VST-TRE-OAC-24000-1008-1.4

locketparachuteΗλεκτρονική - Συσκευές

15 Νοε 2013 (πριν από 3 χρόνια και 4 μήνες)

205 εμφανίσεις













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
1




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc










VST


C
ONTROL
H
ARDWARE


S
ECTION
8



Doc. No.: VST
-
TRE
-
OAC
-
24000
-
1008


Issue: 1.3

Pages: 70


Date: 12.09.00





Activities

Persons Involved



Design and Functionalities

D. Mancini

Document Preparation

D. Mancini


C. Molfese

Document Supervision & Ch
eck

D. Mancini

Task Management

D. Mancini

Documentation Management and Q.C.

V. Fiume Garelli

Activities Supervision & Coordination

D. Mancini

Task Responsibility

D. Mancini

Mancini@na.astro.it

G. Sedmak

Sedmak@ts.astro.it


Signature



Remarks, Questions & Requests Gateway

D. Fierro


Fierro@na.astro.it

















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
2




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc





















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
3




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








EVOLUTION

RECORD




Issue

Revision

Date

Notes

1

0

25/11/99

First release

1

1

11/02/00

Modified on the

base of the FDR rixs

1

2

31/07/00

Updated sections: 8.2, 8.3, 8.4, 8.6, 8.7

1

3

12/09/00

Section 8.4.2 : Pin Hole Selector, Laser Control

Section 8.7.8: Power Budget

Tab. 8.3 : Pin Hole Selector, Laser Control

Tab. 8.36 : Total Mass, Inertia Momentum

Ta
b 8.59 : Power Budget

Tab. 8.56 : Electrical Power

Fig. 8.5 : Pin Hole Selector, Laser Control

Appendix A1, A4, A5 : Electrical Power

1

4

19/09/00

Fig.8.8 : CAB#3 and CAB#5 location

Tab.8.16 : HEX1 motors drivers

VST
-
SPE
-
OAC
-
24000
-
1019 integrated inside


























VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
4




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








T
ABLE OF
C
ONTENTS


8

TELESCOPE CONTROL SY
STEM

................................
................................
................................
................
6

8.1

I
NTRODUCTION

................................
................................
................................
................................
...........
6

8.1.1

Purpose

................................
................................
................................
................................
.............
6

8.1.2

Scope

................................
................................
................................
................................
................
6

8.1.3

Document Structure Design

................................
................................
................................
..............
6

8.1.4

Reference Documents

................................
................................
................................
......................
6

8.1.5

Applicable Documents

................................
................................
................................
......................
6

8.1.6

Abbreviations and Acronyms

................................
................................
................................
............
7

8.2

C
ONTROL
S
YS
TEM
A
RCHITECTURE
O
VERVIEW

................................
................................
.............................
8

8.2.1.1

Cabinet Layouts

................................
................................
................................
................................
.........

20

8.2.1.2

Electronic cabinet components

................................
................................
................................
..................

21

8.2.1.3

LCU components

................................
................................
................................
................................
.......

26

8.2.1.4

Power
supply

................................
................................
................................
................................
.............

31

8.2.1.4.1

VME boards power supply

................................
................................
................................
...................

31

8.2.1.4.2

I/O and function power supplies

................................
................................
................................
..........

32

8.2.1.4.3

Motor drivers and power supplies

................................
................................
................................
........

33

8.2.1.5

Cabinet temperature control

................................
................................
................................
......................

35

8.2.1.5.1

Power dissipation inside cabinets

................................
................................
................................
........

36

8.2.2

Time Reference System

................................
................................
................................
................

37

8.3

S
ERVOSYSTEMS CHARACTE
RISTICS

................................
................................
................................
..........

38

8.3.1

Azimuth and Altitude axes

................................
................................
................................
.............

38

8.3.1.1

Telescope Mechanical Characteristics and Behavior

................................
................................
................

38

8.3.1.2

Motors and Drivers Characteristics

................................
................................
................................
............

39

8.3.1
.2.1

Motors Torque Dimensioning

................................
................................
................................
...............

39

8.3.1.2.2

Motors Characteristics

................................
................................
................................
.........................

