Activity 1: Biotechnology and You

lowlytoolboxΒιοτεχνολογία

22 Οκτ 2013 (πριν από 4 χρόνια και 19 μέρες)

96 εμφανίσεις

Activity 1: Biotechnology and You
7
©

A
mericAn
F
orest
F
oundAtion
Objectives:
Students will (a) model
artificial selection

through a simulation; (b) simulate genetic
engineering

through insertion of
novel
genes
into a model of a
plasmid
;

(c) rec
-
ognize and detect bias in writing; and (d)
explore the benefits, risks, and risk manage
-
ment strategies for genetically engineered
products.
Assessment Opportunities:
To evaluate the students’ knowledge of
ƒ
artificial selection:
Ask your students to identify the selec
-

tive force in the bean activity.

The selective force is your students; they
are choosing which beans “survive”
and will be allowed to “reproduce.”

To evaluate students’ knowledge of
ƒ
genetic engineering:
Have students compare and contrast

artificial selection and genetic engi
-
neering. Students should realize that
both are forms of genetic modification


Selection can modify traits that are con
-
trolled by many genes, while genetic
engineering works best on traits con
-
trolled by a single gene. This factor is
one that limits the genetic engineering
of crops and forest trees for improved
productivity and stress resistance. Such
complex traits are affected by many
genes; in field testing, it has not proven
easy to use single genes to make
improvements that show increased
value.

To evaluate students’ understanding of
ƒ
the use of plasmids in transformation:
Ask your students to explain what a

plasmid is, where it is naturally found,
and why it is useful for this type of
activity.


Plasmids are small, circular, extra-chro
-
mosomal pieces of DNA that are typi
-
cally double-stranded and are found in
bacteria. Because plasmids replicate
autonomously and do not undergo
recombination, they can pass on the
inserted gene without interruption.

To evaluate students’ understanding of
ƒ
the use of enzymes in the transformation
process:
Ask your students to identify which

enzymes are represented by the
scissors and tape in the activity that
uses Student Page: Paper Plasmid
Construction and to explain their
respective functions. The students may
use pictures, diagrams, or text in their
answers. Scissors represent restriction
enzymes (used to cut DNA at specific
sites), and the tape represents
ligase

(used to join strands of DNA that have
double-stranded breaks).

To evaluate students’ understanding of
ƒ
risks vs. benefits associated with geneti
-
cally engineered organisms:
Ask your students to write a list that

contains at least three risks and three
benefits of genetically engineered
organisms. Next, have the students
write a brief report (one page) on
whether they would purchase cloth
-
ing that has been produced from
genetically modified cotton. Ask them
to address at least two of the risks or
benefits that they listed. Remind them
that although there is no right or wrong
answer, they should be able to articu
-
late why they have taken a specific
stance.

To evaluate students’ understanding of
ƒ
containment and escape issues of geneti
-
cally modified organisms:
Ask your students to choose a geneti
-

cally modified plant that is currently
grown and to discuss the specific
ways in which potential escape of
that organism or gene has been
addressed.
Subjects:
Biology, AP Biology,
Environmental Science, AP
Environmental Science
Concepts:

1.4, 1.6, 2.2, 2.8,
2.10, 3.5, 3.11, 4.1, 4.7, 5.4,
5.6
Skills:
Classifying and Categorizing,
Compare and Contrast,
Decision Making, Determining
Cause and Effect, Discussing,
Inferring, Interpreting, Organizing
Information, Problem Solving,
Reasoning, Representing,
Researching
Materials:
pinto beans, rulers, calculators
(optional), bags or bowls (for
pinto beans), scissors, clear tape,
copies of student pages, transpar
-
ency, overhead projector
Time Considerations:
Preparing the Activity
Part A: 30 minutes
Part B: 60 minutes
Part C: 30 minutes
Part D: 30 minutes
Part E: 30 minutes
Part F: 15 minutes
Doing the Activity
Part A: One 50-minute period
Part B: Two 50-minute periods
Part C: Two 50-minute periods
Part D: One 50-minute period
Part E: One or Two 50-minute
periods
Part F: Two 50-minute periods
Activity 1: Biotechnology and You
In this activity, students will explore artificial selection, as well as learn how advances
in science are allowing increasingly specific methods of genetic manipulation in
organisms (
genetic engineering
). Students will explore the
risks

and benefits of
genetic engineering and concerns that affect what we eat and wear.
8

project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
background
Humans have been genetically modifying organ
-
isms for thousands of years. So why does there
seem to be such a controversy over
genetically
engineered organisms
(GEOs) in today’s
world? The answers to that question are varied
and complex. In this activity, students will explore
(a) the distinction between artificial selection and
genetic engineering; (b) the ways some scientists
use genetic engineering to modify agricultural
crops; and (c) several of the scientific, economic,
environmental, and ethical considerations that
must be addressed when assessing GEOs.
What does it mean to genetically modify an organ
-
ism?
Artificial selection
is one example of how
an organism can be genetically modified. When
people choose to breed only dogs that have a
specific
phenotypic trait
,

those people are ulti
-
mately creating a group of organisms that possess
a specific trait, and the results are often called a
breed
. Labradors make great retrievers, collies
make great herders, and Dobermans are good
guard dogs.
There are also many different examples of artificial
selection when it comes to food. A classic example
is corn. The corn that we eat today (
Zea mays
ssp.
mays)
was developed from a wild grass, teosinte
(
Zea mays
ssp.
parviglumis
). The ancestor to
today’s variety was much smaller in size, with hard,
indigestible kernels. Today’s corn has bigger, more
easily digested kernels.
1
When the modification involves altering DNA, it
is referred to as genetic engineering, which is a
form of genetic modification that is a more precise
process than traditional artificial selection and is
based on phenotypes because it deals directly with
DNA. Genetic engineering involves
recombinant
DNA (rDNA)
—DNA that has been altered, usually
using
gene splicing
. Genetic engineering became
possible in the middle of the 20th century when
advanced technology allowed researchers to learn
much more about the genetic code and how it
worked.
In 1953, James Watson and Francis Crick published
their findings in the journal
Nature
about the dou
-
ble helix structure of DNA.
2
In 1983, Kary Mullis
The first commercially available and genetically engineered pet is the GloFish
®
.
1
This fish has been genetically
engineered with a protein that causes it to fluoresce, or glow, all the time! By inserting a gene normally found
in marine organisms (such as jellyfish and sea anemones) into a zebra fish, scientists were able to create a fish
that glows all the time.
Although the fish was originally developed for use in genetic studies in the laboratory, researchers are now
looking to use these fish as
bio-monitors
to detect environmental pollutants.
2
Along the way, someone realized
there was a demand in the pet market for this novel aquarium critter.
Even though the GloFish can be legally sold in the United States (the Food and Drug Administration deemed
there were no significant differences with respect to safety between the glowing fish and its traditional
counterpart
3
), some countries, including Australia, Canada, and most of those in Europe, have banned the sale
of this genetically engineered organism.
2

1. GloFish fluorescent website at www.glofish.com.
2. Z. Gong, B. Ju, and H. Wan, “Green Fluorescent Protein (GFP) Transgenic Fish and Their Applications,”
Genetica
111 (2001): 213–25.
3. J. Knight, “GloFish Casts Light on Murky Policing of Transgenic Animals,”
Nature
426 (2003): 372.
Box 1.1 Did You Know?
Activity 1: Biotechnology and You
9
©

A
mericAn
F
orest
F
oundAtion
revolutionized the field of genetics by creating a
process known as the
polymerase chain reac
-
tion
, or PCR, (eventually winning the Nobel Prize
for his discovery).
3
PCR enables scientists to make
millions of copies of a single region (a specific
gene, for example) of a
genome
. This copying,
or amplification technique, enables researchers
to study a specific region of a genome in detail.
By 2001, a group of more than 200 research
-
ers published a paper announcing that they had
sequenced (that is, determined the order of nucle
-
otides or base pairs, or ACGT) the entire human
genome (more than 2.9 billion base pairs).
4

So why are GEOs so controversial? The answer
is complex and has its roots in two very different
areas: science and ethics.
Bioethics
is a subset
of ethics that deals with issues that arise out of
advances in biology, medicine, and technology.
There is no comprehensive list of the ethical
concerns, but some of the ethical issues that are
often discussed revolve around religion (genetic
engineering is viewed by some as akin to “playing
God”), concern for animal welfare (some people
view genetic engineering techniques as painful
invasions), concern for human health (how well
scientists understand the long-term implications of
consuming genetically engineered food), and con
-
cern for the environment (whether or not a GEO
might transfer its genes to the wild).
5,6
Scientific controversy over GEOS centers around
human health concerns, as well as environmental
concerns.
7
For example, inserting genes for pest
resistance into plants raises questions about how
the products of those genes might affect humans
and other nontarget organisms, such as butterflies,
when and if they are consumed. Environmentally,
there is concern about the escape of
transgenes

into plant populations that have not been geneti
-
cally engineered (see the case study of StarLink™
corn in part E). Those concerns need to be evalu
-
ated against the potential benefits of transgenic
organisms, such as reduced pesticide use, higher
yield, more nutritious food, bioremediation, and
production of pharmaceuticals.
Many people are concerned that the scientific
technology that allows us to modify and change
living organisms is increasing so fast that society is
unable to stay on top of such issues with respect
to debating and developing ethical and moral
guidelines for using the techniques. Another con
-
cern is that although there are formal agencies
that regulate the use of GEOs in our society (Food
and Drug Administration, U.S. Department of
Agriculture, Environmental Protection Agency),
8
no
agency is specifically set up to evaluate the ethical
implications.
Genetically engineered organisms are becoming increasingly prevalent in today’s society, especially in
agriculture. With the use of genetic engineering comes an entirely new set of rules and regulations, not only in
the United States but also in countries throughout the world.
In our increasingly globalized society, the economic, social, and environmental implications of how individual
countries choose to regulate such crops can be far-reaching. Consider the United States and the European
Union (EU). The EU has stringent rules when it comes to labeling food originating from organisms that have
been genetically engineered, whereas the U.S. rules are much less stringent.
1

To learn more about how decisions governing food labeling are made, check out the World Health
Organization’s website at www.who.int/foodsafety/biotech/en/.
1. “U.S. vs. EU: An Examination of the Trade Issues Surrounding Genetically Modified Food,” Pew Initiative on
Food and Biotechnology, December 2005, www.pewtrusts.org/our_work_report_detail.aspx?id=24138.
Box 1.2 Policies Governing Labeling of Genetically Engineered Organisms
10


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
With all this controversy over genetic engineer
-
ing, one might automatically assume that there are
uniform guidelines that regulate GEO production.
But that is not the case and, again, the reasons are
complex. Because much of the science is so new,
there are few long term studies that have specifi
-
cally addressed many of the concerns surrounding
GEOs, such as their effect on human health and
the environment. In addition, different countries
have adopted different laws and regulations to deal
with GEOs. In a world where commerce is becom
-
ing increasingly globalized, those differences can
have enormous economic, political, and environ
-
mental effects.
9
As with many issues, the controversy surrounding
biotechnology is complex. Learning more about
the science, including the different reasons and
ways that organisms are genetically engineered,
will allow you and others to make more informed
decisions. Critically evaluating all information is
important when examining issues. Part C of this
activity allows students to critically evaluate infor
-
mation from several sources with differing points
of view (bias). Part D of this activity introduces stu
-
dents to different reasons for genetically modifying
crops and allows them to explore both the risks
and benefits of genetic engineering. Part F of this
activity encourages students to investigate the use
of genetically modified cotton for clothing.
Biotechnology is a global issue—with global impli
-
cations. For example, 75 percent of processed food
in America contains ingredients derived from a
genetically engineered organism, and those foods
are often sold in the world market.
10
Additionally,
more than 20 different countries worldwide are
growing genetically engineered crops.
11
Learning
about the scientific, environmental, and ethical
issues surrounding GEOs will help students make
informed decisions in this area of biotechnology.
.
endnotes

1. Fred Pearce, “Going Bananas,”
New Scientist
,
January 18, 2003, p. 27.
2. J. D. Watson and F. H. C. Crick,, “A Structure
for Deoxyribose Nucleic Acid,”
Nature
171
(1953): 737–38.
3. Mullis Kary, F. Faloona, S. Scharf, R. Saiki,
G. Horn, and H. Erlich, “Specific Enzymatic
Amplification of DNA in Vitro: The Polymerase
Chain-Reaction,”

Cold Spring Harbor
Symposia on Quantitative Biology
51 (1986):
263–73.
4. J. C. Venter,
M. D. Adams, E. W. Myers, P. W.
Li, R. J. Mural, G. G. Sutton, H. O. Smith,
et
al.,
“The Sequence of the Human Genome,”
Science

291, no. 5507 (2001): 1304–51.
5. “Exploring the Moral and Ethical Aspects of
Genetically Engineered and Cloned Animals,”
Pew Initiative on Food and Biotechnology,
January 2005
, www.pewtrusts.org/
uploadedFiles/wwwpewtrustsorg/Summaries_-_
reports_and_pubs/PIFB_Moral_Ethical_
Aspects_GE_and_Cloned_Animals.pdf.
6. M. Marvier, “Pharmaceutical Crops Have a
Mixed Outlook in California,”
California
Agriculture
61, no. 2 (2007): 59–66.
7. O. V. Singh, S. Ghai, D. Paul, and R. K. Jain,
“Genetically Modified Crops: Success, Safety
Assessment, and Public Concern,”
Applied
Microbiology Biotechnology
71 (2006):598–
607.
8.
“Issues in the Regulation of Genetically
Engineered Plants and Animals,” P
ew Initiative
on Food and Biotechnology, April 2004,
www.pewtrusts.org/our_work_report_detail.
aspx?id=17976.
9.
“U.S. vs. EU: An Examination of the
Trade Issues Surrounding Genetically
Modified Food,” Pew Initiative on Food
and Biotechnology, December 2005,
www.pewtrusts.org/uploadedFiles/
wwwpewtrustsorg/Reports/Food_and_
Biotechnology/Biotech_USEU1205.pdf.
10. Ibid.
11. “Global Status of Commercialized Biotech/GM
Crops 2006: Executive Summary,”

International
Service for the Acquisition of Agri-Biotech
Applications, 2006, www.isaaa.org/Resources/
Publications/briefs/35/executivesummary/
default.html.
Activity 1: Biotechnology and You
11
©

A
mericAn
F
orest
F
oundAtion
Part A: Artificial Selection
Students will explore the differences between arti
-
ficial selection and genetic engineering. They will
then model the process of artificial selection using
a simulation involving pinto beans of varying sizes.

getting ready
Make enough copies of Student Page: Bean
ƒ
Activity for each student.
Prepare one bag of 200 beans for each pair of
ƒ
students. Label it “New Beans” (pinto beans
work well because they can be quite variable
in size [a 1-pound bag is enough for about six
groups], but other beans (e.g., lima beans) may
work if their sizes vary).
Each student should have a ruler to record his or
ƒ
her results.
A calculator for each group is optional.
ƒ
Students should sit facing each other with a flat
ƒ
desk or table in between them.
Supply each student group with one extra bag
ƒ
or bowl (labeled “Discarded Beans”) for the dis
-
carded beans.
doing the activity
1.
Begin this activity by asking students to list
organisms that have been genetically modified
by humans. They will likely come up with a list
that includes examples of organisms that have
been modified through both artificial selection
and genetic engineering. If they do not, shape
the discussion by suggesting some examples of
both types.
Genetically modified organisms include vari
-
ous crops (corn from teosinte is an excellent
example), dogs, ornamental plants, and trees.
GEOs include crops (Bt-resistant corn and cot
-
ton), Flavr-Savr tomato, animals (GloFish
®
),
and bacteria (used to produce insulin and
many other proteins)
.
2.
Explain to the students that in this activity
they will be exploring a specific type of genetic
modification called
artificial selection
. Ask
them to come up with a definition of artificial
selection. If they are having trouble, remind
them of the examples they have just listed in
step 1. They should end up with an under
-
standing that artificial selection involves breed
-
ing organisms according to their desired phe
-
notypic traits.
3.
Go back to the list of organisms the students
came up with in step 1, and ask them to iden
-
tify and circle those that were modified using
artificial selection. They should realize that not
all the organisms on their list have been cir
-
cled. Explain to them that genetic modification
can be accomplished through different meth
-
ods and that artificial selection is only one of
the methods. At this point, you can introduce
the term genetic engineering and explain that
the remaining items on their list fall under that
category.

