressed in
E.coli

(Developed by Monsanto and Gentech 1980) Recombinant product is
virtually identical to the natural

hormone, and increases milk production in dairy herds by 10
-
25%
with only 10% increase in feed intake. Currently produced by Monsanto as Posilac®

http://www.monsantodairy.com/



Aspartame sweetener

(L
-
aspart
yl
-
L
-
phenylalanine) or Nutrasweet® used in huge number of common food products. The
product’s profitability is suffering though, due to cultural changes away from “unhealthy” soft drinks
and sugars. Also recently linked to health problems!
http://www.nutrasweet.com/

(Market leader in the
$1.1bn high
-
intensity sweetener market)































16

Uses of Microbes in Other Industries


Fermentations

See above


Microbial Enhanced Oil Recovery (MEOR)

It ha
s been estimated that more than 300 billion barrels of oil within the U.S. cannot be recovered by
conventional technology but may be accessible through enhanced oil production. This is about 2.5 times
the amount of oil produced in the United States since 1
983. At a figure of $30 per barrel, this equates to
$9trillion of untapped oil. Many non
-
microbial methods of enhancing oil production exist, but
increasingly microbial methods are being favoured as a cheaper and more effective alternative.


Exo
-
Polymer fl
oods

Once the primary flow of oil stops, water is pumped into the oil field at another location to supply
pressure and force the oil to the extraction head. Problems occur when water seeps through porous
rocks at a greater rate than the general water:oil i
nterface. These thief zones reduce field productivity
as the pressure is reduced. Biotechnology however has provided an answer in the form of microbially
produced polymers which increase the density of the injected water and plug the thief zones allowing
t
he extraction of more oil from the field. Microbes and nutrients are injected with the water, and they
produce exo
-
polymers, plugging the areas of high flow, forcing the water through lower density (oil
filled) channels. This c
an increase field production
by significant amounts, equating into large oil
revenues otherwise not achievable. The process and equipment adds approx $1
-
4 to each barrel of oil
extracted but releases thousands/millions of extra barrels of oil (depending on the field size). An
example
of an exo
-
polymer is XC polymer from
Xanthomonas campestris.

(Xanthan gum)
http://www.titanoilrecovery.com/


Well acidising

In initial production it is often beneficial to pump water into the field at high

pressure to physically
crack the rocks and open channels for the oil to flow through. These channels are kept open using
injected “proppants” such as sand particles which hold the cracks open once the water pressure is
relieved. Acids are also injected to

dissolve the rock round the fractures. This however is not ideal, as
the effectiveness of the acid declines with distance from the point of injection, and it can also damage
the oil extraction equipment. Therefore acid
-
generating bacteria are sometimes us
ed in the place of
inorganic acids. These bacteria can be pumped deep into the fractures, where they release organic
acids slowly and over time. Problems occur however if the bacterial culture starts to plug the fractures
and pores, stopping the extraction

of oil.


Oil channel plugging

Similar to exo
-
polymer floods


see above


Paraffin wax and scale removal from well heads and pipelines.

A problem in the drilling and pumping equipment. Can lead to blockages or jamming. Conventional
treatment is to flush
hot oil through the pipes, or use chemicals. Bacterial solutions are much cheaper
and environmentally sound. Estimated annual cost per well head of standard chemical treatment is
$12,300 vs. a microbial solution costing approx. $7,000.

http://www.custombio.com/products/pf_conc.html



17

Pipe and tanker cleaning

More environmentally acceptable way of cleaning out tankers and storage facilities.

http://www.storesonline.com/site/508377/page/96817

http://www.ecochem.com/t_cbpa2.html

http://www.
ship
-
technology.com/contractors/separators/marine_enviromental/



Additional MEOR Resources

http://www.oilfield.slb.com/media/resources/oilfieldreview/ors9
7/spr97/bad_guys.pdf

-

Overview of
oilfield microbiology

http://www.glossary.oilfield.slb.com/Display.cfm?Term=XC%20polymer

-

Xanthan gum

http://www.wws.princeton.edu/cgi
-
bin/byteserv.prl/~ota/disk1/1991/9110/911011.PDF

-

Environmental uses for biotechnology in MEOR


Microbial metal recovery from waste mining ore

Copper has b
een leached out of waste ore using micro organisms since roman times, the technique only
gained commercial recognition once it was adapted and used for the production of gold. Billiton made
huge profits from such technology, contributing to their $10billio
n worth.