41

8.3.1.2.3

Power Driver Characteristics

................................
................................
................................
...............

42

8.3.1.2.4

Preload Scheme

................................
................................
................................
................................
..

43

8.3.1.2.5

Motor Brakes

................................
................................
................................
................................
.......

47

8.3.1.2.6

Motor Cooling

................................
................................
................................
................................
......

47

8.3.2

Rotator Axis

................................
................................
................................
................................
....

47

8.3.3

Sensors

................................
................................
................................
................................
..........

48

8.3.3.1

Tachometer System

................................
................................
................................
................................
...

48

8.3.3.1.1

Tachometer acquisition system

................................
................................
................................
...........

50

8.3.3.2

Encoders System
................................
................................
................................
................................
.......

51

8.4

A
UXILIARY CONTROL SYS
TEMS

................................
................................
................................
.................

53

8.4.1

Hexapod Control System

................................
................................
................................
...............

53

8.4.2

Shack
-
Hartman and Guide Probe

................................
................................
................................
..

53

8.4.3

Axial and Radial pads control system (APCS)

................................
................................
...............

54

8.4.3.1

Astatic levers

................................
................................
................................
................................
.............

54

8.4.3.2

Load cells

................................
................................
................................
................................
..................

54

8.4.3.3

Actuator malfunction

................................
................................
................................
................................
..

55

8.4.3.4

Load cells calibration

................................
................................
................................
................................
.

55

8.4.3.5

Actuator reset

................................
................................
................................
................................
............

55

8.4.3.6

I/O signals and Interlock

................................
................................
................................
............................

55

8.4.4

Corrector exchange and ADC control

................................
................................
............................

56

8.4.5

Temperature measurement System

................................
................................
..............................

56

8.4.6

Cooling System

................................
................................
................................
..............................

57

8.5

E
MERGENCY
S
TOP
S
YSTEM

................................
................................
................................
.....................

59

8.5.1

General Emergency Stop System (GESS)

................................
................................
....................

59

8.5.2

Local Emergency Stop System (LESS)

................................
................................
.........................

60

8.5.3

Equipment Emergency Stop System (EESS)

................................
................................
................

60













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
5




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








8.6

I
NTERLO
CK CHAIN

................................
................................
................................
................................
....

60

8.7

E
LECTRIC INSTALLATION

................................
................................
................................
..........................

63

8.7.1

CAB#1 and CAB#2 electric installation

................................
................................
..........................

63

8.7.2

CAB#6 and CAB#7 electric installation

................................
................................
..........................

63

8
.7.3

CAB#3+ CAB#4+ CAB#5 electric installation

................................
................................
................

63

8.7.4

CAB#8+ CAB#9+ CAB#10 electric installation

................................
................................
..............

64

8.7.5

Main distribution panel

................................
................................
................................
...................

64

8.7.6

Digital I/O signals

................................
................................
................................
...........................

65

8.7.7

Grounding and EMC considerations

................................
................................
..............................

68

8.7.8

VST Telescope Power Budget

................................
................................
................................
.......

68

8.7.9

Service Connection Points (SCPs)

................................
................................
................................

69



T
ABLES
&

F
IGURE
S


Tab. 8.1
-

Axes Control System functions managed by LCUs

................................
................................
............

10

Tab. 8.2
-

Auxiliary Control System main functions

................................
................................
.............................

10

Tab. 8.3


Rotator and Auxiliary Control System main function
s

................................
................................
........

1
1

Tab. 8.4
-

LCU#4 and LCU#5 control functions
................................
................................
................................
...

11

Tab. 8.5
-

Main cabinet characteristics

................................
................................
................................
................

20

Tab. 8.6


Center piece cabinet characteristics

................................
................................
................................
..

20

Tab. 8.7
-

CAB#1 components allocation table

................................
................................
................................
...

21

Tab. 8.8
-

CAB#2 components allocation table

................................
................................
................................
...

21

Tab. 8.9
-

CAB#3 components allocation table

................................
................................
................................
...

21

Tab. 8.10
-

CAB#4 components allocation table

................................
................................
................................
.

22

Tab. 8.11
-

CAB#5 components allocation table

................................
................................
................................
.