4.
Tell the students that you are going to have
them perform a simulation that models artifi
-
cial selection, and explain that this activity is
an analogy. After briefly outlining the simula
-
tion, ask the students to think throughout the
simulation how the different parts relate to the
concept of artificial selection. Explain that each
bean represents an
allele
for bean size. In this
simulation, big beans represent alleles for big
bean plants, and small beans represent alleles
for small bean plants. Remind students that
each organism has two alleles and contributes
one of the alleles to the next generation. It is
also important to note that many genes affect
a single trait and that this example of a single
allele representing plant size is greatly simpli
-
fied.
5.
Have the class break up into pairs. For each
pair of students, pass out a bag of beans (each
bag should contain at least 200 beans), and
one “Discarded Beans” bag or bowl. Each stu
-
dent should have a ruler and a copy of Student
Page: Bean Activity.
12


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
6.
Have each student pick 10 beans out of the
bag labeled “New Beans.” Using the ruler, have
each player measure the length of each of his
or her beans in millimeters and record that
information on the student page in the column
labeled “Length at Beginning of Simulation
(mm).” After they have measured all 10 of
their beans, ask the players to each calculate
the average size of his or her 10 beans and to
record that information in the last row of the
column.
7.
Next, have the players lay out their beans in
front of them, in a line, in a random order
about 1 inch apart. The line of beans from
player 1 should line up with the beans from
player 2 (see Figure 1.1). The line of beans
represents 10 organisms with two alleles each.
Explain to the class that the goal is to use
artificial selection to increase the average size
of the beans in their possession. Each pair of
beans represents a single breeding organism,
with each bean representing an allele.




Figure 1.1. Pair of Beans, Each Representing Two
Alleles of a Single Organism.
8.
Round 1: Taking turns, have each player select
a pair of beans. Remind students that their goal
is to end up with larger beans. They cannot
mix and match between pairs; they must select
two beans that are across from each other (see
Figure 1.1; selection may result in their choos
-
ing a really big bean that is paired with a really
small bean). After each player has selected
three pairs, have them put the remaining
unselected beans in the “Discarded Beans” bag
(those beans will no longer be used). The pairs
of beans that each student has selected (rep
-
resenting six alleles) are going to be used in
the next round. Explain that this round of the
activity represents the
generation time
for
beans. Generation time is the time it takes an
organism to grow and reproduce, and the time
varies for different organisms. The generation
time for a pinto bean is 2.5 months.
9.
Have each student randomly select four new
beans from the “New Beans” bag (not the
“Discarded Beans”). Ask them to mix those
beans in with the selected beans from the pre
-
vious round. Each student should now have 10
beans (6 from the previous round and 4 new
beans), which they should place in a line, in
random order. They should then repeat the
selection activity, where each student takes a
turn at selecting pairs of beans (representing
an organism with two alleles). Remind stu
-
dents that after each round of choosing three
pairs each, they should put the beans they did
not choose in the “Discarded Bean” bag and
should keep their selected beans for the next
round.
10.
Students should repeat step 9 until they have
completed 10 rounds. After rounds 5 and 10,
students should measure each of their six
remaining beans, calculate the average bean
size, and record their data on their papers
(add the length of the six remaining beans and
divide by six). This result is an indication of the
average bean size in the population that they
have created through their selection process.
11.
Have each student subtract the initial average
bean size from the final average bean size. The
result represents the net increase (or decrease)
in bean size for each person. Have each person
record this value on a chart on the board.
12.
Once all the students have recorded their val
-
ues, ask them to contemplate causes for the
variation. They should come up with reasons,
such as different sizes of beans in their bags
(representing different genetic material), dif
-
Activity 1: Biotechnology and You
13
©

A
mericAn
F
orest
F
oundAtion
ferences among students in their ability to dis
-
criminate among beans of different sizes (rep
-
resenting differences among people in charac
-
terizing phenotypic traits), and differences as a
result of random chance (a big bean randomly
paired with a small bean). You can use corn as
an example of a genetically modified crop to
relate this activity to the real world.

13.
As a follow-up to the activity, use the following
set of questions to generate discussion among
the students. The questions will allow them to
solidify their understanding of the analogy of
the bean selection simulation to the process of
artificial selection.
This activity is intended to model a real-world
ƒ
process. In this analogy, what are the beans
meant to represent in real life?
The beans are meant to represent alleles for
bean size. Each bean represents a single allele
donated by either the male or the female.
What is the addition of new beans to your line
ƒ
supposed to represent?
It is meant to represent the addition of new
alleles into the population. In artificial selec
-
tion, this determination is done by bringing
new plants or animals into your breeding pop
-
ulation.
Why must you choose a pair of beans rather than
ƒ
just one?
One of the beans represents an allele from the
mother, and the other bean represents an allele
from the father. The pair of beans that is chosen,
therefore, reflects a new individual, which has
two alleles: one from each parent.
Although analogies help us understand new
ƒ
ideas, they are often imperfect. What are some
ways in which the bean analogy does not accu
-
rately reflect reality
?
In reality, no single allele codes for size. It is a
complex process, influenced by many genes at
many loci, as well as by environmental condi
-
tions. Also in this analogy, the generation time
was very fast, so students were able to see the
results of their selections almost immediately.
In reality, the generation time for bean plants
would be several months.
Describe the trend in the class data of average
ƒ
bean size.
Students should notice that in general the aver
-
age bean size has increased. There may be some
students whose average bean size stayed the
same or even decreased. This is to the result of
random chance and reflects the importance of
collecting more than one set of data.
Ask the students how they think the results
ƒ
would differ at 100 rounds? 1,000 rounds?
The more rounds they play, on average, the
more dramatic the difference between the
beginning average bean size and the final aver
-
age bean size. Eventually, however, the differ
-
ence in size will stop changing as they reach the
size limit of the population (i.e., their maximum
average bean size can never exceed the largest
bean in the population).
endnotes
1. N. M. Fedoroff, “Prehistoric GM Corn,”
Science

302, no. 5648 (2003): 1158–59.

14


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
b e a n a c t i v i t y
I n t h i s a c t i v i t y, y o u w i l l b e u s i n g b e a n s t o m o d e l t h e p r o c e s s o f a r t i f i c i a l s e l e c t i o n.
1. P i c k 1 0 b e a n s f r o m y o u r b a g l a b e l e d “ N e w B e a n s.” M e a s u r e t h e l e n g t h o f e a c h b e a n u s i n g y o u r r u l e r a n d
t h e n c a l c u l a t e t h e a v e r a g e s i z e o f a l l 1 0 b e a n s. H i n t: Y o u c a l c u l a t e t h e a v e r a g e b y a d d i n g u p a l l t h e l e n g t h s
a n d d i v i d i n g b y t h e t o t a l n u m b e r o f b e a n s. R e m e m b e r t h a t i n t h i s s i m u l a t i o n, t h e f i r s t r o u n d h a s 1 0 b e a n s; h o w
-
e v e r, a f t e r t h e 5 t h a n d t h e 1 0 t h r o u n d s, y o u a r e m e a s u r i n g o n l y 6 b e a n s.
R e c o r d B e a n L e n g t h
B e a n
L e n g t h a t B e g i n n i n g
o f S i m u l a t i o n ( m m )
L e n g t h a f t e r 5
R o u n d s
L e n g t h a f t e r 1 0
R o u n d s
1
2
3
4
5
6
7
8
9
1 0
A v e r a g e l e n g t h
2. L a y y o u r b e a n s o u t i n f r o n t o f y o u. L i n e t h e m u p r a n d o m l y. I n o t h e r w o r d s, y o u d o n o t w a n t t o t r y t o l i n e t h e m
u p a c c o r d i n g t o t h e i r c o l o r o r t h e i r l e n g t h. Y o u p a r t n e r w i l l d o t h e s a m e s o t h a t y o u e a c h h a v e a l i n e o f b e a n s
i n f r o n t o f y o u. Y o u r b e a n s a n d y o u r p a r t n e r ’ s b e a n s s h o u l d b e p a r a l l e l ( i n l i n e w i t h ) e a c h o t h e r.
F i g u r e 1.1 a. P a i r s o f B e a n s, E a c h R e p r e s e n t i n g T w o A l l e l e s o f a S i n g l e O r g a n i s m
3. P l a y e r s t a k e t u r n s p i c k i n g t h e p a i r s o f b e a n s f r o m t h e l i n e s i n f r o n t o f t h e m u n t i l e a c h p l a y e r h a s c h o s e n t h r e e
p a i r s. T h e g o a l i s t o p i c k t h e b i g g e s t p a i r. B u t y o u c a n n o t m i x a n d m a t c h a m o n g p a i r s! F o r e x a m p l e, i f t h e b i g
-
g e s t b e a n i s p a i r e d w i t h t h e s m a l l e s t b e a n, y o u h a v e t o c h o o s e b o t h. I t i s u p t o y o u t o d e c i d e t h e b e s t s t r a t
-
e g y. F o r e x a m p l e y o u c o u l d p i c k a p a i r w i t h t h e b i g g e s t b e a n, e v e n i f i t i s p a i r e d w i t h t h e s m a l l e s t b e a n. O r
y o u c o u l d p i c k a p a i r t h a t h a s t w o m e d i u m b e a n s.
A f t e r e a c h p l a y e r h a s c h o s e n t h r e e p a i r s, h a v e o n e p l a y e r t a k e t h e r e m a i n i n g u n s e l e c t e d p a i r s a n d p u t t h e m i n t h e
b a g l a b e l e d “ D i s c a r d e d B e a n s.” T h o s e b e a n s w i l l n o l o n g e r b e u s e d i n t h e s i m u l a t i o n.
Y
our row of beans
Your partner’s row of beans
Activity 1: Biotechnology and You
15
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
b e a n a c t i v i t y ( c o n t i n u e d )
F i g u r e 1.1 b. P a i r s o f B e a n s, E a c h R e p r e s e n t i n g T w o A l l e l e s o f a S i n g l e O r g a n i s m
4. R o u n d 2: E a c h p l a y e r s h o u l d p i c k f o u r n e w b e a n s f r o m t h e b a g l a b e l e d “ N e w B e a n s.” A g a i n, e a c h p l a y e r
s h o u l d r a n d o m l y l i n e u p h i s o r h e r 1 0 b e a n s, p a r a l l e l t o t h e p a r t n e r ’ s b e a n s.
R e p e a t t h e i n s t r u c t i o n s i n s t e p 3. D o t h i s u n t i l y o u h a v e c o m p l e t e d f i v e r o u n d s ( a n e w r o u n d b e g i n s e v e r y t i m e
y o u s e l e c t n e w b e a n s ).
5. A f t e r f i v e r o u n d s, e a c h p l a y e r n e e d s t o m e a s u r e t h e s i x r e m a i n i n g b e a n s i n h i s o r h e r r o w a n d t o r e c o r d t h e
i n f o r m a t i o n o n h i s o r h e r d a t a t a b l e ( r e m e m b e r t o d o t h i s B E F O R E y o u p i c k t h e n e w b e a n s f o r t h e n e x t r o u n d ).
C a l c u l a t e t h e a v e r a g e b e a n s i z e.
T h i s c i r c l e r e p r e s e n t s a p a i r o f b e a n s. I n th i s s i m u l a t i o n, a
p a i r r e p r e s e n t s o n e b e a n f r o m yo u r l i n e a n d o n e b e a n f r o m
yo u r p a rt n e r’s line.
16


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
Part B. Genetic Engineering
Students will identify the variety of organisms that
have been genetically engineering by humans.
They will then mimic the process of genetic engi
-
neering by transforming a plasmid with two novel
genes: one for pest resistance and one for fluores
-
cence.
getting ready
Make enough copies of Student Page:
ƒ
Transformation for each student.
Make enough copies of the following student
ƒ
pages for each group

(three to four students per
group). Making each of the following student
pages a different color will facilitate the activity:
Student Page: Paper Plasmid Construction

Student Page: Genes for Insertion into Plasmid

Student Page: Restriction Enzymes

Student Page: Instructions

Obtain one pair of scissors and clear tape for

each group.
doing the activity
In this activity, students will simulate the insertion
of a
reporter gene (GFP)
and a pest-resistance
gene (
Bt gene
) into a tobacco plant.
1.
Begin this activity by reminding students of
the list of organisms they developed in the
beginning of part A. Explain that in this activity
they are still focusing on genetically modified
organisms but will explore those GEOs that
have been modified using genetic engineer
-
ing instead of artificial selection and that will
go directly to step 2. If you have not already
completed part A with your students, you can
guide the discussion using the following:
Ask your students to come up with a list of
ƒ
organisms that have been modified by humans.
Write their examples on the board as they
come up with them. They will likely come up
with a list that includes examples of organ
-
isms that have been modified through artificial
selection and genetic engineering. If they do
not, shape the discussion by suggesting some
examples of both types.

Examples of organisms modified through

artificial selection may include various
crops (corn from teosinte is an excellent
example), dogs, ornamental plants, and
trees. Organisms modified through genetic
engineering may include crops (Bt-resistant
corn and cotton), Flavr-Savr tomato, animals
(Dolly, the cloned sheep), and bacteria (used
to produce insulin and many other proteins)
.

At this point, introduce the terms
ƒ
artificial
selection

and

genetic engineering
. Artificial
selection is based on phenotypic selection
of organisms, whereas genetic engineering is
more specific than artificial selection in that it
usually deals directly with DNA.

Go back to the list of organisms that the stu
-
ƒ
dents came up with in step 1, and ask them
to identify those that were modified using
artificial selection (by circling them) and those
that were modified using genetic engineering
(by underlining them). They should realize
that genetic modification can be accomplished
through several different routes, namely, arti
-
ficial selection and genetic engineering. At this
point, introduce the term
transgenic
, and
explain that it refers to organisms that have
been genetically modified through the process
of genetic engineering. The class should now
be familiar with the definition of genetic engi
-
neering and can go directly to step 3.
2.
As a class, have the students develop a defini
-
tion for genetic engineering. Their definition
should touch on the fact that genetic engineer
-
ing involves inserting or deleting DNA. At this
point, you can introduce the term
transgenic
and let them know it refers to organisms that
have been genetically modified through the
process of genetic engineering.
3.
Ask students what they know about transgenic
crops. The following questions can be used to
lead the discussion so that students mention
Activity 1: Biotechnology and You
17
©

A
mericAn
F
orest
F
oundAtion
some of the costs and benefits associated with
transgenic crops.
What are some examples of transgenic crops?
ƒ
Why are the specific advantages of the crops
ƒ
mentioned?
What are the risks of transgenic crops?
ƒ
4.
Once the students have an understanding

of the costs and benefits of transgenic crops,
pass out Student Page: Transformation to
each student. Have each student read the
background information to himself or herself.
Initiate a discussion in which students can ask
questions about the information they have just
read. Note: The use of GFP to monitor an acci
-
dental release of a transgenic organism is tech
-
nically possible and has been used in research
settings. It has not, however, been used as yet
by farmers for this purpose in a nonresearch
setting.
1
5.
Have one student volunteer to read the sce
-
nario from Student Page: Transformation. This
information will set the stage for the paper
plasmid activity that follows.
6.
After the students have read the Student Page:
Transformation for the activity, you should
initiate a discussion. You will want to give the
students an opportunity to discuss why some
farmers would choose to use transgenic crops
and why some would choose to grow organic
crops. Divide the class into two groups, and
ask one group to represent the farmer who
is growing transgenic crops and one group to
represent the organic farmer. Have each group
come up with the list of the costs and ben
-
efits of each type of crop. Bring the class back
together, and then have the groups share their
lists with each other.
7.
Explain to the students that they will now
investigate in more detail how scientists have
created the transgenic plant by modeling the
steps used to create the plasmid that contains
the genes that will be inserted into the crops.
8.
Divide the students into small groups (two to
four students each). Each group should receive
a copy of the following student pages:
Student Page: Paper Plasmid Construction
ƒ
Student Page: Genes for Insertion into Plasmid
ƒ
Student Page: Restriction Enzymes
ƒ
Student Page: Instructions
ƒ
In the following steps, students will assemble their
circular plasmid and will cut out the genes they
will insert. After identifying the correct restriction
enzyme, they will use scissors to mimic the actions
of the restriction enzyme, cutting both the plasmid
and the genes to be inserted. They will then insert
the genes into the plasmid. The final product will
be a genetically modified plasmid that now con
-
tains two novel genes: one for pest resistance (Bt
gene) and one for green fluorescence (GFP gene).

helPful hints
Explain that the DNA fragments are copies of the
two genes (Bt resistance and GFP) that were gen
-
erated by scientists through the use of the
poly
-
merase chain reaction
with a special protocol
that generates “
sticky ends
” (overhanging base
pairs at each end of the DNA fragment). The sticky
ends are necessary because they allow the two
genes to be connected (or ligated) to form a single
piece of DNA. This piece of DNA will eventually be
inserted into the plasmid and, after the transforma
-
tion process, will allow the plants to resist certain
pests (caused by the Bt gene) as well as to fluo
-
resce (caused by the presence of the GFP gene).
Student Page: Restriction Enzymes lists the three
restriction enzymes from which students must
choose, as well as details the specific sequences
where each one cuts the DNA. Tell students that
they need to identify where to cut the plasmid so
they can insert the Bt and GFP genes. There are
several different cutting sites, so remind the stu
-
dents of what they need to consider, including the
following:
The restriction enzyme should cut the plasmid
ƒ
only once, but it should cut the genes of interest
twice.
18


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
Students should have identified HindIII as the
best choice. It cuts the plasmid only once and
cuts the genes on both ends. EcoR1 also cuts
the plasmid only once, but the sequence does
not appear on the genes. Pst1 does not have a
restriction site on either the plasmid or the genes.
The restriction enzyme should produce the
ƒ
appropriate sticky ends that will allow it to incor
-
porate the DNA fragment containing the genes
of interest. Ask the students if they can explain
why many restriction enzyme cutting sites are
palindromes
. A palindrome is a word or phrase
that reads the same in either direction (e.g., the
words “civic,” “level,” “ radar,” and “testset” or
the phrase “a man, a plan, a canal: Panama”).
Students should understand that the sequence
will be read the same when the two strands of
DNA are separated and will be read from the
5-foot end to the 3-foot end
.
Explain the origin of restriction enzymes.
ƒ
Restriction enzymes are naturally produced in
bacteria as a defense mechanism. Restriction
enzymes chop up DNA that can invade bacte
-
ria, thus serving a protective role.
Remind the students that they are using scissors
ƒ
to mimic the action of the restriction enzyme
they have chosen and are using tape to mimic
the action of the enzyme DNA ligase.
9.
The students have now created a plasmid that
contains the genes for Bt resistance and fluo
-
rescence. The next step in this process would
be to insert the plasmid into the crops. This
step will allow the crops to be both pest resis
-
tant and identifiable as transgenic. Use the fol
-
lowing questions to assess the student’s under
-
standing of the paper plasmid activity:
In this activity, you used scissors and tape to
ƒ
represent the tools used in genetic engineer
-
ing. What tools are those items supposed to
represent?
Scissors represent restriction enzyme, and
the tape is supposed to represent the enzyme
ligase.