Thiobacillus ferrooxidans

concentrations can reach up to 10
6

per g of rock in waste copper ore heaps.
They leach the remaining copper from the low
-
grade ore by oxidising sulphur and iron compounds
from the rock. The bacterial solution and soluble

copper is collected in a large pond at the base of the
heap, where the copper precipitates and is collected. The waste water is then recycled to the top of the
heap along with its bacterial load. Approx 20% of worldwide copper production is due to leachat
e
technology. The process is also applied to Gold, Nickel and Zinc.

www.BHPBilliton.com

-

BiOX technology for gold recovery took company to leading international
position with 2003 market capitalisation in excess

of $10billion. BiOX later used for copper nickel and
zinc. Enter company website and search for BiOx, or click the next link for just one report.


http://www.bactech.com/s/Projects.asp

-

Four case stu
dies and further information.

http://www.bhpbilliton.com/bbContentRepository/News/RelatedContent/NR_chile1.pdf



Additional Microbial Mining Resources

http://www.imm.org.uk/gilbertsonpaper.htm


-

Useful resource with good detail on biochemistry of microbial mining and its history.














18

Medical uses of microbes


Anti
microbials


The global antimicr
obial market in 2000, was estimated at almost $40 billion with the majority of the
market ($31 billion) in pharmaceutical antimicrobials. The rest of the market comprises antimicrobial
agents used in industrial applications ($3 billion) and the plant heal
th industry ($6 billion). It has been
forecasted that the pharmaceutical antimicrobial market will more than double in less than a decade,
growing to $69 billion in 2008.

Anti
microbials

are t
raditionally produced via the fermentation of
microbial cultures
, but some are now produced synthetically from chemical precursors.

Over 800
antibiotics have been discovered, and many of these are marketed. A few examples include:


Cephalosporin

The cephalosporin class of antibiotics is currently the largest by sales v
alue, accounting for $7bn of
sales in 2002. Various products exists including
Cefaclor® from Zenith, CEDAX® from Biovail and
Suprax®
by
Wyeth
-
Ayerst.



Penicillin

First commercial antibiotic, and second largest market sector behind the Cephalo
sporins. Penicillin
acts by interfering with the production of cell wall during cell division. DSM ferment a modified strain
of
Penicillium chrysogenum,

providing large quantities of high quality penicillin. Process of
modification patented and used on oth
er products. Process called PlugBug
tm

by DSM who made
profits of €194m on sales of €1.24bn in 2003. Proportion of this solely due to penicillin is not known.
Augmentin produced by Glaxo
-
SmithKline is also one of the worlds top antibiotics with sales of $1.2
billion in 2002 alone.

http://www.dsm.com/

http://www.augmentin.com/


Tetracycline


Originally from
Streptomyces aureofaciens
,

now generally synthetically produced by
hydrogenolysis
of chlortetracycline.

Traded
under the names Achromycin, and doxycycline, which has recently been
linked to a possible cancer treatment.

http://news.bbc.co.uk/2/hi/health/3726124.stm


Erythromycin

Produced from
Saccaropol
yspora erythraea

(formerly classified as
Streptomyces erythraeus
). Used as
penicillin
alternative for those
who have an allergy to penicillins. Used in respiratory tract infections,
as well as chlamydia, syphilis, and gonorrhoea. Interferes with bacterial
protein expression.

http://www.sigmaaldrich.com/Area_of_Interest/Biochemicals/Antibiotic_Explorer/Antibiotics_A_Z.ht
ml

-

List of antibiotics

marketed by Sigma
-
Aldrich (hundreds)


B
acterial Diagnostics

The bacterial and biosensor diagnostic market covers a wide range of applications including clinical
diagnostics, food testing, veterinary medicine and bioterrorism.
The market for general diagno
stic kits
covering all these areas was $6 billion in 2000. Of this t
he clinical diagnostic and research segments

are
worth about $2 billion and seem to be experiencing growth rate of almost 25% per year.


Some examples of some diagnostic machinery are:


19

http://www.accelr8.com/

-

In development, advanced identification, counting and antibiotic susceptibility
screening in one package.

http://www.bacbar
codes.com/press_release_021203.htm

-

Bacterial biosensors linking
bacterial strain
information to bioinformatics for quick identification.