22

Tab. 8.12
-

CAB#6 components allocation table

................................
................................
................................
.

22

Tab. 8.13
-

CAB#7 components a
llocation table

................................
................................
................................
.

22

Tab. 8.14
-

CAB#8 components allocation table

................................
................................
................................
.

23

Tab. 8.15
-

CAB#9 components allocation table

................................
................................
................................
.

23

Tab. 8.16
-

CAB#10 components allocation table

................................
................................
...............................

23

Tab. 8.17
-

LCU#1 and LCU#2 components

................................
................................
................................
.......

26

Tab. 8.18
-

LCU#3 components

................................
................................
................................
..........................

26

Tab. 8.19
-

LCU#4 components

................................
................................
................................
..........................

27

Tab. 8.20
-

LCU#5 and LCU#6 c
omponents

................................
................................
................................
.......

27

Tab. 8.21
-

LCU#1 and LCU#2 component dimensions and power dissipation

................................
..................

28

Tab. 8.22
-

LCU#3 component dimensions and power dissipation

................................
................................
.....

29

Tab. 8.23
-

LCU
#4 component dimensions and power dissipation

................................
................................
.....

30

Tab. 8.24
-

LCU#5 and LCU#6 component dimensions and power dissipation

................................
..................

31

Tab. 8.25
-

VME crate power supply technical characteristics

................................
................................
............

32

Tab. 8.26
-

CAB#1 and CAB#2 power supplies

................................
................................
................................
..

32

Tab. 8.27
-

CAB#3+CAB#4+CAB#5 power supplies

................................
................................
..........................

32

Tab. 8.28
-

CAB#6 and CAB#7 power supplies

................................
................................
................................
..

33

Tab.

8.29
-

CAB#8+ CAB#9+CAB#10 power supplies

................................
................................
........................

33

Tab. 8.30
-

Motor drivers power dissipation

................................
................................
................................
........

34

Tab. 8.31
-

CAB#1 and CAB#2 component power dissipation

................................
................................
............

36

Tab. 8.32
-

CA
B#3+ CAB#4+ CAB#5 component power dissipation

................................
................................
..

36

Tab. 8.33
-

CAB#6 and CAB#7 component power dissipation

................................
................................
............

36

Tab. 8.34
-

CAB#8+CAB#9+CAB#10 component power dissipation

................................
................................
..

37

Tab. 8.35
-

Main Axes required and expected control performance

................................
................................
...

38

Tab. 8.36
-

Mechanical data and dynamic response for AZ and ALT

................................
................................
.

38

Tab. 8.37
-

Required Torque

................................
................................
................................
...............................

40













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
6




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








Tab. 8.38
-

Motor characteristics

................................
................................
................................
.........................

41

Tab. 8.39
-

Vickers Electric BDM
-
04 Driver general features

................................
................................
..............

43

Tab. 8.40
-

Preload control characteristic parameter

................................
................................
..........................

44

Tab. 8.
41
-

Preload torque parameters

................................
................................
................................
...............

45

Tab. 8.42
-

Torque values for preload torque computation

................................
................................
.................

46

Tab. 8.43
-

Rotator main characteristics

................................
................................
................................
..............

48

Tab. 8.44
-

Tachometer main
technical characteristics

................................
................................
.......................

49

Tab. 8.45
-

Tachometer readout system characteristics

................................
................................
.....................

49

Tab. 8.46
-

VMIC VMIVME
-
3119 ADC board characteristics

................................
................................
..............

50

Tab. 8.47
-

Input sign
al ranges v/s software selectable input amplifier gain

................................
.......................

50

Tab. 8.48
-

ERO 7001 Encoder type main technical characteristics

................................
................................
...

52

Tab. 8.49
-

Error sources

................................
................................
................................
................................
.....

52

Tab. 8.50
-

Load cells characteristics

................................
................................
................................
..................

55

Tab. 8.51
-

Positioning tolerances

................................
................................
................................
.......................

56

Tab. 8.52
-

Temperature range specifications

................................
................................
................................
.....

56

Tab. 8.53
-

Temperature sensor locations

................................
................................
................................
...........