In this activity, we inserted two new genes into
ƒ
the plants: one for fluorescence and one for a
pest resistance. What was the purpose of the
gene for fluorescence?
The fluorescence is a “reporter” gene and
allows us to see if a particular plant has been
genetically engineered. In this scenario, fluo
-
rescence was desired because the organic
farmer wanted a way to be able to see if any
of the genetically engineered seeds ended up
in her fields. Although the average farmer
does not currently use fluorescence for this
purpose, the technique is routinely used in
this way on a smaller scale in the lab or in
experimental plots.

Would it have been possible for a plant to have
ƒ
been transformed by the Bt gene and not by
the GFP gene? Why or why not?
Because you inserted both genes into a plas
-
mid, the genes would be transformed together.
This transformation is because plasmids are
circular pieces of DNA that are taken up by
plant cells in their entirety. It is not possible
for only part of a plasmid to enter a cell and
still be functional.
What are some other types of genes that are
ƒ
being inserted into plants?
In addition to genes for pest resistance, genes
for herbicide tolerance are transformed into
crops. This process allows farmers to spray her
-
bicides onto the crops to kill weeds, leaving the
crops unaffected.
2
Genes for increased nutri
-
tion are also used to transform crops, such as
in the case of Golden Rice (genes that increase
the amount of vitamin A are inserted).
Activity 1: Biotechnology and You
19
©

A
mericAn
F
orest
F
oundAtion
endnotes
1. C. N. Stewart, “Monitoring the Presence and
Expression of Transgenes in Living Plants,”
Trends in Plant Science
10, no. 8 (2005): 390–
96.
2. O. V. Singh, S. Ghai, D. Paul, and R. K. Jain,
“Genetically Modified Crops: Success, Safety
Assessment, and Public Concern,”
Applied
Microbiology and Biotechnology
71 (2006):
598–607.
enrichments
Ask the students to research and write (or draw)
ƒ
an outline that details the next steps neces
-
sary to complete the transformation process
(transformation of plants using the plasmids).
A useful resource that gives an overview of this
process can be found at http://ppge.ucdavis.edu/
Transformation/transform1.cfm.

Classroom kits are available that contain all the
ƒ
necessary materials to conduct a transformation
activity in your classroom. Refer to the “Ordering
Supplies” appendix for ordering information.

Have students check Career Connection:
ƒ
Bioinformatics. The field of bioinformatics cen
-
ters on the vast amounts of data that are being
produced in scientific labs today. For example,
determining the genetic sequence of the genom
-
es of organisms (from flies to dogs and humans)
is made possible by the use of computer pro
-
grams that generate, store, and manage extreme
-
ly large amounts of nucleotide data (the human
genome, for instance, is made up of more than
three billion base pairs). Computer programs
that can simulate complex molecular reactions
(such as the folding of proteins) allow scientists
to model interactions and reactions that could
not otherwise be visualized.
Bioinformaticists can also specialize in conduct
-
ing the complex statistical analyses required by
scientists to interpret the data they generate. In
addition to understanding the science behind
the data, biostatisticians have a strong back
-
ground and interest in computer programming,
software analysis, and database management.
Additional information about the field of bioin
-
formatics can be found at www.ncbi.nlm.nih.gov/
About/primer/bioinformatics.html.
20


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
t r a n s f o r m a t i o n
T r a n s g e n i c
p l a n t s ( p l a n t s t h a t h a v e h a d g e n e s f r o m a n o t h e r t y p e o f o r g a n i s m i n s e r t e d i n t o t h e m ) a r e c o m m o n
-
p l a c e i n a g r i c u l t u r e t o d a y. M o r e t h a n 7 5 p e r c e n t o f t h e p r o c e s s e d f o o d i n t h e U n i t e d S t a t e s i s d e r i v e d f r o m
g e n e t i c a l l y e n g i n e e r e d o r g a n i s m s.
1
P e s t r e s i s t a n c e i s o n e o f t h e m o s t c o m m o n t r a i t s i n t r o d u c e d i n t o p l a n t s t h r o u g h
g e n e t i c e n g i n e e r i n g. O t h e r e x a m p l e s o f t r a n s g e n e s i n c l u d e g e n e s f o r i n c r e a s e d g r o w t h, l o n g e r s h e l f l i f e, a n d
i n c r e a s e d f l a v o r.
A l t h o u g h t h e r e a r e b e n e f i t s t o t r a n s g e n i c p l a n t s s u c h a s i n c r e a s e d c r o p y i e l d o r i n c r e a s e d p e s t r e s i s t a n c e, w h i c h
w e r e j u s t m e n t i o n e d, t h e r e a r e a l s o c o n c e r n s a b o u t t h e s a f e t y o f t h o s e p l a n t s. O n e c o n c e r n i s t h e p o s s i b i l i t y t h a t
g e n e t i c a l l y e n g i n e e r e d p l a n t s m a y b r e e d w i t h t h e i r t r a d i t i o n a l c o u n t e r p a r t s. A l t h o u g h i t i s p o s s i b l e t o g e n e t i c a l l y
t e s t i n d i v i d u a l p l a n t s t o d e t e r m i n e i f t h e y h a v e b e e n g e n e t i c a l l y e n g i n e e r e d, i t i s n o t e c o n o m i c a l l y f e a s i b l e t o t e s t
e v e r y p l a n t f r o m a n e n t i r e f i e l d o f c r o p s.
H o w w o u l d f a r m e r s k n o w f o r s u r e t h a t t h e p l a n t s t h e y g r o w e a c h y e a r w e r e, o r w e r e n o t, g e n e t i c a l l y e n g i n e e r e d?
S c i e n t i s t s h a v e c o m e u p w i t h a p o s s i b l e s o l u t i o n t o t h i s p r o b l e m. I n s e r t i o n o f a
r e p o r t e r g e n e
a l o n g w i t h t h e g e n e
t h a t c o n t a i n s t h e d e s i r e d t r a n s g e n i c t r a i t ( s u c h a s t h e a b i l i t y t o r e s i s t a c e r t a i n p e s t s p e c i e s ) w o u l d e n s u r e t h a t a l l
p l a n t s t h a t w e r e g e n e t i c a l l y e n g i n e e r e d w o u l d a l s o p r o d u c e a d i s c e r n a b l e p h e n o t y p i c t r a i t.
2
A r e p o r t e r g e n e i s a
g e n e t h a t p r o d u c e s s o m e s o r t o f p h e n o t y p i c s i g n a l.
S c e n a r i o:
S c i e n t i s t s a r e i n s e r t i n g a g e n e f o r p e s t r e s i s t a n c e (
B t g e n e
) i n t o s o y b e a n s. T h e B t g e n e n a t u r a l l y
o c c u r s i n a s p e c i e s o f b a c t e r i a. I t c o d e s f o r a p r o t e i n t h a t i s t o x i c t o c e r t a i n i n s e c t s. B y i n s e r t i n g t h i s g e n e i n t o
a c r o p, a f a r m e r c a n m a k e t h a t c r o p r e s i s t a n t t o i n s e c t s.
T h i s t r a n s g e n i c p l a n t c o n t a i n i n g t h e B t g e n e w i l l b e s o l d t o a g r o u p o f f a r m e r s w h o s e f i e l d s a r e n e x t d o o r t o a
f a r m e r w h o g r o w s o n l y o r g a n i c c r o p s. T h e o r g a n i c f a r m e r h a s e x p r e s s e d c o n c e r n t h a t s o m e o f t h e t r a n s g e n i c
s o y b e a n s f r o m h i s n e i g h b o r w i l l a c c i d e n t a l l y b e s o w n i n h i s o r g a n i c f i e l d s. T o m i t i g a t e t h i s p r o b l e m, t h e f a r m e r
p l a n t i n g t h e t r a n s g e n i c c r o p h a s a g r e e d t o u s e a s p e c i e s t h a t c o n t a i n s a r e p o r t e r g e n e i n a d d i t i o n t o t h e B t
p e s t r e s i s t a n c e g e n e.
I n t h i s a c t i v i t y, y o u w i l l h e l p t h e s c i e n t i s t s d e s i g n a
p l a s m i d
t h a t w i l l c o n t a i n t h e g e n e f o r p e s t r e s i s t a n c e ( B t
g e n e ), a s w e l l a s a r e p o r t e r g e n e ( g r e e n f l u o r e s c e n t p r o t e i n g e n e ). O n c e y o u h a v e i n s e r t e d t h e g e n e s o f
i n t e r e s t i n y o u r p l a s m i d, y o u r r e s e a r c h a n d d e v e l o p m e n t t e a m w i l l t a k e o v e r a n d c o n t i n u e t h e t r a n s f o r m a t i o n
p r o c e s s t h a t w i l l i n s e r t t h e p l a s m i d s i n t o b a c t e r i a k n o w n a s
A g r o b a c t e r i u m t u m e f a c i e n s
. P l a n t s w i l l t h e n b e
i n f e c t e d w i t h t h e t r a n s f o r m e d b a c t e r i a, t h u s d e l i v e r i n g t h e g e n e s f o r p e s t r e s i s t a n c e a n d g r e e n f l u o r e s c e n t p r o
-
t e i n i n t o t h e s o y b e a n s.
Activity 1: Biotechnology and You
21
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
t r a n s f o r m a t i o n ( c o n t i n u e d )
O f t e n, r e p o r t e r g e n e s i n v o l v e a t r a i t s u c h a s a n t i b i o t i c r e s i s t a n c e t h a t a l l o w s s c i e n t i s t s i n t h e l a b t o s e l e c t s u c c e s s
-
f u l t r a n s f o r m a n t s b y g r o w i n g t h e m i n t h e p r e s e n c e o f a n t i b i o t i c s t h a t w i l l k i l l a n y p l a n t s t h a t d i d n o t s u c c e s s f u l l y
i n c o r p o r a t e t h e d e s i r e d t r a i t. B u t a n o t h e r t y p e o f r e p o r t e r g e n e c a n c a u s e a n o r g a n i s m t o g l o w i n t h e p r e s e n c e o f
u l t r a v i o l e t l i g h t. T h i s t y p e o f t r a i t i s v i s i b l e t o t h e n a k e d e y e a n d w o u l d a l l o w f a r m e r s t o k n o w, s i m p l y b y l o o k i n g a t
a p l a n t a t n i g h t u s i n g a n u l t r a v i o l e t l i g h t, w h e t h e r o r n o t i t h a s b e e n g e n e t i c a l l y e n g i n e e r e d.
T h e t y p e o f g e n e t h a t r e s e a r c h e r s u s e f o r t h i s d e t e c t i o n i s o n e t h a t c o d e s f o r ( t h a t i s, h a s a D N A s e q u e n c e t h a t
d i r e c t s t h e p r o d u c t i o n o f a s p e c i f i c p r o t e i n ) a g r e e n f l u o r e s c e n t p r o t e i n a n d i s r e f e r r e d t o a s a
G F P g e n e
. T h e m o s t
c o m m o n s o u r c e o f t h i s g e n e i s m a r i n e o r g a n i s m s s u c h a s j e l l y f i s h t h a t p r o d u c e t h e p r o t e i n n a t u r a l l y.
2

E n d n o t e s:
1. “ E x p l o r i n g t h e M o r a l a n d E t h i c a l A s p e c t s o f G e n e t i c a l l y E n g i n e e r e d a n d C l o n e d A n i m a l s,” P e w I n i t i a t i v e
o n F o o d a n d B i o t e c h n o l o g y, J a n u a r y 2 0 0 5, h t t p://p e w t r u s t s.o r g/u p l o a d e d F i l e s/w w w p e w t r u s t s o r g/
S u m m a r i e s _ - _ r e p o r t s _ a n d _ p u b s/P I F B _ M o r a l _ E t h i c a l _ A s p e c t s _ G E _ a n d _ C l o n e d _ A n i m a l s.p d f.
2. C. N. S t e w a r t, “ M o n i t o r i n g t h e P r e s e n c e a n d E x p r e s s i o n o f T r a n s g e n e s i n L i v i n g P l a n t s,”
T r e n d s i n P l a n t
S c i e n c e
1 0, n o. 8 ( 2 0 0 3 ): 3 9 0 – 9 6.
22


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
P a p e r P l a s m i d c o n s t r u c t i o n
1. C u t o u t e a c h s t r i p o f D N A o n t h e d o t t e d l i n e s.
2. T a p e t h e s t r i p s t o g e t h e r i n a n y o r d e r ( b u t m a k e s u r e t h e l e t t e r s a r e f a c i n g t h e s a m e w a y ).
3. T h i s i s y o u r p a p e r r e p r e s e n t a t i o n o f a p l a s m i d. A p l a s m i d i s a c i r c u l a r p i e c e o f D N A t h a t i s e x t r a c h r o m o s o m a l
( t h a t i s, i s n o t p a r t o f t h e D N A f o u n d i n a n o r g a n i s m ’ s n u c l e a r D N A ).
A
Plasmid Plasmid Plasmid Plasmid Plasmid
T
C
Plasmid Plasmid Plasmid Plasmid Plasmid
G
C
Plasmid Plasmid Plasmid Plasmid Plasmid
G
T
Plasmid Plasmid Plasmid Plasmid Plasmid
A
G
C
G
C
T
A
T
A
T
A
A
T
G
C
C
G
C
G
T
A
C
G
G
C
A
T
G
C
A
T
C
G
G
C
G
C
G
C
A
T
A
T
A
T
G
C
G
C
G
C
T
A
C
G
T
A
G
C
G
C
A
T
T
A
T
A
G
C
G
C
T
A
T
A
A
T
T
A
G
C
C
G
A
T
C
G
G
C
C
G
T
A
C
G
A
T
A
T
T
A
C
G
A
T
G
C
C
G
G
C
A
T
G
C
A
T
T
A
A
T
T
A
T
A
A
T
G
C
A
T
T
A
A
T
C
G
G
C
T
A
T
A
T
A
G
C
T
A
G
C
T
A
C
G
T
A
T
A
A
T
A
T
A
T
G
C
T
A
T
A
G
C
A
T
G
C
G
C
C
G
G
C
T
A
T
A
C
G
T
A
C
G
Activity 1: Biotechnology and You
23
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
g e n e s f o r i n s e r t i o n i n t o P l a s m i d
C
Genes Genes Genes Genes Genes Genes Genes Genes Genes
G
T
A
A
T
A
T
G
C
C
G
T
A
T
A
A
T
A
T
T
A
T
A
C
G
G
C
T
A
G
C
A
T
C
G
C
G
T
A
G
C
T
A
A
T
C
G
G
C
T
A
A
T
C
G
G
C
G
C
A
T
T
A
T
A
T
A
T
A
G
C
A
T
C
G
G
C
T
A
G
C
A
T
C
G
A
T
A
T
G
C
C
G
T
A
T
A
T
A
T h i s s t r i p o f D N A c o n t a i n s c o p i e s o f b o t h t h e G F P g e n e ( b o l d a n d o n d a r k g r a y ) a n d
t h e B t r e s i s t a n c e g e n e ( b o l d a n d i n l i g h t g r a y ). T h e t w o g e n e s w e r e g e n e r a t e d u s i n g
p o l y m e r a s e c h a i n r e a c t i o n a n d p i e c e d t o g e t h e r u s i n g a n e n z y m e k n o w n a s l i g a s e.
C u t o u t t h e s t r i p o f D N A a l o n g t h e d o t t e d l i n e. T h i s f r a g m e n t o f D N A w i l l b e t h e o n e
y o u w i l l i n s e r t i n t o t h e p l a s m i d.
N o t e t h a t t h e s e q u e n c e s h a v e b e e n g r e a t l y r e d u c e d i n l e n g t h f o r t h i s s i m u l a t i o n. T h e
t r u e g e n e s e q u e n c e s w o u l d b e h u n d r e d s o f b a s e p a i r s i n l e n g t h.
g r e e n f l u o r e s c e n t p r o t e i n g e n e ( G F P )
B t g e n e
24