Biosensors

Biosensors are machines that utilise biochemical reactions to conduct a test, and
then transduce the si
gnal into a suitable display (i.e. digital). They usually
consist of enzymes within a selectively permeable membrane, with a further
membrane for the product “test” molecule to cross before detection at the
transducer. They provide on the spot tests that p
reviously would have been sent
to the lab, and as such have found applications in medical science, agriculture,
food and environmental monitoring. They are also being developed for use as
sensors for biological and chemical weapons such as Anthrax. The bio
sensor
market is currently predicted to be in the region of $1
-
2 billion

http://www.sensornetworks.net.au/biosens.html

-

Good overview of the technology

http://www.the
-
scientist.com/yr2002/mar/profile_020318.html

-

Review by the easy to read journal.

http://www.army.mod.uk/equipment/
nbcds/nbcds_nai.htm

-

British army nerve agent detection using an
immobilised cholinesterase. (NIAD
-

Nerve Agent Immobilised Enzyme Alarm and Detecto
r).

http://www.analox.com/

-

Biosensors for molecules such as glu
cose, Lactate etc

http://www.ambri.com/

-

Medical biosensors

http://biacore.com/products/

-

Medical and general bioscience sensors

http://www.medisense.com/

-

Market leaders with sales of $170m (mostly medical)

http://news.bbc.co.uk/2/hi/health/1857730.stm

-

Biosensors in the news

http://news.bbc.co.uk/2/hi/uk_news/wales/2779581.stm

-

Biosensors in the news


Vaccines

http://www.vaxgen.com/products/index.html

-

VaxGen won an $878m contract with the US government
to supply anthrax vaccine for civil defence.




















20

Polymerase Chain Reaction


History of PCR

Invented in a moment of inspiration by Kary Mullis from a number of established techniques in 198
3. He
has since been most notably been awarded the Nobel prize and a $450,000 Japan award for his work, and
retired to the guest speaker circuit. Mullis worked for CetusCorp, who developed the technique and later
sold the rights to the PCR process to Hoffm
an
-
La
-
Roche for $300m in 1991


Uses of PCR

Anything from criminal forensics to amplifying the genetic material from amber
-
entrapped flies. The uses
of the process are limited only by the creativity of the scientists using it.

http://www.proteinlogic.com

-

Mapping the key markers contained in body fluids for human diseases.

http://www.wdnas.com/

-

Tracking illegal killing of prot
ected species. The company started at the
Univ
ersity of Bangor and is now set up on its own.

http://news.bbc.co.uk/2/hi/science/nature/4050691.stm

-

News story about badger DNA tracking


Market for PCR

A single figure for the total

worth of the process was not found. However, plenty of data exists to illustrate
the potential size of the market. The PCR process is also licensed depending on the use. Projects such as
the human genome project were able to use the process for a negligib
le cost, whereas large companies are
made to pay more. Licensed equipment is also sold, negating the need to apply for a paper license.


PCR Equipment

PCR requires several pieces of equipment such as Thermal Cyclers, and the consumables the process
require
s, IE buffers, nucleotides, and various enzymes. The PCR equipment market for the EU alone was
estimated at being
$623.7 million in 2004


DNA Polymerases

These enzymes are one of the vital components of the PCR process, and a multitude of companies
supply
raw enzymes or enzyme “kits” that include the various buffers and reagents. The market is
huge, with multinational corporations such as Novagen, Promega and Sigma marketing hundreds of
products. The world market for DNA diagnostic equipment (ie PCR) was
$5
56.3 million in 2003.
The
Nucleic Acids lab at the University of York alone spends approx £17,000 per year on PCR reaction
kits. New thermostable polymerases are always being sought, for example Pfu and Vent polymerases
from the thermophilic hydrothermal v
ent bacteria. One example of a commercial DNA polymerase is
TAQbead® from Promega. A pack costs £67 per 100 reactions. The polymerase is encased in a stable
paraffin bead, enabling hot
-
start PCR
http://www.promega.com/



Thermocyclers

Thermocyclers can cost anything from £2000 to £10,000 for the latest real
-
time PCR technology

http://www.the
-
scientist.com/yr2001/dec/profile_011210.html

-

Very good review of the major
thermocyler manufacturers and the market.