57

Tab. 8.54
-

Equipment or subsystems that can receive or give interlocks

................................
..........................

61

Tab. 8.55
-

Interlock links between subsystems

................................
................................
................................
..

62

Tab. 8.56
-

Connections with the main distribu
tion panel (T.B.U.)

................................
................................
......

64

Tab. 8.57
-

External Telescope I/O signals

................................
................................
................................
.........

66

Tab. 8.58
-

Telescope Equipment I/O signals

................................
................................
................................
....

67

Tab. 8.59


VST Telescope Power Budget

................................
................................
................................
.........

68

Tab. 8.60
-

VST Service Connection Points

................................
................................
................................
........

69


Fig. 8.1
-

Telescope Control Architecture

................................
................................
................................
...............
8

Fig. 8.2
-

Control System Architecture

................................
................................
................................
....................
9

Fig. 8.3
-

Main Axes Control System Hardware Architecture

................................
................................
..............

14

Fig. 8.4


Active Optics Control System Hardware Architecture

................................
................................
.........

15

Fig. 8.5
-

Rotator and Auxiliaries Control System Hardware Archi
tecture

................................
..........................

16

Fig. 8.6


Microcontrolled Module for CANBus General Architecture

................................
................................
.

17

Fig. 8.7
-

CAB#1
-
2
-
6
-
7 Configuration

................................
................................
................................
..................

24

Fig. 8.8
-

CAB#3
-
4
-
5
-
8
-
9
-
10 Configuration

................................
................................
................................
..........

25

Fig. 8.9
-

LCU#1 and LCU#2 board layout

................................
................................
................................
..........

28

Fig. 8.10
-

LCU#3 board layout

................................
................................
................................
...........................

29

Fig. 8.11
-

LCU#4 board layout

................................
................................
................................
...........................

30

Fig. 8.12
-

LCU#5 and LCU#
6 board layout

................................
................................
................................
........

31

Fig. 8.13
-

Main axes motor drivers and power supplies

................................
................................
.....................

34

Fig. 8.14
-

Rotator motor driver and power supply

................................
................................
..............................

35

Fig. 8.15
-

Time Service System organ
ization

................................
................................
................................
.....

37

Fig. 8.16
-

External view of the 390
-
FCV6 Motor

................................
................................
................................

42

Fig. 8.17
-

Adaptive preload torque control system and speed loop configuration

................................
.............

44

Fig. 8.18
-

Tachomete
r one revolution ripple noise diagram (typical for this unit)

................................
...............

48

Fig. 8.19
-

The ERO 7001 encoder

................................
................................
................................
.....................

51

Fig. 8.20
-

Motor cooling scheme

................................
................................
................................
........................

58

Fig. 8.21
-

GESS circuit

................................
................................
................................
................................
.......

59

Fig. 8.22
-

Interlock chains electrical diagram

................................
................................
................................
.....

62

Fig. 8.23
-

Digital I/O connections

................................
................................
................................
.......................

65















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
7




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








8

T
ELESCOPE CONTROL SYS
TEM

8.1

I
NTRODUCTION

8.1.1

Purpose

This document reports the d
esign guidelines of VST Telescope Control Hardware that take into account the
general specifications and references underlined in
[10]
[11]
. The document is intended written as guideline for
hardware

development.


8.1.2

Scope

This Document is applicable to the development of Telescope subsystems. The Document has to be intended
as the final design document to be applied to the Control Hardware Section of the VST FDR document.


8.1.3

Document Structure Design

The

first part of the document briefly describes the VST hardware architecture, while the following sections
analyzes the subsystem structures and reports the component technical characteristics. However, many
subsystems are only described in few detail becau
se they will be finally designed outside and will be object of
tenders.