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
r e s t r i c t i o n e n z y m e s
T h e f o l l o w i n g d i a g r a m ( F i g u r e 1 ) i l l u s t r a t e s t h e s p e c i f i c s e q u e n c e s r e c o g n i z e d b y t h r e e d i f f e r e n t
r e s t r i c t i o n
e n z y m e s: E c o R 1
( p r o n o u n c e d “ e c o a r o n e ” ),
H i n d I I I
( p r o n o u n c e d “ h i n d e e t h r e e ” ), a n d
P s t 1
( p r o n o u n c e d
“ p e e e s s t e e o n e ” ). T h e c u t t i n g s i t e i s i n d i c a t e d w i t h s c i s s o r s. E a c h o f t h e s e s e q u e n c e s i s a
p a l i n d r o m e
. ( H i n t:
T h e w o r d s “ c i v i c,” “ l e v e l,” a n d “ r a d a r ” a n d t h e p h r a s e “ a m a n, a p l a n, a c a n a l: P a n a m a ” a r e p a l i n d r o m e s.) Wh y
d o y o u t h i n k t h i s s e q u e n c e o c c u r s?
E c o R 1
G
A
A
T
T
C
E c o R 1 r e c o g n i z e s a n d c u t s a t t h e
s e q u e n c e “ G A A T T C ”
C
T
T
A
A
G
H i n d I I I
A
A
G
C
T
T
H i n d I I I r e c o g n i z e s a n d c u t s a t t h e
s e q u e n c e “ A A G C T T ”
T
T
C
G
A
A
P s t 1
C
T
G
C
A
G
P s t 1 r e c o g n i z e s a n d c u t s t h e
s e q u e n c e “ C T G C A G ”
G
A
C
G
T
C
F i g u r e 1
B e c a u s e e a c h o f t h e t h r e e r e s t r i c t i o n e n z y m e s c u t s w i t h i n t h e r e c
-
o g n i t i o n s e q u e n c e,
“ s t i c k y e n d s ”
a r e p r o d u c e d. A s t i c k y e n d i s a
s i n g l e s t r a n d o f o v e r h a n g i n g b a s e p a i r s t h a t a l l o w t w o s e q u e n c e s
t o b e a l i g n e d a n d j o i n e d b y t h e e n z y m e l i g a s e ( s e e F i g u r e 2 ).
Y o u r j o b i s t o d e c i d e w h i c h r e s t r i c t i o n e n z y m e y o u w o u l d u s e t o
c u t o u t t h e g e n e s t h a t w i l l b e i n s e r t e d i n t o y o u r p l a s m i d a n d t o c u t
y o u r p l a s m i d t o a l l o w t h e i n s e r t i o n. Y o u w i l l u s e t h e s a m e r e s t r i c t i o n
e n z y m e f o r b o t h. K e e p t h e f o l l o w i n g i n m i n d w h e n c h o o s i n g y o u r
r e s t r i c t i o n e n z y m e:
Y o u w a n t t o c u t t h e p l a s m i d i n o n l y O N E l o c a t i o n.

Y o u w i l l n e e d t h e r e s t r i c t i o n e n z y m e t o c u t b o t h e n d s o f t h e g e n e s y o u w i l l i n s e r t. T h i s c h a n g e w i l l c r e a t e s t i c k y

e n d s t h a t w i l l a l l o w t h e i n s e r t t o b e l i g a t e d i n t o t h e p l a s m i d.
"
"
"
"
"
"
G
C
A
T
A
T
T
A
T
A
C
G
G
C T T A A
A A T T C
G
Enzyme cuts
5'
3'
5'
3'
3'
5'
3'
5'
5'
3'
3'
5'
Figure 2. Example of an EcoR1-Cutting
Site that Produces “Sticky Ends”
Activity 1: Biotechnology and You
25
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
i n s t r u c t i o n s
1. C u t o u t t h e s t r i p s o f D N A f r o m t h e p a g e l a b e l e d “ P a p e r P l a s m i d C o n s t r u c t i o n.”
T a p e t h e m t o g e t h e r ( i n a n y o r d e r, a s l o n g a s t h e l e t t e r s f a c e t h e s a m e w a y ) t o
f o r m a c i r c l e. T h i s c i r c l e r e p r e s e n t s y o u r p l a s m i d D N A.
2. N o w, c u t o u t t h e p i e c e o f p a p e r t h a t r e p r e s e n t s t h e g e n e s y o u a r e g o i n g t o
i n s e r t f r o m t h e p a g e l a b e l e d “ G e n e s f o r I n s e r t i o n i n t o P l a s m i d.” T h i s p a p e r
r e p r e s e n t s t h e t w o g e n e s t h a t y o u a r e g o i n g t o i n s e r t i n t o y o u r p l a s m i d.
3. N e x t, y o u n e e d t o i d e n t i f y w h i c h r e s t r i c t i o n e n z y m e t o u s e t h a t w i l l p r o d u c e t h e c o r r e c t c u t t i n g p a t t e r n. Y o u
w a n t t h e r e s t r i c t i o n e n z y m e t o c u t t h e
p l a s m i d
o n l y o n c e, b u t i t n e e d s t o c u t t h e p i e c e o f D N A t h a t c o n t a i n s
t h e
g e n e s
y o u w a n t t o i n s e r t t w i c e. B e l o w, c i r c l e t h e r e s t r i c t i o n e n z y m e t h a t i s t h e b e s t c h o i c e, a n d c i r c l e t h e
c u t t i n g s i t e o n b o t h t h e p l a s m i d a n d g e n e. U s e S t u d e n t P a g e: R e s t r i c t i o n E n z y m e s t o l e a r n m o r e a b o u t h o w
r e s t r i c t i o n e n z y m e s w o r k.
E c o R 1
G
C
H i n d I I I
A
T
P s t 1
C
G
A
T
A
T
T
A
A
T
G
C
G
C
T
A
C
G
C
G
T
A
T
A
A
T
C
G
T
A
G
C
4. O n c e y o u h a v e i d e n t i f i e d t h e a p p r o p r i a t e r e s t r i c t i o n e n z y m e, u s e y o u r s c i s s o r s t o c u t b o t h y o u r p l a s m i d a n d
y o u r g e n e a t t h e r e s t r i c t i o n e n z y m e c u t t i n g s i t e s ( f o l l o w t h e d o t t e d l i n e s o n t h e r e s t r i c t i o n e n z y m e y o u c i r c l e d
a b o v e ). Y o u r r e s u l t s s h o u l d l o o k l i k e t h e p i c t u r e s b e l o w.
5. O n c e y o u h a v e m a d e t h e a p p r o p r i a t e c u t s w i t h s c i s s o r s, y o u a r e r e a d y t o i n s e r t t h e g e n e s i n t o t h e p l a s m i d.
T a p e t h e g e n e s i n t o t h e p l a s m i d, m a k i n g s u r e t o m a t c h u p t h e c o r r e s p o n d i n g b a s e p a i r s ( r e m e m b e r, A p a i r s
w i t h T, G p a i r s w i t h C ). Y o u f i n a l p r o d u c t s h o u l d b e a c o m p l e t e p l a s m i d w i t h t w o n o v e l g e n e s i n s e r t e d.
26


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
Part C: Risks and Benefits of
Genetically Engineered Organisms
Students will evaluate the risks and benefits associ
-
ated with genetic engineering. They will evaluate
information from different sources and will learn
to perceive, identify, and evaluate bias in informa
-
tion sources.
getting ready
Make enough copies of the following student
ƒ
pages for each student (each student page
should be on uniquely colored paper if possible).
If you have multiple classes, you can laminate
the copies (or put them in clear plastic paper
protectors). Then you can use them repeatedly
so that you need to make only as many as you
would need to accommodate your largest class.
Students can even write on them with markers,
and you can clean them with ethanol (or water if
the marker is water soluble).
Student Page: Genetically Engineered

Organisms – Perspective A (industry perspec-
industry perspec
-
tive: pro-biotechnology)
Student Page: Genetically Engineered

Organisms – Perspective B
(environmental
group perspective: anti-biotechnology)
Student Page: Genetically Engineered

Organisms – Perspective C (third-party per-
third-party per
-
spective: independent, verifiable information)
Student Page: Detecting Bias

doing the activity
1.
Ask students if they have taken any
risks

today? To initiate the discussion, you might ask
how they traveled to school, what they have
eaten, if they drank water from a tap, and so
forth. Then ask them to define a risk.
2.
Next, divide the class into groups. We sug
-
gest keeping group sizes to four or below
to encourage participation from all group
members. Give everyone in one group cop
-
ies of Student Page: Perspective A, everyone
in the second group copies of Student Page:
Perspective B, and everyone in the third group
copies of Student Page: Perspective C. If you
have more than 12 students, some topics can
be covered by multiple groups. Have each
group assign the role of reporter and recorder
to members of the group.
3.
Ask each group to read through the informa
-
tion on its student page and to make a list of
the risks and benefits of the genetically engi
-
neered organisms that are presented in the
information. Make sure to remind the students
who have been assigned the role of recorder
to write down the information.
4.
Have the reporter from each group write its list
on the board. Have each group make a sepa
-
rate list so that you end up with three lists.
5.
Ask all the students to take a moment and to
read through the lists on the board. Ask them
if they notice any differences or similarities
among the lists.
They should notice that some of the lists con
-
tain mainly risks, one contains both risks and
benefits, and one contains mainly benefits.
6.
Ask the students why they think their lists
were so different. During this discussion, they
should determine that the lists they received
contained different information.
7.
Pass out the remaining student pages so that
each group has access to all three. Give stu
-
dents time to read through the two new stu
-
dent pages. Ask each student to mark which
student page he or she finds the most persua
-
sive and why.
8.
Challenge the students to come up with sug
-
gestions of how to detect and evaluate bias in
articles. Write their suggestions on the board.
Discuss any apparent bias found in each stu
-
dent page.
9.
Pass out Student Page: Detecting Bias. Ask the
students to identify any methods for detecting
bias that are not represented on the list they
made in step 8.
Activity 1: Biotechnology and You
27
©

A
mericAn
F
orest
F
oundAtion
10.
Ask the students if they have changed their
opinion about which article was most persua
-
sive. Why or why not?
11.
Ask the students which student page seems
the least biased and to explain why.
12.
Ask each group to identify the potential sourc
-
es of each student page. Have the reporter
from each group verbally share the group’s
thoughts with the class. Reveal the actual
sources of the data to the students.
Student Page: Perspective A was developed
by a group composed of professionals
from leading biotechnology companies;
Student Page: Perspective B was written by
the environmental advocacy group Green
Peace; and Student Page: Perspective C was
written by a group consisting of scientists,
religious leaders, and academics who had no
personal financial stake in the agriculture
biotechnology industry.
1

13.
Ask students whether they think all industry
groups or environmental advocacy groups
would hold the same perspective as these
respective groups. What might be similar?
What might be different?
14.
To reinforce students’ ability to detect bias,
assign the following activity for homework. Ask
each student to find two articles (using news
-
papers, magazines, and Internet) that repre
-
sent opposing views on a particular genetically
engineered crop. They should summarize the
main points of each article and list the type of
source and any types of bias that may be evi
-
dent. Alternatively, they can bring in a single
article from a recent newspaper that discusses
some type of biotechnology. Ask them to read
the article and to summarize the viewpoint of
the author. Ask them to consider whether the
way the information was presented led to bias
(e.g., were only positive consequences dis
-
cussed? What were the sources of information
presented in the article?).
endnotes
1. A. Tegene, W. E. Huffman, M. Rousu, and
J. F. Shogren, “The Effects of Information
on Consumer Demand for Biotech Foods,”

Technical Bulletin No. 1903, U.S. Department
of Agriculture, April 2003, www.ers.usda.gov/
publications/tb1903/.
enrichment
Ask the students to consider the risks and benefits
of genetically engineered organisms from a global
perspective. For example, the need for drought-
resistant species in a developing country might be
more compelling than the need for the same type
of crops in the United States. How might different
cultures and different political systems affect how
one might perceive risks and benefits?
28