DNA Sequencers

The Applied Biosystems division of Applera Corporation has sold over 10,000 automated sequencer
s in
the past decade and has over 70% of the market. By mid
-
2003 the company had over 1700 orders for its
$300,000 ABI
Prism3700 DNA analyzer. Total sales of this revolutionary machine = over $510m. The
machines are fully automatic and can sequence
96 samp
les of DNA at once, 2 or 3 times a day.

http://www.appliedbiosystems.com/

-

DNA sequencers

http://www.beckman.com

-

DNA Sequencers used at the University of York


21

Com
mercial aspects of the Protozoa and Helminths


Protozoa


Amoebal Diseases

Amoebal diseases such as Giardia and Hepatic Amoebiasis account for

hundreds of thousands of

deaths per year. Various drugs are prescribed to treat the various diseases but the 2 mos
t common are
Metronidazole and Tinidazole.

Tinidazole is produced by Pfizer Pharmaceuticals under the brand
name Fasigyn.

http://www.netdoctor.co.uk/medicines/100001007.html


AntiMalarial
s

The antimalarial drug market is small when compared to other pharmaceutical products, due to few
developed countries suffering high infection rates and the subsequent lack of money to encourage
research and drug development. The largest market is for tra
vellers health products, which is worth
about
$200
-
300 million. However, there is growing political demand for a effective vaccine or better
drugs, and the WHO’s “Roll Back Malaria” campaign aims to halve malaria deaths by 2010.


Marketed antimalarials inc
lude:

Atovaquone/proguanil (Paludrine® from AstraZeneca)

Doxycycline (Antibiotic tetracycline)

Mefloquine (Lariam® from Roche)

Primaquine® from AstraZeneca

Chloroquine (Aralen from
Sanofi Pharmaceuticals
)


Leishmania

Pentamidine and occasionally Amphoteric
in

http://www.drugdigest.org/DD/DVH/Uses/0,3915,526|Pentamidine%2BInhalation,00.html

http://www.health.xq23.com/conditions/part_1/Pentamidine.html


Trypanosomiasis

Nifurtimox, Melarsoprol, Eflornithine (and in cattle: Ethidium, Samorin and bereni)


Vaccines

No successful commercial vaccines as yet.



Helminths

Anthelmintics

Anthelmi
ntics are drugs for the treatment of parasitic worms (helminths). Antiparasitics and
antibacterials generate global sales with a worth of over $1 billion in the cattle market alone. A
n
accurate

figure for the global anthelmintic market is not know, but is
likely to be approaching the
billion dollar mark.

http://www.pjbpubs.com/pop_report_download. asp?type=toc&subid=206&reportid=283

http://www.marvistavet.com/html/pharmacy_center.html

-

List of veterinary drugs, including all the
anthelmintics.



22

Albendazole (Albenza®)

GlaxoSmithKline are giving Albendazole to the WHO for free to treat elephant
itis. By 2020 GSK
expect to have shipped 6 billion treatments worth $1 billion.

http://www.gsk.com/financial/reps03/annual_report2003.pdf

-

GSK 2003 Report

http://news.bbc.co.uk/1/hi/health/3512384.stm

-

Albendazole donated by GSK for treatment of
elephantitis.


Thiabendazole

Thiabendazole animal health products include Mintezol® and Tresaderm®, produced by Merck, who
had

1996 sales of nearly $200 million from abamectin and thiabendazole based products.

http://petplace.netscape.com/articles/artShow.asp?artID=1947

-

Thiabendazole products


Flukic
ide

Off the shelf products such as
Fasinex, Fasicare, Fasimec, Flukare, Tremacide and Farm Direct
Flukicide. The active ingredient is Triclabendazole.

http://www.endoparasite.net/products/fa
sinex.php

http://www.proagri.co.za/pebble.asp?relid=492

http://www.tumble.com/demo_area/
Novartis/internet/agri/animalhealth/sh_liverflukes.html


Ivermectin (Stromectol®)

Also known as the antibiotic Cerulenin, Ivermectin is produced by Merck and has been so profitable
that the co
mpany started giving the product

away to developing countries t
o treat river blindness
(onchocerciasis). In all over $80 million of Ivermectin has been donated to the WHO to help eradicate
the disease.

http://www.marvistavet.com/html/body_ivermectin.
html

-

Ivermectin facts and info.