Other sections can be defined, either in the component choice and hardware structure, depending on the focal
plane configuration. These sections will be marked with the words: "To Be D
efined"


8.1.4

Reference Documents

[1]

VLT
-
SPE
-
ESO
-
10000
-
0002, Electromagnetic Compatibility and Power Quality Specifications
-

Part 1

[2]

VLT
-
SPE
-
ESO
-
10000
-
0003, Electromagnetic Compatibility and Power Quality Specifications
-

Part 2

[3]

VLT
-
SPE
-
ESO
-
10000
-
0004, Environment
al specifications

[4]

VLT
-
SPE
-
ESO
-
10000
-
0013, Service Connection Point Technical Specifications

[5]

VLT
-
SPE
-
ESO
-
10000
-
0015, VLT Electronic Design Specification

[6]

VLT
-
TRE
-
ESO
-
10000
-
0212, VLT Emergency Stop Systems

[7]

VLT
-
MAN
-
ESO
-
17130
-
0273, ESO VME4SA
-
X1 4
-
Channel DC Se
rvo Amplifier

[8]

VLT
-
MAN
-
ESO
-
17130
-
0991, ESO VME4ST 4 Channel Stepper Motor Driver

[9]

VLT
-
MAN
-
ESO
-
17130
-
0992, ESO VME4ST Backplane

[10]

VST PDR Document

[11]

VST PDS Preliminary Design Supplement

[12] VLT
-
MAN
-
ESO
-
17210
-
0431, Time Board Driver User Manual


8.1.5

Applicable Docum
ents

[1]

VLT
-
INS
-
ESO
-
01000
-
0001, Directive for Preparation of Technical Specifications

[2]

VLT
-
SPE
-
ESO
-
11410
-
0674, Technical Specification for the Opto
-
Mechanical Parts of the Cassegrain
Adapter
-
Rotators for the Very Large Telescope

[3]

VLT
-
SPE
-
ESO
-
10000
-
0006, VLT Obs
ervatory Requirements for Nasmyth Instruments

[4]

VLT
-
SPE
-
ESO
-
10000
-
0017, General Safety


Requirements for Scientific Instruments

[5]

VLT
-
TRE
-
ESO
-
00000
-
0001, VLT Maintenance Concept













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
8




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








[6]

VLT
-
TRE
-
ESO
-
00000
-
0467, Requirements for Safety Analyses



8.1.6

Abbreviations and Acro
nyms

A/D

Analog
-
to
-
Digital conversion

ADC

Atmospheric Dispersion Corrector

ADP

Adapter

APCS

Axial and Radial Pads Control System

AZ

Azimuth

CAB#x Cabinet n.x

CIR

Central Intensity Ratio

CORR

Corrector

D/A

Digital
-
to
-
Analog conversion

DER

Derotator

DMA

Dire
ct Memory Access

EL

Elevation

EMIF

Electro
-
Magnetic Interference Filter

ESO

European Southern Observatory

FEA

Finite Element Analysis

FEE Front End Electronics

GESS

General Emergency Stop System

HBS

Hydrostatic Bearing System

HPCS

Hexapod Positionin
g Control System

LCU

Local Control Unit

LESS

Local Emergency Stop System

LSB

Lowest Significant Bit

LUT

Look Up Table

OAC

Osservatorio Astronomico di Capodimonte

PHA

Preliminary Hazard Analysis

PHL

Preliminary Hazard List

PI

Proportional
-
Integrative Contro
ller

RMS

Root Mean Square

SCP

Service Connection Point

SHA

Sub
-
System Hazard Analysis

TBC

To Be Confirmed

TBD

To Be Defined

TBU

To Be Updated

TCS

Telescope Control Software

TWG

Technology Working Group

UD

Under Definition

VLT

Very Large Telescope

VST

VLT S
urvey Telescope

VME

Versa Module Eurocard

WS

WorkStation













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
9




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc









8.2

C
ONTROL
S
YSTEM
A
RCHITECTURE
O
VERVIEW


The VST telescope control system design is based on the main concepts used by ESO for the VLT design. This
choice simplifies the VST maintenance programs and e
nsures a full and fast integration of the telescope in the
VLT environment. The VST control system consists of two workstations, used to manage TCS and
Guide/Acquisition system, and several distributed LCUs as shown in
Fig. 8.
1
.