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
g e n e t i c a l l y e n g i n e e r e d or g a n i s m s – P e r s p e c t i v e a
G e n e r a l I n f o r m a t i o n –
G e n e t i c a l l y e n g i n e e r e d ( G E ) p l a n t s a n d a n i m a l s h a v e t h e p o t e n t i a l t o b e o n e o f t h e
g r e a t e s t d i s c o v e r i e s i n t h e h i s t o r y o f f a r m i n g. I m p r o v e m e n t s i n c r o p s s o f a r r e l a t e t o i m p r o v e d i n s e c t a n d d i s e a s e
r e s i s t a n c e a n d w e e d c o n t r o l. T h o s e i m p r o v e m e n t s u s i n g b i o e n g i n e e r i n g o r G E t e c h n o l o g y l e a d t o r e d u c e d c o s t o f
f o o d p r o d u c t i o n. F u t u r e G E f o o d p r o d u c t s m a y h a v e h e a l t h b e n e f i t s.
S c i e n t i f i c I m p a c t –
G e n e t i c e n g i n e e r i n g i s a t e c h n i q u e t h a t h a s b e e n u s e d t o p r o d u c e f o o d p r o d u c t s t h a t a r e
a p p r o v e d b y t h e F o o d a n d D r u g A d m i n i s t r a t i o n ( F D A ). G e n e t i c e n g i n e e r i n g h a s b r o u g h t n e w o p p o r t u n i t i e s t o f a r m
-
e r s f o r p e s t c o n t r o l a n d i n t h e f u t u r e w i l l p r o v i d e c o n s u m e r s w i t h n u t r i e n t - e n h a n c e d f o o d s. G E p l a n t s a n d a n i m a l s
h a v e t h e p o t e n t i a l t o b e t h e s i n g l e g r e a t e s t d i s c o v e r y i n t h e h i s t o r y o f a g r i c u l t u r e. We h a v e j u s t s e e n t h e t i p o f t h e
i c e b e r g o f f u t u r e p o t e n t i a l.
H u m a n I m p a c t –
T h e h e a l t h b e n e f i t s f r o m g e n e t i c e n g i n e e r i n g c a n b e e n o r m o u s. A s p e c i a l t y p e o f r i c e c a l l e d
G o l d e n R i c e h a s a l r e a d y b e e n c r e a t e d a n d h a s h i g h e r l e v e l s o f v i t a m i n A. T h i s r i c e c o u l d b e v e r y h e l p f u l b e c a u s e
v i t a m i n A d e f i c i e n c y ( V A D ) i s d e v a s t a t i n g i n t h i r d - w o r l d c o u n t r i e s. V A D c a u s e s i r r e v e r s i b l e b l i n d n e s s i n m o r e t h a n
5 0 0,0 0 0 c h i l d r e n a n d i s a l s o r e s p o n s i b l e f o r m o r e t h a n o n e m i l l i o n d e a t h s a n n u a l l y. B e c a u s e r i c e i s t h e s t a p l e
f o o d i n t h e d i e t s o f m i l l i o n s o f p e o p l e i n t h e t h i r d w o r l d, G o l d e n R i c e h a s t h e p o t e n t i a l f o r i m p r o v i n g m i l l i o n s
o f l i v e s a y e a r b y r e d u c i n g t h e c a s e s o f V A D. T h e F D A h a s a p p r o v e d G E f o o d f o r h u m a n c o n s u m p t i o n, a n d
A m e r i c a n s h a v e b e e n c o n s u m i n g G E f o o d s f o r y e a r s. A l t h o u g h e v e r y f o o d p r o d u c t m a y p o s e r i s k s, t h e r e h a s
n e v e r b e e n a d o c u m e n t e d c a s e o f a p e r s o n g e t t i n g s i c k f r o m G E f o o d.
F i n a n c i a l I m p a c t –
G e n e t i c a l l y e n g i n e e r e d p l a n t s h a v e r e d u c e d t h e c o s t o f f o o d p r o d u c t i o n, w h i c h m e a n s l o w e r
f o o d p r i c e s, a n d t h a t r e s u l t c a n h e l p f e e d t h e w o r l d. I n A m e r i c a, l o w e r f o o d p r i c e s h e l p d e c r e a s e t h e n u m b e r
o f h u n g r y p e o p l e a n d a l s o l e t c o n s u m e r s s a v e a l i t t l e m o r e m o n e y o n f o o d. Wo r l d w i d e, t h e n u m b e r o f h u n g r y
p e o p l e h a s b e e n d e c l i n i n g, b u t i n c r e a s e d c r o p p r o d u c t i o n u s i n g G E t e c h n o l o g y c a n a l s o h e l p f u r t h e r r e d u c e
w o r l d h u n g e r.
E n v i r o n m e n t a l I m p a c t –
G E t e c h n o l o g y h a s p r o d u c e d n e w m e t h o d s o f i n s e c t c o n t r o l t h a t c a n r e d u c e c h e m i c a l
i n s e c t i c i d e a p p l i c a t i o n b y 5 0 p e r c e n t o r m o r e. T h i s c h a n g e m e a n s l e s s e n v i r o n m e n t a l d a m a g e. G E w e e d c o n t r o l
i s p r o v i d i n g n e w m e t h o d s t o c o n t r o l w e e d s, w h i c h a r e a s p e c i a l p r o b l e m i n n o - t i l l f a r m i n g. G e n e t i c e n g i n e e r i n g o f
p l a n t s h a s t h e p o t e n t i a l t o b e o n e o f t h e m o s t e n v i r o n m e n t a l l y h e l p f u l d i s c o v e r i e s e v e r.
A d a p t e d f r o m A. T e g e n e, W. H u f f m a n, M. R o u s u, a n d J. F. S h o g r e n, “ T h e E f f e c t s o f I n f o r m a t i o n o n C o n s u m e r D e m a n d f o r B i o t e c h F o o d s,”
T e c h n i c a l B u l l e t i n N o. 1 9 0 3, U.S. D e p a r t m e n t o f A g r i c u l t u r e, A p r i l 2 0 0 3, w w w.e r s.u s d a.g o v/p u b l i c a t i o n s/t b 1 9 0 3/.
Activity 1: Biotechnology and You
29
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
g e n e t i c a l l y e n g i n e e r e d or g a n i s m s – P e r s p e c t i v e b
G e n e r a l I n f o r m a t i o n –
G e n e t i c e n g i n e e r i n g i s o n e o f t h e m o s t d a n g e r o u s t h i n g s b e i n g d o n e t o y o u r f o o d
s o u r c e s t o d a y. T h e r e a r e m a n y r e a s o n s t h a t g e n e t i c a l l y e n g i n e e r e d ( G E ) f o o d s s h o u l d b e b a n n e d, m a i n l y
b e c a u s e u n k n o w n a d v e r s e e f f e c t s c o u l d b e c a t a s t r o p h i c! I n a d e q u a t e s a f e t y t e s t i n g o f G E p l a n t s, a n i m a l s, a n d
f o o d p r o d u c t s h a s o c c u r r e d, s o h u m a n s a r e t h e o n e s t e s t i n g w h e t h e r o r n o t G E f o o d s a r e s a f e. C o n s u m e r s s h o u l d
n o t h a v e t o t e s t n e w f o o d p r o d u c t s t o e n s u r e t h a t t h e y a r e s a f e.
S c i e n t i f i c I m p a c t –
T h e p r o c e s s o f g e n e t i c e n g i n e e r i n g t a k e s g e n e s f r o m o n e o r g a n i s m a n d p u t s t h e m i n t o
a n o t h e r. T h i s p r o c e s s i s v e r y r i s k y. T h e b i g g e s t p o t e n t i a l h a z a r d o f g e n e t i c a l l y e n g i n e e r e d f o o d s i s t h e u n k n o w n.
T h i s p r o c e s s i s a r e l a t i v e l y n e w t e c h n i q u e, a n d n o o n e c a n g u a r a n t e e t h a t c o n s u m e r s w i l l n o t b e h a r m e d. R e c e n t l y,
m a n y g o v e r n m e n t s i n E u r o p e a s s u r e d c o n s u m e r s t h a t t h e r e w o u l d b e n o h a r m t o c o n s u m e r s o v e r m a d c o w d i s
-
e a s e, b u t, u n f o r t u n a t e l y, t h e i r c l a i m s w e r e w r o n g. We d o n o t w a n t c o n s u m e r s t o b e h a r m e d b y G E f o o d.
H u m a n I m p a c t –
G e n e t i c a l l y e n g i n e e r e d f o o d s c o u l d p o s e m a j o r h e a l t h p r o b l e m s. T h e p o t e n t i a l e x i s t s f o r
a l l e r g e n s t o b e t r a n s f e r r e d t o a G E f o o d p r o d u c t t h a t n o o n e w o u l d s u s p e c t. F o r e x a m p l e, i f g e n e s f r o m a p e a n u t
w e r e t r a n s f e r r e d i n t o a t o m a t o, a n d s o m e o n e w h o i s a l l e r g i c t o p e a n u t s e a t s t h i s n e w t o m a t o, t h a t i n d i v i d u a l c o u l d
d i s p l a y a p e a n u t a l l e r g y.
A n o t h e r p r o b l e m w i t h g e n e t i c a l l y e n g i n e e r e d f o o d s i s a m o r a l i s s u e. T h e f o o d s a r e t a k i n g g e n e s f r o m o n e l i v i n g
o r g a n i s m a n d t r a n s p l a n t i n g t h e m i n t o a n o t h e r. M a n y p e o p l e t h i n k i t i s m o r a l l y w r o n g t o m e s s a r o u n d w i t h l i f e f o r m s
o n s u c h a f u n d a m e n t a l l e v e l.
F i n a n c i a l I m p a c t –
G E f o o d s a r e b e i n g p u s h e d o n t o c o n s u m e r s b y b i g b u s i n e s s e s, w h i c h c a r e o n l y a b o u t t h e i r
o w n p r o f i t s a n d i g n o r e p o s s i b l e n e g a t i v e s i d e e f f e c t s. T h o s e g r o u p s a r e a c t u a l l y p a t e n t i n g d i f f e r e n t l i f e f o r m s t h a t
t h e y g e n e t i c a l l y e n g i n e e r a n d h a v e p l a n s t o s e l l t h e m i n t h e f u t u r e. S t u d i e s h a v e a l s o s h o w n t h a t G E c r o p s m a y
g e t l o w e r y i e l d s t h a n c o n v e n t i o n a l c r o p s.
E n v i r o n m e n t a l I m p a c t –
G e n e t i c a l l y e n g i n e e r e d f o o d s c o u l d p o s e m a j o r e n v i r o n m e n t a l h a z a r d s. S p a r s e t e s t
-
i n g o f G E p l a n t s f o r e n v i r o n m e n t a l e f f e c t s h a s o c c u r r e d. O n e p o t e n t i a l h a z a r d c o u l d b e t h e e f f e c t o f G E c r o p s o n
w i l d l i f e. O n e s t u d y s h o w e d t h a t o n e t y p e o f G E p l a n t k i l l e d m o n a r c h b u t t e r f l i e s. A n o t h e r p o t e n t i a l e n v i r o n m e n t a l
h a z a r d c o u l d c o m e f r o m p e s t s t h a t b e g i n t o r e s i s t G E p l a n t s t h a t w e r e e n g i n e e r e d t o r e d u c e c h e m i c a l p e s t i c i d e
a p p l i c a t i o n. T h e h a r m f u l i n s e c t s a n d o t h e r p e s t s t h a t g e t e x p o s e d t o s u c h c r o p s c o u l d q u i c k l y d e v e l o p t o l e r a n c e
a n d w i p e o u t m a n y o f t h e p o t e n t i a l a d v a n t a g e s o f G E p e s t r e s i s t a n c e.
A d a p t e d f r o m A. T e g e n e, W. H u f f m a n, M. R o u s u, a n d J. F. S h o g r e n, “ T h e E f f e c t s o f I n f o r m a t i o n o n C o n s u m e r D e m a n d f o r B i o t e c h F o o d s,”
T e c h n i c a l B u l l e t i n N o. 1 9 0 3, U.S. D e p a r t m e n t o f A g r i c u l t u r e, A p r i l 2 0 0 3, w w w.e r s.u s d a.g o v/p u b l i c a t i o n s/t b 1 9 0 3/.
30


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
g e n e t i c a l l y
e n g i n e e r e d or g a n i s m s – P e r s p e c t i v e c
G e n e r a l I n f o r m a t i o n –
B i o e n g i n e e r i n g i s a t y p e o f g e n e t i c e n g i n e e r i n g w h e r e g e n e s a r e t r a n s f e r r e d a c r o s s
p l a n t s o r a n i m a l s, a p r o c e s s t h a t w o u l d n o t o t h e r w i s e o c c u r ( i n c o m m o n u s a g e, g e n e t i c e n g i n e e r i n g m e a n s b i o
-
e n g i n e e r i n g ). Wi t h b i o e n g i n e e r e d p e s t r e s i s t a n c e i n p l a n t s, t h e p r o c e s s i s s o m e w h a t s i m i l a r t o t h e p r o c e s s o f h o w
a f l u s h o t w o r k s i n t h e h u m a n b o d y. F l u s h o t s w o r k b y i n j e c t i n g a v i r u s i n t o t h e b o d y t o h e l p m a k e a h u m a n b o d y
m o r e r e s i s t a n t t o t h e f l u. B i o e n g i n e e r e d p l a n t - p e s t r e s i s t a n c e c a u s e s a p l a n t t o e n h a n c e i t s o w n p e s t r e s i s t a n c e.
S c i e n t i f i c I m p a c t –
T h e F o o d a n d D r u g A d m i n i s t r a t i o n ( F D A ) s t a n d a r d s f o r g e n e t i c a l l y e n g i n e e r e d ( G E ) f o o d
p r o d u c t s ( c h i p s, c e r e a l s, p o t a t o e s, e t c.) a r e b a s e d o n t h e p r i n c i p l e t h a t t h e y h a v e e s s e n t i a l l y t h e s a m e i n g r e d i e n t s,
a l t h o u g h t h e y h a v e b e e n m o d i f i e d s l i g h t l y f r o m t h e o r i g i n a l p l a n t m a t e r i a l s. O i l s m a d e f r o m b i o e n g i n e e r e d o i l
c r o p s h a v e b e e n r e f i n e d, a n d t h i s p r o c e s s r e m o v e d e s s e n t i a l l y a l l t h e G E p r o t e i n s, m a k i n g t h e m l i k e n o n - G E o i l s.
S o e v e n i f G E c r o p s w e r e d e e m e d t o b e h a r m f u l f o r h u m a n c o n s u m p t i o n, i t i s d o u b t f u l t h a t v e g e t a b l e o i l s
d e r i v e d
f r o m G E c r o p s

w o u l d c a u s e h a r m.
H u m a n I m p a c t –
A l t h o u g h m a n y g e n e t i c a l l y e n g i n e e r e d f o o d s a r e i n t h e p r o c e s s o f b e i n g p u t o n y o u r g r o c e r ’ s
s h e l f, t h e r e a r e c u r r e n t l y n o f o o d s a v a i l a b l e i n t h e U n i t e d S t a t e s w h e r e g e n e t i c e n g i n e e r i n g h a s i n c r e a s e d n u t r i e n t
c o n t e n t. A l l f o o d s p r e s e n t a s m a l l r i s k o f a n a l l e r g i c r e a c t i o n t o s o m e p e o p l e. N o F D A - a p p r o v e d G E f o o d p o s e s
a n y k n o w n u n i q u e h u m a n h e a l t h r i s k s.
F i n a n c i a l I m p a c t –
G e n e t i c a l l y e n g i n e e r e d s e e d s a n d o t h e r o r g a n i s m s a r e p r o d u c e d b y b u s i n e s s e s t h a t s e e k
p r o f i t s. F o r f a r m e r s t o s w i t c h t o G E c r o p s, t h e y m u s t s e e b e n e f i t s f r o m t h e s w i t c h. H o w e v e r, g e n e t i c e n g i n e e r i n g
t e c h n o l o g y m a y l e a d t o c h a n g e s i n t h e o r g a n i z a t i o n o f t h e a g r i b u s i n e s s i n d u s t r y a n d f a r m i n g. T h e i n t r o d u c t i o n o f
G E f o o d s h a s t h e p o t e n t i a l t o d e c r e a s e t h e p r i c e s t o c o n s u m e r s f o r g r o c e r i e s.
E n v i r o n m e n t a l I m p a c t –
T h e e f f e c t s o f g e n e t i c e n g i n e e r i n g o n t h e e n v i r o n m e n t a r e l a r g e l y u n k n o w n.
B i o e n g i n e e r e d i n s e c t r e s i s t a n c e h a s r e d u c e d f a r m e r s ’ a p p l i c a t i o n s o f e n v i r o n m e n t a l l y h a z a r d o u s i n s e c t i c i d e s.
M o r e s t u d i e s a r e o c c u r r i n g t o h e l p a s s e s s t h e e f f e c t o f b i o e n g i n e e r e d p l a n t s a n d o r g a n i s m s o n t h e e n v i r o n m e n t. A
c o u p l e o f s t u d i e s r e p o r t e d h a r m t o m o n a r c h b u t t e r f l i e s f r o m G E c r o p s, b u t o t h e r s c i e n t i s t s w e r e n o t a b l e t o r e c r e a t e
t h e r e s u l t s. T h e p o s s i b i l i t y o f i n s e c t s g r o w i n g r e s i s t a n t t o G E c r o p s i s a l e g i t i m a t e c o n c e r n.
A d a p t e d f r o m A. T e g e n e, W. H u f f m a n, M. R o u s u, a n d J. F. S h o g r e n, “ T h e

E f f e c t s o f I n f o r m a t i o n o n C o n s u m e r D e m a n d f o r B i o t e c h F o o d s,”

T e c h n i c a l B u l l e t i n N o. 1 9 0 3, U.S. D e p a r t m e n t o f A g r i c u l t u r e, A p r i l 2 0 0 3, w w w.e r s.u s d a.g o v/p u b l i c a t i o n s/t b 1 9 0 3/.
Activity 1: Biotechnology and You
31
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
d e t e c t i n g b i a s
T i p s f o r E f f e c t i v e l y E v a l u a t i n g I n f o r m a t i o n
Q u e s t i o n e a c h a r g u m e n t. I m a g i n e y o u a r e i n v o l v e d i n a d e b a t e, a n d t h i n k a b o u t h o w y o u w o u l d p r e s e n t t h e

s t o r y f r o m a d i f f e r e n t s i d e.
I f t h e s o u r c e s o f f a c t s a r e l i s t e d, g o b a c k t o t h e o r i g i n a l s o u r c e a n d i n t e r p r e t i t f o r y o u r s e l f. D o e s y o u r i n t e r p r e t a
-

t i o n a g r e e w i t h t h a t o f t h e a u t h o r?
R e a d o t h e r a r t i c l e s o n t h e s a m e t o p i c. S e e k o u t s o u r c e s t h a t d i s a g r e e, a n d e v a l u a t e t h e n t h e i r a r g u m e n t s.

R e a l i z e t h a t a u t h o r s o f t e n u n i n t e n t i o n a l l y p r o d u c e b i a s e d m a t e r i a l. C r i t i c a l l y e v a l u a t e e v e r y t h i n g y o u r e a d,

r e g a r d l e s s o f t h e s o u r c e. E v e n s c i e n t i s t s, d o c t o r s, t e a c h e r s, a n d p o l i t i c i a n s c a n p r o d u c e b i a s e d m a t e r i a l.
Q u e s t i o n s t h a t C a n H e l p Y o u D e t e c t B i a s
Wh e r e i s t h e s o u r c e f r o m?

T h e l o c a t i o n o f t h e s o u r c e c a n o f t e n g i v e y o u i n f o r m a t i o n a b o u t i t s p o t e n t i a l f o r
b i a s
.

I t i s i m p o r t a n t t o r e m e m b e r t h a t e v e n s o u r c e s t h a t c l a i m t o b e n e u t r a l ( s u c h a s n e w s p a p e r s o r n e w s p r o
-
g r a m s ) c a n o f t e n b e b i a s e d i n t h e w a y t h e y c h o o s e t o p r e s e n t i n f o r m a t i o n.
T y p e s o f s o u r c e s i n c l u d e t h e f o l l o w i n g:
N e w s p a p e r — I n t h e o r y, t h e n e w s a r t i c l e s a r e s u p p o s e d t o b e n e u t r a l a n d t o p r e s e n t b o t h s i d e s o f t h e s t o r y. B u t

f a c t o r s s u c h a s c h o i c e o f l a n g u a g e, h e a d l i n e, a n d p l a c e m e n t c a n a l l i n f l u e n c e a r e a d e r.