http://www.pfizerah.com/product_overview.asp?drug=EQ&country=US&lang=EN&species=EQ

-

Equimax® from Pfizer


Others

Mebend
azole (Vermox®) Oxamniquine (Vansil®) Praziquantel (Biltricide®) Pyrantel (Antiminth®,
Pin
-
Rid®) Diethylcarbamazine (Hetrazan®)


Vaccines (Dictol)

Dictol

-

Attenuated L3 stage vaccine against
Dictyocaulus viviparus

lungworm in cattle. Causes
disease known
as Husk. Dictol developed in the 1960's and has since sold millions of units worldwide.
Products such as HuskVac are currently marketed.

http://www.intervet.co.uk/pr
oducts_public/bovilis_huskvac/010_overview.asp

-

HuskVac

http://www.abbey
-
vetgroup.co.uk/parasitic_bronchitis_%28cattle%29.htm

-

Overview of disease












23

Commerc
ially Important Algae

Over
2 million tons of seaweed are harvested each year with a estimated worth of over $8 billion.


Red algae (Rhodophyta)

Carrageenan

A family of linear sulphated food grade polysaccharides obtained from the red seaweeds. The family
c
an form a huge variety of gels at room temperature
-

rigid or compliant, tough or tender with high or
low melting point. The gelation requires no refrigeration and the gels can be made stable through
repeated freeze
-
thaw cycles. Used in a huge variety of p
roducts including gelled milk desserts,
toothpaste, processed meats and even flame retardant foams. Approx
140,000 tons of Carrageenan are
produced per annum,
fetching up to $2,000 a tonne on the world market, the total size of which is
valued at over $300

million. One company, Gelymar, posted
a turnover of $16.9 million in 2003.

http://www.fmc.com/Biopolymer/V2/PopProd/0,1421,Sel%25
3DIntroduction%2526Key%253D1308
%2526ppID%253D34,00.html

-

Large international Carrageenan and biopolymer company. Excellent
resource detailing the structure, biology and uses of Carrageenan.

http://www.gelyma
r.com/nu2.htm

-

Large Chilean exporter of Carrageenan

http://philexport.org/members/siap/intro.htm

-

Large resource detailing plenty of info about
Carrageenan and its uses

http://www.foodproductdesign.com/archive/1993/0193CS.html

-

Food gelling agents


Agar

Another colloidal agent used for thickening, suspending, and stabilising. However, it is best noted for
its unique a
bility to form thermally reversible gels at low temperatures. The greatest use of agar is in
association with food preparation and in the pharmaceutical industry (as a laxative, or as an inert
carrier for drug products where slow release of the drug is req
uired). Agar also obviously is used
worldwide in bacteriology and mycology as a thickening agent in growth media. Some 18
-
25 thousand
tons of seaweed are harvested each year for agar production, producing a little under 10,000 tons of
agar, the market valu
e of which is some $137 million. One Kg of the highest grade Agarose gel can
cost nearly £2000.



Nori

A red seaweed used in sushi, usually grown commercially and has a world
-
wide market

http://www.mou
ntfuji.co.uk/seaweed.htm




Maërl

Coralline algae such as
Phymatolithon calcareum

and
Lithothamnion corallioides
are harvested and
used as soil conditioners, trace element and mineral sources. They can also replace bone meal in some
feed applications. Gr
ound maërl is used in water filtration in some industries. These algae contain
calcium and magnesium carbonates that comprise up to 80% of the wet weight. Maërl is dredged off
the coasts of France (Brittany), England, and Ireland. Over 600,000 tons are har
vested each year from
live and dead deposits. The dried, ground product is favoured by organic farmers and horticulturists.










24

Brown algae (Phaeophyta)

Alginate

The term usually used for the salts of alginic acid
, which is derived from the cell walls

of brown algae.
Alginate forms gels and is used in food products much like Carrageenan and is often used as an
alternative to pectin. Alginates also find uses in the field of medical dressings. Over 30,000 tons
alginate are produced each year, from a vari
ety of brown seaweeds.

http://www.worldwidewounds.com/1998/june/Alginates
-
FAQ/alginates
-
questions.html

-

Alginate uses
in medical dressings

http://www.fmcbiopolymer.com/Biopolymer/V2/PopProd/0,1421,Sel%253DIntroduction%2526Key%
253D1294%2526ppID%253D33,00.html

Large internationa
l Alginate and biopolymer company.
Excellent resource detailing the structure, biology and uses of Alginate.



