stacked planar antenna for improving RFID coverage - Iaeme.com

locpeeverΗλεκτρονική - Συσκευές

27 Νοε 2013 (πριν από 3 χρόνια και 20 μέρες)

58 εμφανίσεις

International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

62










STACKED PLANAR ANTENNA FOR IMPROVING RFID
COVERAGE


1
Sakthivel P, Asst. Professor, ECE Dept,
mw_sakthi@yahoo.co.in

2
Pooranakumari C, Asst. Professor,
ECE

Dept,
pooranakumari@engineer.com

3
Franklin Telfer, M.E Student, PGSE Dept, franklin_telfer@yahoo.co.in

1,3

SA Engineering College, Chennai
-
77,
2
Panimalar Engineering College, Chennai
-
123,

India


ABSTRACT


T
h
is

p
a
p
er

p
re
s
e
n
ts

design,

simula
t
ion,

fabricati
on and

testing

of

stacked


planar

antenna

for

improving RFID coverage
.

It

w
as

designed

to

the

c
enter

frequency

of

915
MHz

w
it
h

the

band
w
id
t
h

of

26
MHz

un
l
icensed

ISM

band. The

planar

ε
r

=

4.3

Glass

epoxy

w
as

select
e
d

and

d
esig
n
ed

f
or ISM

band

sp
e
cifications.

It
was

simulated

using

ADS

2002C

w
h
ich

is

a

w
ide
l
y

used

RF

and

Mi
c
r
o
w
a
v
e

co
m
ponent

and

s
y
s
t
em
design

tool.

The

fabricated

a
n
tenna

w
as

tested

using

J6800

w
hich

is

Agilent’s

vector

ne
t
w
ork

analy
z
er

us
ed

to

mea
su
re

u
p

t
o

20GH
z
.

The

results

of

simulated

and

tested

antenna

parameters w
e
re compared

and concluded

the

perfo
r
man
c
e

of

g
iven ante
n
na.


Keywords:


Stacked
planar

antenna,



band,

ADS

2002C, Ne
t
w
ork

Analy
z
er


I.

I
NTRO
D
UCTIO
N

The widespread adoption of RFID app
lications
are

en
tirely

new

c
o
m
m
unication
i
n
fr
a
str
u
c
t
u
re

w
h
ich

u
s
es

unlice
n
sed

s
p
ectr
u
m

h
as

b
egun

to new

se
a
son

and

i
n
creas
i
n
g

nu
m
b
er

of

applications.

The fr
e
qu
e
nc
i
es

at

9
0
0

M
Hz,

2
.4
GHz

a
n
d

5
.
6

G
Hz

are

v
e
ry

w
i
de
l
y us
e
d

and

update
d

regularl
y
.

The

stacked planar antenna for
improving RFID coverage and
perform

satisfactorily.

T
h
e

micro
stri
p

a
n
t
e
nn
a

i
s

o
n
e

o
f

t
h
e opti
m
u
m

antenna

s
o
l
u
ti
o
ns

fo
r

U
H
F

an
d

SH
F

fr
eq
u
ency

r
a
nge
t
ransce
i
v
e
r

s
yst
e
m
s.

Th
i
s paper descr
i
bes

t
h
e

t
op

t
o

bo
t
t
o
m a
n
ten
n
a
m
a
k
i
ng of stacked planar
antenna.

II.

DESI
G
N

AN
D

SIMU
L
A
T
I
ON


The

m
icrostrip

Patch

Ant
e
nna was

desi
g
n
e
d

f
o
r

915

M
H
z
. The

f
o
ll
o
w
i
ng

des
i
gn

para
m
e
t
ers

are

s
y
n
th
es
i
zed

us
in
g

A
D
S L
i
ne

ca
l
c

a
n
d

si
m
u
l
a
t
ed

us
i
n
g

A
DS

m
o
m
en
t
u
m
.