M a g a z i n e — M a g a z i n e s o f t e n d e p e n d o n s e l l i n g a d s f o r r e v e n u e, s o t h e i r a r t i c l e s c a n b e i n f l u e n c e d b y c o m p a
-

n i e s t h a t c h o o s e t o a d v e r t i s e i n t h e i r p a g e s.
P e e r - r e v i e w e d j o u r n a l — P e e r - r e v i e w e d j o u r n a l s c o n t a i n a r t i c l e s t h a t h a v e b e e n a s s e s s e d a n d a c c e p t e d b y o t h e r

e x p e r t s i n t h e f i e l d. A l t h o u g h t h o s e t y p e s o f a r t i c l e s a r e g e n e r a l l y t h o u g h t t o b e f a c t u a l a n d n e u t r a l, t h e y c a n s t i l l
c o n t a i n f o r m s o f b i a s.
I n t e r n e t — A l l t h e t y p e s o f s o u r c e s l i s t e d e a r l i e r, i n a d d i t i o n t o o t h e r s ( b l o g s, w e b s i t e s, e t c.), c a n b e f o u n d o n t h e

I n t e r n e t. A l t h o u g h t h e I n t e r n e t c a n b e a n e x c e l l e n t s o u r c e o f i n f o r m a t i o n, i t i s e x t r e m e l y i m p o r t a n t t h a t y o u e v a l u
-
a t e t h e i n f o r m a t i o n f o r y o u r s e l f b e c a u s e a n y b o d y c a n p o s t i n f o r m a t i o n, w h e t h e r o r n o t i t i s f a c t u a l.
Wh o i s t h e a u t h o r?
I f y o u k n o w w h o t h e a u t h o r i s, y o u c a n p o t e n t i a l l y a s s e s s h i s o r h e r l e v e l o f e x p e r t i s e o r
k n o w l e d g e. Y o u d o n ’ t h a v e t o k n o w a u t h o r s p e r s o n a l l y; y o u c a n “ k n o w ” t h e m t h r o u g h t h e i r j o b t i t l e, b y b e c o m i n g
f a m i l i a r w i t h o t h e r e x a m p l e s o f t h e i r w o r k, o r t h r o u g h t h e i r p u b l i c r e p u t a t i o n. C o n s i d e r t h e f o l l o w i n g:
D o e s t h e a r t i c l e y o u a r e u s i n g l i s t t h e a u t h o r, o r i s i t a n o n y m o u s?

Wh i c h w o u l d y o u t r u s t m o r e: a n a r t i c l e w i t h a n a u t h o r ’ s n a m e a s s o c i a t e d w i t h i t o r o n e t h a t l i s t s t h e a u t h o r a s

“ a n o n y m o u s ”?
U n d e r w h a t c i r c u m s t a n c e s w o u l d y o u a c c e p t i n f o r m a t i o n f r o m a n a n o n y m o u s s o u r c e?

Wh a t a b o u t i n f o r m a t i o n f r o m e n c y c l o p e d i a s?

I s t h e r e a g r o u p o r s o c i e t y t h a t i s l i n k e d t o t h e a r t i c l e?

I s t h e r e a n a u t h o r f o r e a c h e n t r y?

Wo u l d y o u a c c e p t a n a r g u m e n t o r a c o n c l u s i o n f r o m a n a u t h o r s i m p l y b e c a u s e o f h i s o r h e r q u a l i f i c a t i o n s?

A r e f a c t s o r o p i n i o n s b e i n g s t a t e d?
F a c t s c a n b e p r o v e d t r u e o r f a l s e w i t h d a t a, w h e r e a s o p i n i o n s c a n n o t.
C o n s i d e r t h e f o l l o w i n g:
D o e s t h e a u t h o r a t t e m p t t o u s e o p i n i o n s a s f a c t s?

A r e o p i n i o n s b a c k e d u p w i t h f a c t s t h a t c a n b e i n d e p e n d e n t l y e v a l u a t e d?

32


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
d e t e c t i n g b i a s ( c o n t i n u e d )
A r e a l l s i d e s b e i n g a d d r e s s e d?
A s k y o u r s e l f i f t h e s t o r y b e i n g p r e s e n t e d i s b a l a n c e d. C o n s i d e r t h e f o l l o w i n g:
A r e a l l s i d e s o f t h e s t o r y b e i n g p r e s e n t e d? N o t e t h a t t h e r e c a n b e m o r e t h a n t w o s i d e s t o a n i s s u e ( n o t e v e r y
-

t h i n g i s b l a c k o r w h i t e; t h e r e a r e o f t e n v a r i o u s s h a d e s o f g r a y ).
Wh y w o u l d o n l y s o m e s i d e s b e p r e s e n t e d?

I s t h e r e e v i d e n c e t h a t t h e a u t h o r i s s l a n t i n g t h e a r t i c l e ( p i c k i n g a n d c h o o s i n g c e r t a i n f a c t s t h a t s u p p o r t h i s o r h e r

a r g u m e n t )?
U s e o f l a n g u a g e.
E v a l u a t e t h e a u t h o r ’ s c h o i c e o f l a n g u a g e. C h o i c e o f w o r d s c a n i n f l u e n c e h o w w e f e e l a b o u t
a n e v e n t. C o n s i d e r t h e f o l l o w i n g:
D o e s t h e a u t h o r u s e w o r d s t h a t a r e c h a r g e d w i t h e m o t i o n?

A s k y o u r s e l f h o w t h e a u t h o r ’ s c h o i c e o f w o r d s h a s i n f l u e n c e d h o w y o u f e e l a b o u t t h e s t o r y.

A r e t h e a r g u m e n t s l o g i c a l?
B r e a k d o w n e a c h a r g u m e n t p r e s e n t e d, a n d e n s u r e t h a t t h e l o g i c m a k e s s e n s e.
I s t h e a u t h o r u s i n g c i r c u l a r r e a s o n i n g ( s u p p o r t i n g a p r e m i s e w i t h a n o t h e r p r e m i s e )?

A r e t h e r e f a c t s a n d, i m p o r t a n t l y, s o u r c e s f o r t h o s e f a c t s p r e s e n t e d?

A u t h o r s u s e c i t a t i o n s a s a w a y o f s h a r i n g w i t h y o u w h e r e t h e y l e a r n e d t h e i n f o r m a t i o n t h e y a r e p r e s e n t i n g.

A l t h o u g h c i t a t i o n s a r e n o t n e c e s s a r i l y a p p r o p r i a t e i n e v e r y t y p e o f w r i t i n g, m o s t a c a d e m i c s w i l l u s e t h e m.
N e w s p a p e r s g e n e r a l l y c i t e t h e i r s o u r c e s o f i n f o r m a t i o n; i d e a l l y, r e p o r t e r s w i l l c h e c k o u t t h e v a l i d i t y o f i n f o r m a t i o n
g a i n e d t h r o u g h t h e i r s o u r c e s.
S h o u l d a l l w r i t i n g a n d r e p o r t i n g b e f r e e o f b i a s? C a n y o u t h i n k o f s i t u a t i o n s w h e r e p r e s e n t i n g a b i a s e d a r g u m e n t i s
a p p r o p r i a t e? D o y o u t h i n k i t i s p o s s i b l e t o b e c o m p l e t e l y f r e e o f b i a s, e i t h e r a s a n a u t h o r o r a s a r e a d e r?
Activity 1: Biotechnology and You
33
©

A
mericAn
F
orest
F
oundAtion
Part D. Case Studies of Genetically
Engineered Crops
Students will analyze the risks and benefits of a
crop that has been developed in one of three
focus areas of agricultural engineering, including
nutritional enhancement, pesticide resistance, and
resistance to environmental stressors.
getting ready
Make enough copies of the following student
ƒ
pages (one for each group):
Student Page: Types of Agricultural

Engineering
Student Page: Genetically Engineered Plants


Make a copy of Student Page: Risks, Benefits,
ƒ
and Management Strategies of Genetically
Engineered Plants for each student.
doing the activity
1.
Initiate a discussion with the class by ask
-
ing students if any of them have ever eaten a
genetically engineered organism. Record the
percentage of those who say yes and the per
-
centage of those who say no (you may have a
group of students who say they don’t know; if
so, record that information). Compare this sta
-
tistic with the national average that 75 percent
of crops have been genetically engineered.
1

Ask the students whether they are surprised by
such numbers.
2.
Ask the students how they would know wheth
-
er the food they are eating has been geneti
-
cally engineered. This question should lead
into a discussion of food labeling, ways to test
for genetically engineered foods, and the defi
-
nition of
organic
.
Current U.S. regulations require labeling only
if a GEO is found to be significantly different
from its traditional counterpart. Currently in
the United States, no foods have been geneti
-
cally altered that require special labeling.
There are relatively simple genetic tests (such
as polymerase chain reaction and gel electro
-
phoresis) that can test whether a food product
was derived from a genetically engineered
source. Genetically engineered foods cannot
be sold under the organic label; however,
just because a food has not been genetically
engineered does not mean it is necessarily
organic.In addition to not including geneti
-
cally engineered organisms, organic foods
are grown without the use of pesticides, anti
-
biotics, synthetic hormones, or irradiation.
Policies governing the labeling of genetically
engineered organism vary among countries.
More information on this can be found in
Box 1.2 in the Introduction.
3.
Break the students into small groups, and ask
each group to research and to create a list of
plants that have been genetically engineered,
along with a list of the trait or traits intro
-
duced to each plant. They can use a variety of
resources, including the Internet. Ask them to
arrange the list into similar categories accord
-
ing to the type of modification. Have each
group assign both a recorder and a reporter.
4.
After giving the students time to conduct their
research, have the reporter from each group
write its categories on the board. Discuss the
similarities and differences among the groups.
5.
Pass out Student Page: Types of Agricultural
Engineering. Have the students compare their
categories with the ones listed, as well as the
specific types of genetically engineered plants.
Discuss any discrepancies among the lists.
6.
Pass out the Student Page: Genetically
Engineered Plants. Ask the students how their
lists of specific plants that have been geneti
-
cally engineered compare with those listed on
the student page.
7.
Break the class into three groups (or more
if the students have decided there are more
categories than those represented on Student
Page: Types of Agricultural Engineering). Have
each group make a list of what it thinks are the
benefits and risks associated with each catego
-
ry of genetically engineered crops.
34


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
8.
Bring the class back together as a group, and
have each group take turns listing one of the
benefits by writing it on the board—until all
potential benefits have been listed. Repeat this
activity with the risks.
9.
Once the class has listed the risks associated
with genetically engineered plants, begin a dis
-
cussion of risk management. Explain that
risk
management
is the process of identifying,
evaluating, selecting, and implementing actions
to reduce risk to human health and to eco
-
systems.
2
(See PLT’s Focus on Risk secondary
module for more information.)
10.
Divide students into small groups again, and
have them come up with a risk management
strategy for the risks associated with each cat
-
egory of genetically engineered crops. Again,
have each group read out each of its answers
until all responses are represented on the
chalkboard.
11.
Pass out Student Page: Risks, Benefits,
and Management Strategies of Genetically
Engineered Plants. Ask the students to read it
and compare it with the list that the class came
up with. Discuss any discrepancies.
12.
As they use the information and ideas learned
in class, have each group come up with a posi
-
tion statement on whether it supports the
genetically engineered organisms in its catego
-
ry. Not all members of the group necessarily
have to agree with the position statement, but
everyone should participate in its presentation.
13.
You can end this activity by asking the students
to consider if the reasons for genetically modi
-
fying an organism affect whether or not they
support the use of transgenics. For example,
in this activity they were considering different
ways to modify agricultural plants. But what
about using genetic engineering to produce
pharmaceuticals (such as insulin and vaccines)?
Ask them to consider the case of the GloFish
mentioned in the introduction (use of genetic
engineering for “re-creation” (i.e., the creation
of pets).
endnotes
1. “U.S. vs. EU: An Examination of the
Trade Issues Surrounding Genetically
Modified Food,” Pew Initiative on Food
and Biotechnology, December 2005,
www.pewtrusts.org/uploadedFiles/
wwwpewtrustsorg/Reports/Food_and_
Biotechnology/Biotech_USEU1205.pdf.
2. “Framework for Environmental Health Risk
Management,” Final report, Vol. 1, Presidential/
Congressional Commission on Risk Assessment
and Risk Management, 1997, www.riskworld.
com/nreports/1997/risk-rpt/pdf/EPAJAN.PDF.
Activity 1: Biotechnology and You
35
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
t y p e s o f a g r i c u l t u r a l e n g i n e e r i n g
N u t r i t i o n a l E n h a n c e m e n t:
G e n e t i c e n g i n e e r i n g c a n i n c r e a s e t h e n u t r i t i o n a l q u a l i t i e s o f p l a n t s. N u t r i t i o n a l
e n h a n c e m e n t s c a n i n c l u d e m o d i f y i n g p l a n t s t o p r o d u c e h i g h e r y i e l d s, t o c o n t a i n n o v e l n u t r i e n t s s u c h a s v i t a m i n s, o r
t o d e c r e a s e t h e p r e v a l e n c e o f n o n n u t r i t i o u s c o m p o n e n t s s u c h a s t r a n s f a t s. G e n e t i c e n g i n e e r i n g i n t r o d u c e s n o v e l
g e n e s t h a t w e r e n o t o r i g i n a l l y p r e s e n t i n a n o r g a n i s m.
1
H e r b i c i d e R e s i s t a n c e:
We e d s c a n h a v e s i g n i f i c a n t a d v e r s e e f f e c t s o n c r o p p r o d u c t i o n. M e t h o d s o f w e e d
c o n t r o l g e n e r a l l y f a l l i n t o t h r e e c a t e g o r i e s: ( a ) m e c h a n i c a l ( t i l l i n g o r h o e i n g ), ( b ) c u l t u r a l ( r o t a t i n g w h i c h c r o p s a r e
g r o w n i n c e r t a i n f i e l d s ), a n d ( c ) c h e m i c a l ( t h r o u g h t h e a p p l i c a t i o n o f h e r b i c i d e s ). F a r m e r s o f t e n r e l y o n a c o m b i n a
-
t i o n o f a l l t h r e e t y p e s o f c o n t r o l. P l a n t s t h a t a r e g e n e t i c a l l y e n g i n e e r e d t o b e r e s i s t a n t t o c o m m o n h e r b i c i d e s c a n
s u r v i v e t h e a p p l i c a t i o n o f h e r b i c i d e s t h a t a r e u s e d t o c o n t r o l w e e d s.
1
R e s i s t a n c e t o E n v i r o n m e n t a l S t r e s s o r s:
A v a r i e t y o f e n v i r o n m e n t a l c o n d i t i o n s c a n s t r e s s p l a n t s a n d a d v e r s e l y
a f f e c t p l a n t g r o w t h a n d c r o p y i e l d. P o t e n t i a l s t r e s s o r s i n c l u d e p e s t s, s a l i n i t y, a n d d r o u g h t. V a r i o u s p l a n t s h a v e b e e n
g e n e t i c a l l y e n g i n e e r e d t o b e i m m u n e t o o r m o r e t o l e r a n t o f s u c h t y p e s o f s t r e s s e s. T h e g e n e t i c m o d i f i c a t i o n s c a n
e i t h e r i n c r e a s e t o l e r a n c e f o r v a r y i n g e n v i r o n m e n t a l c o n d i t i o n s ( a l l o w i n g p l a n t s t o s u r v i v e h i g h e r o r l o w e r t e m p e r a
-
t u r e s t h a n u s u a l ) o r a l l o w p l a n t s t o v i s u a l l y i n d i c a t e p o t e n t i a l s t r e s s o r s t h a t f a r m e r s c a n t h e n a c t o n ( e.g., p r o d u c i n g
a c o l o r c h a n g e w h e n w a t e r a v a i l a b i l i t y i s c r i t i c a l l y l o w ).
1,2,3
E n d n o t e s:
1. L. A. C a s t l e, G. Wu, a n d D. M c E l r o y, “ A g r i c u l t u r a l I n p u t T r a i t s; P a s t, P r e s e n t, a n d F u t u r e,”
C u r r e n t O p i n i o n s i n
B i o t e c h n o l o g y

1 7 ( 2 0 0 6 ): 1 0 5 – 1 2.
2. T. U m e z a w a, M. F u j i t a, Y. F u j i t a, K. Y a m a g u c h i - S h i n o z a k i, a n d K. S h i n o z a k i, “ E n g i n e e r i n g D r o u g h t T o l e r a n c e
i n P l a n t s: D i s c o v e r i n g a n d T a i l o r i n g G e n e s t o U n l o c k t h e F u t u r e,”
C u r r e n t O p i n i o n s i n B i o t e c h n o l o g y