Green algae (Chlorophyta)

Chlorella

A single
-
celled, fresh
-
water green algae harvested and used as nutritional supplement. The alga is
credited w
ith aiding the immune system, digestion, joint and muscle condition as well as blood
pressure and cholesterol levels. In 2000, Sun Chlorella USA posted Japanese sales figures of $200
million.

http://www.sunch
lorellausa.com/

http://www.discount
-
vitamins
-
herbs.net/chlorella.htm

http://www.nutraceuticalsworld.com/April021.htm



G
eneral References for Algae

http://www.nmnh.si.edu/botany/projects/algae/AlgIntro.htm

-

Algae and their economic uses

http://www.fao.org/documents/show_cdr.asp?url_file=/DOCREP/006/Y4765E/y4765e06.htm

-

FAO
guide to the seaweed industry

http://www.surialink.com/HANDBOOK/INDEX.
ASP

-

excellent resource


















25

Commercial uses of viruses


Viral biocontrol

Baculoviridae


Baculoviruses represent 0.2% of the market for biological pesticides, which is itself only
1% of the insecticide market. i.e. approximately $600,000 out
of a $30 billion (or more) market.


An example of a company using Baculoviridae in pest control is CertisUSA who market
CYD
-
X, an
aqueous suspension of
Cydia pomonella
granulovirus or CpGV which kills the commercially important
pest the Codling moth.
http://www.certisusa.com/products/cyd
-
x/index.html


Viral Vaccines

The world vaccine market, which was valued at approximately €8 billion in 2002 is predicted to triple in
value by 2012. Aventis, one of the 4 major companies selling human vaccines, reported 2002 sales of viral
vaccines worth €1.58 billion. Pfizer,
AstraZe
neca, Glaxo
-
SmithKline are the other 3 of the top 4 largest
pharmaceutical companies that sell vaccines.


The hunt for a vaccine for HIV continues, and t
he amount of money earmarked for HIV/AIDS is massive.
In the United States alone, the National Institu
tes of Health (NIH) is dedicating more than $2 billion to the
disease next year, and a five
-
year congressional initiative is adding $15 billion. The World Health
Organization (WHO) will distribute $5.5 billion, the Global Fund to Fight AIDS, Tuberculosis a
nd
Malaria will provide $4.7 billion, and more than $500 million will come from the Bill & Melinda Gates
Foundation.


Viral control products

Creams to control
herpes simple virus (HSV
-
1 and HSV
-
2) exist, to treat cold sores and genital herpes
respectively.

The market leading product is Zovirax® (Acyclovir) with 2003 sales of over £10 million.
(Made by GlaxoSmithKline)
http://www.gsk.com/products/zovirax_uk.htm


Viral Promoters

When virus’s assume c
ontrol of their host cell’s transcription and translation processes they do so using
powerful promoter sequences that are used in preference to the hosts own promoters. Viral promoter DNA
is now used in recombinant DNA technology to enhance the expression
of the target protein product. The
f
irst virus promoter developed and used for this purpose was simian virus 40 (SV40), But similar elements
from other viruses such as Cytomegalovirus (CMV), Rous sarcoma virus (RSV), and Semlili Forest virus
(SFV) were als
o developed. An example of a commercially successful promoter is
pTriEx

-
1 from
Novagen.


GM Crops


Virus Resistant

Plant viruses cost the agricultural and horticultural sectors millions each year. Biotech companies have
been researching natural resistanc
e as well as trying to develop new strains of GM crops with engineered
traits for resistance. Three commercial products are currently marketed; Papaya, Squash and Potatoes.

http://www.apsnet.org/online/feature/BioTechnology/Engineering.html

-

Overview of plant virus research.

http://www.whybiotech.com/index.asp?id=1262

-

Potential benefits for another crop


straw
berries






26

Papaya

Papaya (
Carica papaya

L.) is grown commercially in over 48 countries with a
combined harvest of 7 million metric tonnes. It is valued as a nutritional tropical
fruit, grown throughout the Caribbean and south America. Strains were devel
oped
to resist the papaya ringspot virus (PRSV). The plants express viral coat proteins,
and although the exact mechanism is not know, it is thought that this interferes
with one of the first steps in viral replication, that of uncoating (removal of CP
fro
m the incoming virus). The license is held by the Papaya Administration
Committee of Hawaii, and the seeds are marketed as Rainbow and SunUp. The
Hawaiian market is estimated at around $100 million annually.