The

l
ay
out dia
g
ram

is

as

sh
ow
n

in

f
i
g
u
re

(
1
)

w
h
ich

is

a
n

ant
e
nna

dia
g
ram
INTERNATIONAL JOURNAL OF ELECTRONICS AND
COMMUNICATION

ENGINEERING & TECHNOLOGY (IJECET)


ISSN 0976


6464(Print)

ISSN 0976


6472(Online
)

Volume 3, Issue 1, January
-

June (2012),
pp. 62
-
68

© IAEME:
www.iaeme.com/ijecet.html

Journal Impact Factor (2011)
-

0.850
0 (Calculated by GISI)

www.jifactor.com




IJECET

© I A E M E

International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

63


o
n

A
D
S

20
0
2C

wi
n
dow

with

ε
r


=

4.3

a
nd

t
h
e

s
u
bst
r
ate t
h
ickn
e
ss

is

1
.
6

m
m
.

Based
on

the

f
c
, ε
r


a
n
d
the

values

will

define
the

physical

parameters

of

a
n
tenn
a
.

In

this

case, An
te
nna

len
g
t
h

L

=

1
6
2
.
6

m
m

w
i
d
t
h

W

=

1
0
0
.
7

m
m

and

t
h
e
Fee
d

type is
co axia
l.
T
h
e formulas for
physical

parameters

which is used to

desig
n

the

planar

m
i
crostrip

a
n
t
e
n
n
a

are

g
i
ven

i
n

e
q
ua
tio
n

(
1
)

to

(5),

t
h
e

g
u
i
d
e

wa
v
elen
g
th

λ
g

=

λ
0
/

ε
e
f
f


wh
e
re

c

is

sp
e
ed

of light a
n
d
f
c

is center

fr
e
quen
c
y of operation.



F
i
gure

(
1
)

The

la
y
o
ut

d
i
ag
r
am

f
o
r

m
ic
ro

s
tr
i
p

stacked
pa
tch an
t
en
n
a at
915
M
H
z


W =

C/ 2
f
c


*
S
QRT

[(
ε
r


+1)
/
2
]


(
1
)

ε
eff


=
[
(
ε
r


+1)
/
2]
+
[
(

ε
r


-
1
)
/
2] [
(
1+
1
2
h/
W
)
^0
.5
,

(
2
)

L
eff


= c/2

f
c


*
S
QRT

(
ε
r


e
f
f
)


(
3
)

∆ L = 0
.
4
1
2
h
* [(ε

eff


+0.3) /

(
ε
eff


0
.2
5
8
)
]
*
[
(W/h
+
0
.
2
6
4
)/ (W
/h
+
0
.
8
)
]
.
..
(
4)

L=
L
eff


-

2

∆ L



(
5
)


III.

D
ESIGN

P
ARAMETERS

Sub
s
trate
P
a
r
a
mete
r
s:
Fr
e
qu
e
ncy:
915

M
Hz


εr:

4
.
3
(dielectric 1 and 3)


εr: 1 (dielectric 2
, air
)

S
u
bs
t
ra
t
e

he
ig
ht:

1
.
6

m
m

(
Plate

1 and 3)

S
u
bs
t
ra
t
e

he
ig
ht:

1

cm

(
Plate

2
)

Physi
c
al
P
a
rameters:

Pa
t
ch w
i
d
t
h

: 1
0
0
.
7
m
m

Pa
t
ch

l
e
n
g
t
h

:

1
6
2
.
6

m
m

Location of Feed point:

W
i
d
t
h

:
1/3 of Total Width

Length



:
1/3 of Total Length

International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

64


IV.
P
R
O
C
E
D
U
R
E

F
OR
S
IMU
L
A
TI
O
N

T
h
ere

are

few

ste
p
s

to

f
o
llow

to

b
e

c
o
m
p
le
t
e

t
h
e

si
m
u
lati
o
n of

a
n

a
n
tenna

are,

St
e
p

1:

From

t
h
e

g
i
v
en

s
p
ecificati
o
n,

o
b
tain the center frequ
e
ncy
f
c,


dielectric constant
ε
r
, substrate

t
h
i
ckn
e
ss

h.

St
ep

2: S
y
n
t
h
e
s
i
ze

t
h
e

ph
y
s
i
cal

para
m
e
t
ers

of

micro

strip

using

ADS2002c

Linecalc.

St
e
p

3:

F
i
nd

out

the gu
i
de

w
a
vel
en
g
th

λ
g.