1 7
( 2 0 0 6 ):1 1 3 – 2 2.
3. S. L. S i n g l a - P a r e e k, M. K. R e d d y, a n d S. K. S o p o r y, “ G e n e t i c E n g i n e e r i n g o f t h e G l y o x a l a s e P a t h w a y i n
T o b a c c o L e a d s t o E n h a n c e d S a l i n i t y T o l e r a n c e,”
P r o c e e d i n g s o f t h e N a t i o n a l A c a d e m y o f S c i e n c e s
1 0 0, n o.
2 5 ( 2 0 0 3 ): 1 4 6 7 2 – 7 7.
36


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
g e n e t i c a l l y e n g i n e e r e d P l a n t s
( E x a m p l e s o f g e n e t i c a l l y e n g i n e e r e d p l a n t s t h a t h a v e b e e n m a r k e t e d o r a r e i n l a t e - s t a g e d e v e l o p m e n t )
P l a n t
M o d i f i c a t i o n
T o m a t o
D e l a y e d s o f t e n i n g,
1
i n c r e a s e d s a l t t o l e r a n c e,
1
d i s e a s e r e s i s t a n c e
1
R i c e
C o n t a i n s v i t a m i n A
1
C a n o l a
H e r b i c i d e r e s i s t a n c e,
2
c o n t a i n s n o t r a n s f a t s
2
T u r f g r a s s
H e r b i c i d e r e s i s t a n c e
1
B a n a n a
V a c c i n e d e l i v e r y (
c h o l e r a, h e p a t i t i s B, a n d d i a r r h e a ),
1
i n c r e a s e d s h e l f l i f e,
2
p e s t r e s i s t a n c e
2
S u n f l o w e r
H e r b i c i d e r e s i s t a n c e,
1
m o l d r e s i s t a n c e
1
P o t a t o
P e s t r e s i s t a n c e
2
F l a x
H e r b i c i d e r e s i s t a n c e
2
C o r n
P e s t r e s i s t a n c e,
2
d r o u g h t r e s i s i t e n c e,
2
i n c r e a s e d e n e r g y a v a i l a b i l i t y,
2
i n c r e a s e d n u t r i e n t s,
2

a m a l y a s e p r o d u c t i o n ( a s s i s t s i n p r o d u c t i o n o f e t h a n o l )
2
C a r n a t i o n
P r o d u c e s a p u r p l e c a r n a t i o n
2
C o t t o n
P e s t r e s i s t a n c e,
2
h e r b i c i d e r e s i s t a n c e
2
D a i r y
E n z y m e t h a t c u r d l e s m i l k t o m a k e c h e e s e,
2
p r o t e i n t h a t i n c r e a s e m i l k p r o d u c t i o n
2
P a p a y a
V i r u s r e s i s t a n c e
2
P e a n u t
I n c r e a s e d o l e i c a c i d c o n t e n t
2
S o y b e a n
H e r b i c i d e r e s i s t a n c e,
2
i n c r e a s e d o l e i c a c i d c o n t e n t
3
A l f a l f a
H e r b i c i d e r e s i s t a n c e
2
A p p l e
P e s t r e s i s t a n c e
2
E n d n o t e s:
1. “ T r a n s g e n i c C r o p s: A n I n t r o d u c t i o n a n d R e s o u r c e G u i d e,” D e p a r t m e n t o f S o i l a n d C r o p S c i e n c e s, C o l o r a d o
S t a t e U n i v e r s i t y, 2 0 0 4, h t t p://c l s.c a s a.c o l o s t a t e.e d u/T r a n s g e n i c C r o p s/f u t u r e.h t m l.
2. “ A g r i c u l t u r e B i o t e c h n o l o g y R e f e r e n c e G u i d e,” N a t i o n a l C o r n G r o w e r s A s s o c i a t i o n a n d U.S. G r a i n s C o u n c i l,
w w w.n c g a.c o m/f i l e s/g u i d e.p d f.
3. O. V. S i n g h,
S. G h a i, D. P a u l, a n d R. K. J a i n,
“ G e n e t i c a l l y M o d i f i e d C r o p s; S u c c e s s, S a f e t y A s s e s s m e n t, a n d
P u b l i c C o n c e r n,”
A p p l i e d M i c r o b i o l o g y a n d B i o t e c h n o l o g y
7 1 ( 2 0 0 6 ): 5 9 8 – 6 0 7.
Activity 1: Biotechnology and You
37
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
r i s k s, b e n e f i t s, a n d m a n a g e m e n t s t r a t e g i e s o f
g e n e t i c a l l y e n g i n e e r e d P l a n t s
1
B e n e f i t s o f G e n e t i c a l l y E n g i n e e r e d P l a n t s
I n c r e a s e d y i e l d: G e n e t i c e n g i n e e r i n g c a n m a k e p l a n t s g r o w f a s t e r o r p r o d u c e b i g g e r f r u i t.

D e c r e a s e d u s e o f p e s t i c i d e s: G e n e t i c a l l y e n g i n e e r i n g p l a n t s t o r e s i s t c e r t a i n p e s t s c a n e l i m i n a t e t h e n e e d t o u s e

t o x i c p e s t i c i d e s t o p r o t e c t t h e c r o p.
D e c r e a s e i n e n e r g y n e e d e d t o p r o d u c e c r o p s: G e n e t i c e n g i n e e r i n g t h a t r e s u l t s i n f e w e r p e s t i c i d e a p p l i c a t i o n s

w i l l r e s u l t i n l e s s e n e r g y u s e b y f a r m e r s ( f e w e r t r i p s w i t h t h e t r a c t o r s, t h e r e b y s a v i n g f u e l ).
I n c r e a s e d n u t r i t i o n a l q u a l i t y: G e n e t i c e n g i n e e r i n g c a n i n t r o d u c e v i t a m i n s a n d i n c r e a s e p r o t e i n l e v e l s.

A b i l i t y t o g r o w i n s e v e r e o r e x t r e m e e n v i r o n m e n t a l c o n d i t i o n s: G e n e t i c e n g i n e e r i n g c a n e n a b l e s o m e c r o p s t o

g r o w i n a r e a s t h a t o t h e r w i s e m a y n o t b e a b l e t o s u p p o r t a c r o p; e x t r e m e c o n d i t i o n s c a n i n v o l v e h i g h o r l o w
t e m p e r a t u r e s, f l o o d i n g, o r d r o u g h t.
I n c r e a s e d s h e l f l i f e: G e n e t i c e n g i n e e r i n g m a y r e s u l t i n c r o p s t h a t a r e e a s i e r t o s t o r e a n d s h i p.

U s e f o r h u m a n h e a l t h: G e n e t i c a l l y e n g i n e e r e d o r g a n i s m s c a n b e u s e d t o i m p r o v e h u m a n h e a l t h s u c h a s i n t h e

c a s e o f e d i b l e v a c c i n e s.
R i s k s o f G e n e t i c a l l y E n g i n e e r e d P l a n t s
I n t r o d u c t i o n o f a l l e r g e n i c o r h a r m f u l p r o t e i n s i n t o f o o d: C o n c e r n s h a v e a r i s e n a b o u t i n c r e a s i n g t h e p r e s e n c e o f

k n o w n a l l e r g e n s i n n o v e l p l a n t s p e c i e s ( s u c h a s n u t a l l e r g i e s ) a n d a b o u t t h e p o s s i b l e t o x i c i t y o f t r a n s g e n i c p r o
-
t e i n s n o t n o r m a l l y c o n s u m e d b y h u m a n s.
D e t r i m e n t a l e f f e c t o n n o n t a r g e t s p e c i e s a n d t h e e n v i r o n m e n t: T r a n s g e n i c c r o p s t h a t h a v e i n s e c t i c i d a l p r o p e r t i e s

m a y a f f e c t n o n t a r g e t o r g a n i s m s ( e.g., b u t t e r f l i e s t h a t n a t u r a l l y f e e d o n t h e p l a n t s ).
P o t e n t i a l f o r i n c r e a s e d i n v a s i v e n e s s a n d w e e d i n e s s o f g e n e t i c a l l y e n g i n e e r e d c r o p p l a n t s: G e n e t i c e n g i n e e r i n g

o f a n o r g a n i s m t h a t a l r e a d y p o s s e s s e s
i n v a s i v e
t r a i t s c o u l d e x a g g e r a t e s u c h t r a i t s, p o t e n t i a l l y c a u s i n g w i d e
-
s p r e a d e n v i r o n m e n t a l d a m a g e.
P e s t r e s i s t a n c e: T h e p o s s i b i l i t y o f p e s t s ’ d e v e l o p i n g r e s i s t a n c e t o t r a n s g e n i c p r o t e i n s h a s g e n e r a t e d c o n c e r n.

E f f e c t o n b i o d i v e r s i t y: T r a n s g e n i c c r o p s c o u l d h y b r i d i z e w i t h n a t i v e p l a n t s p e c i e s, t h u s d e c r e a s i n g o v e r a l l b i o d i
-

v e r s i t y; c r o s s f e r t i l i z a t i o n t h r o u g h w i n d - b o r n e p o l l e n o r s e e d s c o u l d a l l o w t r a n s g e n i c p l a n t s t o g r o w i n f i e l d s c o n
-
s i d e r e d f r e e o f g e n e t i c a l l y e n g i n e e r e d o r g a n i s m s.
R i s k M a n a g e m e n t S t r a t e g i e s
U s i n g m a l e s t e r i l e p l a n t l i n e s ( n o p o l l e n p r o d u c e d ) p r e v e n t s c r o p c r o s s - c o n t a m i n a t i o n.

M a k i n g s e e d v i a b i l i t y d e p e n d e n t o n t h e a p p l i c a t i o n o f a c h e m i c a l t h a t i s n o t n o r m a l l y f o u n d i n t h e e n v i r o n m e n t

c a n p r e v e n t s e e d d i s p e r s a l.
U s i n g n o n f o o d c r o p s s u c h a s t o b a c c o c a n l i m i t t h e p o s s i b i l i t y o f g e n e s e n t e r i n g t h e f o o d c h a i n.

U s i n g g r e e n h o u s e s c a n c o n t a i n t r a n s g e n i c c r o p s a n d t h e i r p o l l e n a n d s e e d s.

U s i n g p h e n o t y p i c m a r k e r s ( s u c h a s f l u o r e s c e n c e ) c o u l d a l l o w f o r v i s u a l m o n i t o r i n g o f t r a n s g e n e s.

L a b e l i n g g e n e t i c a l l y e n g i n e e r e d f o o d s w i l l e n a b l e c o n s u m e r c h o i c e.

I n s t i t u t i n g


r e g u l a t o r y r e q u i r e m e n t s w i l l e n s u r e t h a t c e r t a i n s a f e t y c o n s i d e r a t i o n s a r e m e t.
H a r v e s t i n g c r o p s b e f o r e t h e y a r e r e p r o d u c t i v e l y m a t u r e w i l l l i m i t p o l l e n o r s e e d e s c a p e.

E n d n o t e s:
1. O.V. S i n g h,
S. G h a i, D. P a u l, a n d R. K. J a i n,
“ G e n e t i c a l l y M o d i f i e d C r o p s: S u c c e s s, S a f e t y A s s e s s m e n t, a n d
P u b l i c C o n c e r n,”
A p p l i e d M i c r o b i o l o g y a n d B i o t e c h n o l o g y
7 1 ( 2 0 0 6 ): 5 9 8 – 6 0 7.
38


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
Part E: Issues of Containment
The purpose of this activity is to introduce some
of the concerns about the regulation and control
of transgenic plants. It is a real-life example of
how regulation and containment efforts that were
put in place to prevent the unintended escape
of a transgene failed. By the end of this activ
-
ity, students will have a greater understanding
of the complexities and potential consequences
of transgenic organisms. They will understand
that although the potential benefits of transgenic
organisms can be great, the risks can be difficult
to predict and control. For more information on
how risk is communicated, please read Activity 5 in
PLT’s Focus on Risk module.
getting ready
Duplicate Student Page: Transgenes Escape to
ƒ
Taco Bell for each student.

Make four copies of Student Page: Timeline of
ƒ
Events Linked to the Escape of the StarLink™
Transgene.

Make one transparency of the Timeline of Events
ƒ
Linked to the Escape of the StarLink™ Transgene
Student Page.
doing the activity
1.
Begin this activity by asking the students to
consider the words
containment

and
escape

and to come up with definitions for both. Ask
them to suggest things or items that need to
be contained and that may escape. Ask stu
-
dents to consider the words in a biological
sense. Can they suggest examples of plants and
animals that humans have tried to contain but
failed? Lead the discussion so that the students
eventually consider the idea of gene escape.
For example, if a transgenic plant is not con
-
tained and ends up producing pollen that fer
-
tilizes a nontransgenic plant, the transgene is
considered to have escaped.
2.
Write the following two phrases on the board:
Physical Containment
and
Biological
Containment
.
Lead the group in a discus
-
sion of the differences between the two, and
ask the students to come with definitions and
examples of each. Write each new example
on the board. For physical containment, they
might suggest growing plants in a greenhouse,
separating male and female plants, or growing
only plants of a single sex. For examples of bio
-
logical containment, they might suggest using
only sterile plants or using plants that have
been genetically altered to reproduce only in
the presence of some external mechanism.
Wrap up the discussion by asking the class to
consider the following questions: Are physical
and biological containment methods mutually
exclusive? Will one type of method be best for
all types of plants? If not, what are some plant
characteristics that might influence contain
-
ment methods?
3.
Ask each student to read the story on Student
Page: Transgenes Escape to Taco Bell. Once all
students have finished reading, initiate a class
discussion to answer any questions they may
have and to ensure that they understand the
following definitions and concepts:
Transgenes and transgenic plants
ƒ
Methods of containing transgenic plants
ƒ
Consequences of not containing transgenic
ƒ
plants
The role of the Food and Drug Administration
ƒ
in regulating transgenic organisms
4.
Divide the class into four groups. Each group
will be assigned one of the following four cate
-
gories: (a) political, (b) economical, (c) ecolog
-
ical, and (d) human health. Assign a recorder
and a reporter in each group. Pass out a copy
of Student Page: Timeline of Events Linked to
the Escape of the StarLink™ Transgene. Ask
each group to fill in its category (political, eco
-
nomical, ecological, and human health) at the
top of the last column.
Activity 1: Biotechnology and You
39
©

A
mericAn
F
orest
F
oundAtion
5.
Ask each group to read over the timeline
of events associated with the StarLink inci
-
dent and indicate with a check in the col
-
umn labeled “Category” which of the events
described fall under the category assigned to
their group.
6.
Have the recorder from each group fill in the
group’s information on the master overhead
using a symbol assigned to each particular cat
-
egory. The groups can each choose a symbol,
or symbols can be created and assigned by the
teacher. Make sure each group writes a key
(e.g., $ = economical) at the bottom of the
transparency. Display the results to allow the
students to see that each event can have con
-
sequences in a variety of categories.
7.
Have the reporters from each group stand in
front of the class and give a brief summary
explaining why the events so indicated fall into
that group’s category.
8.
After all groups have reported on their cat
-
egories, initiate a discussion with the students
about the variety of consequences associated
with the StarLink transgene escape. Ask the
students to consider how human error and
unforeseen consequences should figure into
policy decisions. What can be learned from this
particular case?
9.
As a follow-up activity, ask each student to
write a brief essay that addresses what could
be done to minimize the chances of this issue
occurring in another transgenic organism
and whether he or she feels more limitations
should be placed on transgenic organisms.
enrichment
Ask your students to use the Internet to find popu
-
lar press articles of this incident (they can start by
typing the terms “StarLink” and “Taco Bell” into
the Internet search engine). Ask them to print an
article, read it, and look for signs of bias (they may
need to consult Student Page: Detecting Bias).
Have them write a one-page paper that summa
-
rizes the type of bias (if any) that they find.
40


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
t r a n s g e n e s e s c a p e t o t a c o b e l l
®
I n S e p t e m b e r 2 0 0 0, a g e n e t i c a l l y m o d i f i e d v a r i e t y o f c o r n, k n o w n a s S t a r L i n k ™
,
w a s d e t e c t e d i n T a c o B e l l
®
t a c o
s h e l l s. S t a r L i n k c o r n c o n t a i n s a g e n e k n o w n a s C r y 9 C, w h i c h c o d e s f o r a p r o t e i n t h a t m a k e s p l a n t s r e s i s t a n t t o c e r
-
t a i n i n s e c t s. B e c a u s e o f a c o n c e r n t h a t t h i s p a r t i c u l a r g e n e m i g h t i n d u c e a l l e r g i c r e a c t i o n s i n h u m a n s, t h e c o r n w a s
a p p r o v e d f o r u s e a s f e e d f o r n o n h u m a n a n i m a l s o n l y.
1