http://www.whybiotech.com/index.asp?id=1646

-

What where who and why of transgenic Papaya

http://www.agbios.com/dbase.php?action=Submit&evidx=37

-

Patent history and backg
round


Squash (Pumpkins)

Another important crop in the US, Squash and Pumpkins suffer from infection by cucumber mosaic
virus (CMV), watermelon mosaic virus (WMV) 2, and zucchini yellow mosaic virus (ZYMV). Yellow
crookneck squash (
Cucurbita pepo

L.), tog
ether with pumpkins, gourds, and other squash, are grown
in over 83 countries with a combined harvest of 15 million metric tonnes in 2000. Other than removal
of virus
-
infected plants, there are no other effective control measures for these crops once infe
cted.
The CZW
-
3 squash line was developed using recombinant DNA techniques to resist infection by
CMV, ZYMV, and WMV2 by inserting virus
-
derived sequences that encode the coat proteins (CPs)
from each of these viruses. The mode of action is thought to be t
he same as for virus resistant Papaya.

http://www.agbios.com/dbase.php?action=ShowProd&data=CZW
-
3

-

Virus resistant squash info.


Potato

Potato (
Solanum tuberosum

L.) is grown comm
ercially in over 150 countries with a combined harvest
of 311 million metric tons and is the fourth most important food crop in the world, providing more
edible food than the combined world output of fish and meat. Potato crops suffer from viral and insect

attack.


The Colorado potato beetle is the most destructive insect pest of potatoes in North America and can
completely defoliate potato plants. Traditional control is with insecticides. Viral attack from Potato
virus Y (PVY) is known to infect over 342
plant species in 69 genera and 27 families, causing loss of
yield and crop quality. Both problems were solved in one step by Monsanto who used existing
successful commercial potato strains and added virus and beetle resistance genes. The transgenic
NewLeaf
® potato contain two novel genes, the
cry3A

gene from
Bacillus thuringiensis
, which
encodes an insecticidal endotoxin protein and the coat protein gene from PVY
-
O. The exact
mechanism of resistance to the virus is not fully understood.

Monsanto marketed t
he NewLeaf brands successfully during 2000
-
2002 but decided to halt production
after McDonalds cancelled orders for the potatoes and introduced a “no
-
GM” policy for its
restaurants.

http://www.monsanto.co.uk/achievements/newleaf_potatoes.html

-

Monsanto NewLeaf plus page

http://www.agbios.com/dbase.php?action=ShowProd&data=RB
MT15
-
101%2C+SEMT15
-
02%2C+SEMT15
-
15

-

Virus resistant potato info.


Tobacco

Tobacco Mosaic Virus is heavily studied and well characterised. Genes for the virus coat protein have
been inserted into several strains of the plant, conferring resistance to the
virus. At the moment though
no GM strains resistant to TMV are available commercially.


27

Commercial uses of recombinant DNA technology.


Some examples of commercially successful recombinant proteins


Insulin

One of the first recombinant products, now used wo
rldwide. Several companies make or plan to make
it, but Aventis have the largest market share as yet.
In 2003, Aventis generated sales of €16.79 billion,
and have just opened a new plant in Frankfurt to produce their rDNA insulin products Lantus® and
Exubr
is®

http://www.pharmaceutical
-
technology.com/projects/aventis/

http://www.aventis.com/

search for insulin or their products Lantus and Exub
ris.


DNase I

Used to treat patients with cystic fibrosis. Modified CHO cells express a human DNAse I, which
cleaves bacterial DNA in the lungs, helping reduce the inflammatory response and clear mucus. Sold
as Pulmozyme by Genetech. Annual sales of over $
110 million

http://www.pulmozyme.com

-

Product information, info on CF.



Factor VIII

Blood clotting factor produced and used to treat patients with haemophilia. It is currently produced in
CHO cells by Bayer. Ver
y expensive to synthesise and purify but the product has the benefits of
increased efficiency of activation, increased resistance to inactivation and decrease antigenicity.

http://w
ww.biological.com/abouthaemophilia_recombinant.cfm

-

Bayer recombinant Factor VIII