Step

4
:

Calculate

t
h
e

patch

wid
t
h

a
nd length

usi
n
g

a
n
al
y
ti
cal

equations

are

giv
e
n

in

equat
i
on

no

(1)

t
o

(
5
)
.

S
t
ep

5:

Dr
a
w

t
h
e

Pa
tc
h

An
te
n
n
a

i
n

A
D
S
20
02
c
.

S
t
ep

9:
S
i
m
u
late

t
h
e

si
ng
l
e

layer

m
i
c
r
o
s
t
rip

p
atch

a
n
ten
n
a

u
sing

ADS M
o
m
e
n
t
u
m
.

Step

1
0
:

Re
p
eat

t
h
e

ste
p
s

until

t
h
e

op
tim
i
zed res
u
lts

are

o
b
tai
n
e
d
.

T
h
e

o
p
t
i
m
izati
o
n

is

v
e
ry

i
m
po
rta
n
t

t
o

g
et rig
h
t
res
u
lts.


IV.

F
L
O
W

C
H
A
RT

The

f
l
ow
c
h
art

g
i
ves

t
h
e

s
te
p
s

of

m
ak
i
ng

an

an
t
e
n
n
a

f
r
om

t
h
e
d
esign

to

t
h
e

s
i
m
u
lati
o
n

res
u
lts

bu
t

it

is

no
t

no
ted

ab
ou
t

t
h
e fabricati
o
n and testi
n
g

i
n

its f
l
o
w
.







International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

65




V.

F
A
B
R
IC
A
T
I
ON

The

f
ab
r
i
ca
ti
on

m
e
t
hod

o
f

pl
anar

a
n
t
e
n
n
a

i
s

a

ph
y
s
i
cal w
o
r
ko
u
t
.

T
h
e

ε
r


a
n
d

h

v
al
u
e

s
h
o
u
ld

b
e

select as

s
i
m
ilar

to

w
h
at have

selected

for

desi
g
n

and

si
m
u
lation.

T
h
e

co
m
p
lete pr
e
p
arati
o
n

an
d

f
a
bricati
o
n

of

plan
a
r

ant
e
nna

ne
e
d
s

to

go ar
ou
nd

5

t
o

1
0

s
t
eps,

w
h
i
ch

are

as

f
o
llo
ws.

1.

La
y
out

de
si
gn

2.

+
v
e

a
n
d


v
e

pr
e
p
ara
tio
n

3
.

S
i
z
i
ng

t
h
e

lay
out

4
.

E
d
g
in
g

t
h
e
u
nwa
n
te
d

area
s

5
.

Clea
n
in
g

a
n
d

Trilli
n
g

6
.

Mas
k
ing

to

re
m
ov
e u
n
w
a
nted

p
o
r
t
ions

o
f

t
h
e

la
y
out

6.

C
on
n
e
cting

Lead
s
.

A
fter c
o
m
p
leti
o
n

o
f

all

t
h
e

a
b
o
v
e

s
t
e
p
s

will

attain

a
n
d

g
i
v
e
s

a
n
te
nn
a w
h
ich

is

rea
d
y

to

test.

As

p
er

p
ara
m
eters

o
f

s
i
m
u
lated

a
n
te
nn
a
h
a
v
e

been

f
a
br
icated

and

its

p
h
o
t
o
c
o
p
y

is

sho
w
n

in

t
h
e fi
g
u
r
e
(
2
).




Figure

(2)

The fabricat
e
d

micro
s
t
rip

pat
ch

ant
e
n
n
a at

915

MH
z


VI.

TESTING

The

network

a
n
alyzer

J
8
600

was

us
e
d

to

test

antenna

.The return

l
o
ss

S
11


and

o
t
her

related

r
e
sults

have

be
e
n

se
e
n

by

t
h
is ne
tw
o
r
k

ana
l
y
zer.

Th
i
s

ne
t
w
o
rk

a
n
alyzer

syst
e
m

con
s
ists s
o
urce,

oscill
o
sco
p
e

a
n
d


inb
u
ilt

c
o
m
pu
t
er

syst
e
m

f
o
r

savi
n
g t
h
e

d
ata

and

res
u
lts.