O n c e t h e S t a r L i n k v a r i e t y w a s d e t e c t e d i n t h e t a c o s h e l l s, a m a s s i v e r e c a l l w a s l a u n c h e d t o e n s u r e t h a t a l l f o o d s
c o n t a i n i n g t r a c e s o f t h e S t a r L i n k c o r n i n t e n d e d f o r h u m a n c o n s u m p t i o n w e r e d e s t r o y e d. H o w e v e r, d e s p i t e m a s s i v e
e f f o r t s t o d e s t r o y f o o d p r o d u c t s c o n t a i n i n g S t a r L i n k c o r n a n d t o d e s t r o y S t a r L i n k s e e d s t o c k s, t h e S t a r L i n k t r a n s g e n e
w a s s t i l l d e t e c t a b l e i n U.S. c o r n s u p p l i e s u p t o 3 y e a r s l a t e r.
2
T h i s s t o r y i l l u s t r a t e s s e v e r a l v e r y i m p o r t a n t p o i n t s. F i r s t, e f f o r t s t o e n s u r e t h a t o n l y l i v e s t o c k a t e S t a r L i n k c o r n f a i l e d.
A s a r e s u l t o f t h e S t a r L i n k t r a n s g e n e e s c a p e, t h e U.S. E n v i r o n m e n t a l P r o t e c t i o n A g e n c y n o l o n g e r a p p r o v e s t r a n s
-
g e n i c p l a n t s u n l e s s t h e y a r e i n t e n d e d f o r b o t h h u m a n a n d a n i m a l c o n s u m p t i o n. S e c o n d, d e s p i t e t h e m a s s i v e e f f o r t,
c o m p l e t e r e m o v a l o f t h e e s c a p e d t r a n s g e n e o n c e d e t e c t e d w a s i m p o s s i b l e. A l t h o u g h t h e p r e v a l e n c e o f S t a r L i n k
c o r n i n t h e U.S. c o r n m a r k e t h a s d e c r e a s e d d r a m a t i c a l l y a s a r e s u l t o f m a s s i v e c o n t a i n m e n t e f f o r t s, i t i s s t i l l d e t e c t
-
a b l e y e a r s a f t e r h a v i n g b e e n c o m p l e t e l y b a n n e d.
E n d n o t e s:
1. L u c a B u c c h i n i a n d L y n n R. G o l d m a n, “ S t a r l i n k C o r n: A R i s k A n a l y s i s,”
E n v i r o n m e n t a l H e a l t h P e r s p e c t i v e s
1 1 0,
n o. 1 ( J a n u a r y 2 0 0 2 ): 5 – 1 3.
2. “ S t a r L i n k T e s t R e s u l t s,” G r a i n I n s p e c t i o n, P a c k e r s a n d S t o c k y a r d s A d m i n i s t r a t i o n, U.S. D e p a r t m e n t o f A g r i c u l t u r e,
2 0 0 3.
Activity 1: Biotechnology and You
41
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
t i m e l i n e o f e v e n t s l i n k e d t o t h e e s c a p e o f t h e
s t a r l i n k

t r a n s g e n e
1
Y e a r
M o n t h
E v e n t
C a t e g o r y
2 0 0 0
S e p t.
S t a r L i n k ™ c o r n f o u n d i n t a c o s h e l l s.

K r a f t F o o d s a n n o u n c e s r e c a l l o f t a c o s h e l l s t h a t h a v e b e e n f o u n d t o c o n t a i n

S t a r L i n k c o r n.
A v e n t i s ( t h e b i o t e c h n o l o g y c o m p a n y t h a t p r o d u c e s S t a r L i n k c o r n ) a n n o u n c e s i t

w i l l p u r c h a s e e n t i r e c r o p o f S t a r L i n k c o r n f r o m t h i s y e a r t o p r e v e n t a n y f u r t h e r
u s e o f t h e c o r n i n f o o d p r o d u c t s.
O c t.
A v e n t i s c h o o s e s t o c a n c e l t h e U.S. r e g i s t r a t i o n o f S t a r L i n k c o r n. T h i s m o v e

m e a n s t h a t S t a r L i n k c o r n c a n n o l o n g e r b e p l a n t e d f o r a n y a g r i c u l t u r a l p u r p o s e.
A v e n t i s a s k s t h e E n v i r o n m e n t a l P r o t e c t i o n A g e n c y ( E P A ) t o t e m p o r a r i l y a l l o w t h e

u s e o f S t a r L i n k c o r n f o r h u m a n c o n s u m p t i o n b e c a u s e i t h a s a l r e a d y a p p e a r e d
i n m a n y f o o d p r o d u c t s ( E P A c o n s i d e r e d a n d l a t e r r e j e c t e d t h i s r e q u e s t ).
N o v.
T h e U.S. D e p a r t m e n t o f A g r i c u l t u r e ( U S D A ) a n n o u n c e s p l a n s t o t e s t c o r n

s h i p m e n t s b o u n d f o r J a p a n f o r t h e p r e s e n c e o f S t a r L i n k g r a i n. T h e m o v e w a s
t a k e n t o r e a s s u r e c o n s u m e r s i n J a p a n, t h e l a r g e s t i m p o r t e r o f U.S. c o r n, t h a t t h e
S t a r L i n k g e n e h a d n o t e s c a p e d.
A v e n t i s c o n f i r m s r e p o r t s t h a t t h e S t a r L i n k p r o t e i n ( C r y 9 C ) w a s p r e s e n t i n c o r n

h y b r i d s h a v i n g n o k n o w n c o n n e c t i o n t o S t a r L i n k v a r i e t i e s. U S D A o f f i c i a l s b e g i n
w o r k i n g w i t h t h e c o m p a n i e s i n v o l v e d t o i n v e s t i g a t e t h e m i x - u p.
D e c.
A n E P A - a p p o i n t e d S c i e n t i f i c A d v i s o r y P a n e l c o n c l u d e s t h a t t h e C r y 9 C p r o t e i n

h a s a m e d i u m l i k e l i h o o d o f c a u s i n g a l l e r g i c r e a c t i o n s i n h u m a n s.*
B e c a u s e t h e C r y 9 C p r o t e i n h a s b e e n f o u n d i n s e v e r a l v a r i e t i e s o f n o n - S t a r L i n k

h y b r i d c o r n, U S D A r e c o m m e n d s t h a t U.S. s e e d c o m p a n i e s t e s t a l l t h e i r c o r n
s e e d l o t s f o r t h e p r e s e n c e o f t h e C r y 9 C p r o t e i n.
2 0 0 1
J a n.
F a r m e r s w h o s e n o n t r a n s g e n i c c r o p s w e r e f o u n d t o c o n t a i n t h e C r y 9 C p r o t e i n

w i l l b e c o m p e n s a t e d f o r l o s s e s t h e y m a y i n c u r, u n d e r a n a g r e e m e n t s i g n e d b y
A v e n t i s a n d t h e a t t o r n e y s g e n e r a l f o r 1 7 c o r n - p r o d u c i n g s t a t e s.
F e b.
T h e p r e s i d e n t, g e n e r a l c o u n s e l, a n d v i c e p r e s i d e n t f o r m a r k e t d e v e l o p m e n t

o f t h e U.S. c r o p s c i e n c e s d i v i s i o n o f A v e n t i s C r o p S c i e n c e a r e f i r e d. A
s p o k e s p e r s o n f o r A v e n t i s s a i d i t w a s f a i r t o l i n k t h e f i r i n g s t o t h e S t a r L i n k f i a s c o.
M a r.
T a i n t e d s e e d i s f o u n d i n i n v e n t o r i e s s l a t e d t o b e s o l d t o c o r n f a r m e r s t h i s s p r i n g.

T h e r e i s c o n c e r n t h a t U.S. c o r n e x p o r t s w i l l s u f f e r a g a i n t h i s y e a r i f t h e c r o p
c o n t a i n s t r a c e s o f t h e C r y 9 C p r o t e i n.
U S D A a n n o u n c e s t h a t i t w i l l b u y C r y 9 C - t a i n t e d c o r n s e e d f r o m s m a l l s e e d

c o m p a n i e s t h a t a r e n o t a f f i l i a t e d w i t h A v e n t i s a n d w e r e n o t l i c e n s e d t o s e l l
S t a r L i n k c o r n l a s t y e a r. M a j o r s e e d c o m p a n i e s a n d c o m p a n i e s l i c e n s e d t o s e l l
A n A v e n t i s e x e c u t i v e e s t i m a t e s t h e a m o u n t o f c o r n c o n t a m i n a t e d w i t h t h e

C r y 9 C p r o t e i n t o b e 4 3 0 m i l l i o n b u s h e l s, f a r m o r e t h a n t h e a m o u n t o f
c o n t a m i n a t e d c o r n s e e d t h a t w i l l b e b o u g h t b y t h e U.S. g o v e r n m e n t t o p r e v e n t
i t s b e i n g p l a n t e d t h i s s p r i n g.
42


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
s t u d e n t Pa g e
Y e a r
M o n t h
E v e n t
C a t e g o r y
2 0 0 1
J u n e
T h e C e n t e r s f o r D i s e a s e C o n t r o l r e l e a s e s i t s f i n d i n g t h a t t h e t r a n s g e n i c p r o t e i n

i n S t a r L i n k c o r n w a s p r o b a b l y n o t t h e c a u s e o f t h e a p p a r e n t a l l e r g i c r e a c t i o n s
t h a t h a v e b e e n a t t r i b u t e d t o i t b y p e o p l e w h o s u f f e r e d s y m p t o m s s h o r t l y a f t e r
e a t i n g c o r n p r o d u c t s.
J u l y
S t o r e s r e m o v e f r o m t h e i r s h e l v e s a b r a n d o f t o r t i l l a c h i p m a d e f r o m w h i t e c o r n

b e c a u s e t r a c e s o f S t a r L i n k c o r n w e r e f o u n d i n i t. M a k e r s o f t o r t i l l a c h i p s h a v e
b e e n s w i t c h i n g t o w h i t e c o r n a s a p r e c a u t i o n b e c a u s e t h e B t C r y 9 c t r a n s g e n e
w a s i n c o r p o r a t e d o n l y i n t o a y e l l o w c o r n v a r i e t y. A v o i d a n c e o f y e l l o w c o r n
w a s b e l i e v e d t o e l i m i n a t e t h e p r e s e n c e o f t h e S t a r L i n k p r o t e i n, w h i c h h a s b e e n
f o u n d w i d e l y — a t l o w l e v e l s — i n s t o r e s o f c o r n d e s t i n e d f o r h u m a n c o n s u m p t i o n.
T h e p a n e l o f s c i e n t i s t s w h o h a v e b e e n a d v i s i n g E P A o n t h e s a f e t y o f S t a r L i n k

c o r n d e c l i n e s t o r e c o m m e n d l i f t i n g t h e b a n o n h u m a n c o n s u m p t i o n o f t h e c o r n,
s a y i n g i t i s n o t y e t s a t i s f i e d t h a t t h e t r a n s g e n i c p r o d u c t i s s a f e.
2 0 0 2
D e c.
J a p a n ’ s A g r i c u l t u r e M i n i s t r y r e p o r t s t h a t i t h a s f o u n d t r a c e s o f S t a r L i n k c o r n i n a

s h i p m e n t o f U.S. c o r n t h a t d o c k e d a t N a g o y a H a r b o r. U S D A o f f i c i a l s s a y t h e y
b e l i e v e t h e l a s t s t o c k s o f S t a r L i n k c o r n w e r e d e s t r o y e d l a s t y e a r.
2 0 0 3
S e p t.
T h e g e n e t i c a l l y e n g i n e e r e d ( G E ) g e n e f r o m S t a r L i n k c o r n, a l o n g w i t h t h e G E

g e n e s f r o m o t h e r t y p e s o f G E c o r n, i s r e p o r t e d t o h a v e e n t e r e d t h e n a t i v e c o r n
p o p u l a t i o n s o f M e x i c o. T h e c o m m e r c i a l c u l t i v a t i o n o f a n y k i n d o f G E c o r n
i s p r o h i b i t e d i n M e x i c o b e c a u s e o f c o n c e r n s a b o u t g e n e f l o w t o M e x i c o ’ s
i n d i g e n o u s c o r n v a r i e t i e s, b u t G E c o r n k e r n e l s c a n b e i m p o r t e d f o r u s e a s f o o d.
2 0 0 7
O c t.
E P A p r o p o s e s t o c e a s e t e s t i n g y e l l o w c o r n f o r t h e p r e s e n c e o f t h e S t a r L i n k

v a r i e t y a f t e r c o n c l u d i n g t h a t “ p o t e n t i a l e x p o s u r e o f t h e U.S. p o p u l a t i o n t o t h e
C r y 9 C p r o t e i n i n S t a r L i n k c o r n i n t h e c u r r e n t U.S. f o o d s u p p l y i s e x t r e m e l y
l o w, a n d c o n t i n u e d t e s t i n g o f c o r n g r a i n b y g r a i n h a n d l e r s a n d m i l l e r s f o r t h e
p r e s e n c e o f C r y 9 C p r o v i d e s n o a d d i t i o n a l h u m a n h e a l t h p r o t e c t i o n.”
2
* T h e r e i s n o e v i d e n c e t h a t t h e S t a r L i n k v a r i e t y o f c o r n h a s c a u s e d h a r m t o a n y i n d i v i d u a l s.
E n d n o t e s:
1. “ T r a n s g e n i c C r o p s: A n I n t r o d u c t i o n a n d R e s o u r c e G u i d e,” D e p a r t m e n t o f S o i l a n d C r o p S c i e n c e s, C o l o r a d o
S t a t e U n i v e r s i t y, 2 0 0 4, h t t p://c l s.c a s a.c o l o s t a t e.e d u/T r a n s g e n i c C r o p s/s t a r l i n k _ n e w s.h t m l.
2. “ M o n i t o r i n g f o r S t a r L i n k ™ C o r n t o E n d,” U.S. E n v i r o n m e n t a l P r o t e c t i o n A g e n c y, A p r i l 2 0 0 8, w w w.e p a.g o v/
p e s t i c i d e s/b i o p e s t i c i d e s/p i p s/s t a r l i n k _ c o r n _ m o n i t o r i n g.h t m.
t i m e l i n e o f e v e n t s l i n k e d t o t h e e s c a p e o f t h e
s t a r l i n k

t r a n s g e n e
1
( c o n t i n u e d )
Activity 1: Biotechnology and You
43
©

A
mericAn
F
orest
F
oundAtion
Part F. Genetically Engineered
Organisms and Clothing
In this activity, students will identify the main traits
that are genetically engineered in cotton plants.
They will learn how non–genetically modified cot
-
ton can be identified and will explore the reasons
some clothing manufacturers choose to use organ
-
ic cotton.
1.

Your students will explore the use of genetical
-
ly engineered cotton in today’s society. Begin
by challenging them to identify products that
they use in their everyday life and that come
from cotton or cottonseed oil or both. On a
large piece of paper or the chalkboard, list all
the products they identify.
2.
Ask your students to arrange the items into
categories.
The two main categories likely to appear are
food and clothing.
3.
Using the Internet or other resources, have
your students determine what the major modi
-
fications are in genetically engineered cotton.
They should come up with herbicide resis
-
tance and pest resistance.
4.
Divide the class into small groups. Challenge
each group to identify a clothing manufacturer
that chooses to use cotton that has not been
genetically engineered. Ask the students to
make a magazine advertisement that is for the
company and that expresses the reasons for
the company’s choosing to use this type of cot
-
ton in its products.
If students are having trouble finding a cloth
-
ing manufacturer that does not use genetical
-
ly engineered cotton, the following tips may
help them:

ƒ
One way to determine whether cotton is
genetically engineered is to determine if it has
been certified organic. Certified organic cot
-
ton must come from plants that have not been
genetically engineered.

Some big-name clothing manufacturers such
ƒ
as Patagonia sell all organic cotton, whereas
others such as Nike advertise that they use a
certain percentage of organic cotton. Students
will generally find that many brands that use
organic cotton tend to be smaller, less global
names.

The Organic Trade Association’s website
ƒ
(www.ota.com) contains links and informa
-
tion on organic cotton.
5.
Display the advertisements around the class
-
room, and allow all students to read each one.
Initiate a class discussion that touches on the
common themes. You may use the following
questions to help guide a discussion:
What is the most common reason companies
ƒ
express for using organic cotton?
Are the opinions expressed by the companies
ƒ
supported by facts?
Are there any flaws or gaps in the logic of the
ƒ
companies?
What would the economic effect be if all cot
-
ƒ
ton sold were produced from non–genetically
modified organisms?
Did the information from your classmate’s
ƒ
advertisement change your view on genetically
engineered cotton? Why or why not?
44


project learning tree

Exploring Environmental Issues: BioTechnology
©

A
mericAn
F
orest
F
oundAtion
notes