T
h
e

m
od
el

i
n

f
i
g
u
re

(3)

is

t
h
e

testi
n
g set
u
p
r
ea
d
y to

t
est.

























































































F
i
gure

(
3
)

Test
i
ng
o
f

m
i
c
r
o

str
i
p

p
a
t
ch

a
n
ten
n
a

at

915

MH
z

International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

66


VII. SIMULATED AND TESTED RESULT


The simulated and tested results are mostly similar and both are matched in case of S
11
,
radiated power, beam width etc, and are shown in the figure (4) to figure (8).



m1
freq=900.2MHz
dB(Rectangular_915_mom_a..S(1,1))=-9.864
m2
freq=932.9MHz
dB(Rectangular_915_mom_a..S(1,1))=-9.921
m3
freq=915.0MHz
dB(Rectangular_915_mom_a..S(1,1))=-25.989
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
0.80
1.00
-25
-20
-15
-10
-5
-30
0
Frequency
Mag. [dB]
m1
m2
m3
S11

Figure (4)
Return loss S
11

SIMULATED




Figure (5)

XY plot of Radiation plot


The input port is matched and hence S
11
=
-
2
8
dB and

2
5
dB in the simulation and
testing respectively as shown in the figure (4) and figure (8). The radiated signal is

40
dB as shown in the figure (
5) and figure (6). The maximum radiated power is
3.5watt;

effective angle 177

and the directivity 6.11 dB are as shown in the figure (7). This result
satisfies more than the basic requirements for RFID
-
Reader in

ISM band regulations.


International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

67



Fig
ure (6)
3D view

of radiation plot




Figure (7)

Power and gain display




Figure (8)

Return loss (S11)


TESTED

International Journal of Electronics and Communicat
ion Engineering & Technology (IJECET), ISSN 0976


6464(Print), ISSN 0976


6472(Online) Volume 3, Issue 1, January
-

June (2012), © IAEME

68



VIII. CONCLUSION


As per the results obtained in the simulation and testing of the
stacked
planar
microstrip antenna is matched for
RFID

and it satisfies th
e
transmission
power

level
,
input match, beam width and directivity.
So that it could improve the coverage of RFID
-
Reader.
Also the cost of making is very low and fabrication is not having any very big
process because of the selection

of εr = 4.3 (glass epoxy). Here it is concluded that the
stacked

planar antenna is opt for
RFID
-
Reader
systems.


REFERENCES


[1]. E.Chettiar “ Effect of slot width variation on performance of wideband , probe fed,U
-
slot patch antennas”
IEEE MTT Symp
-
2004
,pp1792
-
1796.


[2]. Aaron K et al,” Design of Small

Size wide bandwidth Microstrip patch antenna”
IEEE AWP Vol 45
,No 1, Feb 2003.

[3]. Y.L.Chow “ Miniaturizing patch antenna by adding a shorting pin near the feed
probe

A folded monopole equivalent”.
IEE
E ,MTT 2002
Symp digest , Pp 6
-
9.


[4]. Amit “ Compact broadband gap coupled shorted L
-
shaped Microstrip antennas

IEEE MTT Symp
2001,Pp 106
-
110.


[5]. Marcel Korssel ,et al” Circularly Polarized Aperture Coupled patch Antenna for
RFID systems in the 2.4

GHz ISM band”;
IEEE 2003
Symp digest , Pp,1
-
4,


[6]. George A. Kyriacou et al , “ A Design Procedure for Aperture Coupled Microstrip
Antennas Based on Approximate Equivalent Networks”
IEEE 2002 MTT
-
symp


[7]. K.M.Luk “ Broadband Microstrip patch antenna
,”
Electron lett
;34,1998,Pp 1442
-
1443.


[8]. R.B.Waterhouse “ Design and performance of small printed antennas”
IEEE
AWP,AP
-
46,1998,pp 596
-
598.


[9]. M. Amman, “Design of Rectangular Microstrip Patch Antennas for the 2.4 GHz
Band",
Applied Microwave & Wir
eless
, pp. 24
-

34, November/December 1997.


[10]. WONG, K.L., and CHEN, w.s.: 'Compact microstrip antenna with dual
-

frequency
operation',
Electron. Lett.,
1997
,
33
,
(6), pp. 646
-

647