Internal Router
TCS
Workstation
TCS LCU#2
ALT Axis
TCS LCU#4
AD/ROT Axis
Service ctrl
ATM
TCS LAN
Instrumentation
LAN
Archive
Workstation
X Terminals
General Services
LAN
ETHERNET
Router to outside
world
Provided
by ESO
Provided
by OAC
DOME LCUs
AUX LCUs
Instrument
Workstation
Instrument LCU1
Instrument LCUn
Guide/Acq
Workstation
LCU#6
Guiding
Ctrl
LCU#5
Image
Analysis
Guide/Acq LAN
TCS LCU#1
AZ Axis
HBS LCU
TCS LCU#3
M1 M2 Ctrl
LAN
Switch

Fig. 8.
1

-

Telescope Control Architecture



The design’s guidelines foresee the highest possible flexibility limiting, as much as possible, the use of
embedded controllers. The LCUs have complete contr
ol over all the sub
-
systems by means of digital, analog or
serial connections. Some subsystems will be managed by dedicated controllers connected trough serial lines
with the LCUs that will have a full diagnostic over any function or status. All the telesc
ope control functions are
distributed in the control cabinets as shown in
Fig. 8.
2
.















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
10




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc












CAB#8
CAB#9
CAB#10
CAB#3
CAB#4
CAB#5
LCU#4
CAB#1
LCU#5
LCU#1
Azimuth control
Adapter/Rotator control
Auxiliary subsystems control
SH subsystem control
Guiding subsystem
CAB#6
Rotator Motor Cooling control
M1 Axial and Radial Pads control
M2 Hexapod control
LCU#3
CAB#2
LCU#2
Altitude control
CAB#7
Azimuth Motor Cooling control
Temperature acquisition
Altitude Motor Cooling control
Temperature acquisition
LCU#6
Temperature acquisition

Fig. 8.
2

-

Control System Architecture


With reference to
Tab. 8.
1

and
Fig. 8.
3

the following list describes the control functions managed by the axis
LCU. A single processor has been considered sufficient to manage all the functions reported in
Tab. 8.
1
. A
following experimental step will demonstrate the validity of the organization. If necessary the functions will be
shared between two different CPUs in the same LCU crate.




The axis LCU computes the new position to reach, every 50ms (external contr
ol loop).



The axis LCU has to compute the interpolated new reference position with the time rate of the control
position loop (2, 4 or 5 ms step will be tested).













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
11




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc










The main axes incorporate four brushless motors controlled in pairs and a torque preload is
applied
between motor couples in order to compensate for backlash in the telescope gear. The preload torque
function is obtained by means of an adaptive software algorithm that regulates each motor preload torque
value according to the instantaneous axis a
cceleration and/or instantaneous total torque required by the
system.



Torque commands are provided to the motor power amplifiers by the LCUs by means of a 16 bit DAC
board.



The speed loop is closed by means of four tachometers coupled to the motor axes.
A high performance 16
bit A/D converter is used to get the tacho readouts. An oversampling technique is the solution adopted to
reject the tachometer acquisition system noise. Data are stored in a FIFO buffer of the A/D board and
downloaded by the CPU. The
n the CPU computes the average of the tacho readouts.


The quantization effect due to the position servo loop can be reasonably rejected if the position servo loop
operates at a high enough frequency. A typical rule that guarantees high enough performance
s is to use a
value about 100 times the system bandwidth. Then will be implemented a conservative loop rate of 500 Hz
(that satisfy the rule).



LCU#1 and LCU#2 control functions

Primary

Functions

Astronomical computations

Guide data collecting from th
e Guide System

Reference trajectories planning

Encoders data reading and control

Position loop control

Tachometers data reading and control

Speed loop control

Preload torque and torque command computation

Motor power amplifiers control

Moto
r Cooling system control

Diagnostic and
secondary functions

High speed diagnostic for drivers, motors, tachos, cooling and
power

Emergencies, faults and warnings management

Temperature data readout

Auxiliary

Functions

Rack cooling unit control

Pow
er supply control

Tab. 8.
1

-

Axes Control System functions managed by LCUs



LCU#3 is organized to control several functions related to the active optic subsystems as reported in
Tab.

8.
3
.


LCU#3 control functions

Primary functions

M1 axial and radial pads control system management

M2 hexapod control system management

Motor Cooling system control

Diagnostic and
secondary
functions

Emergencies, faults and warnings management

Temperat
ure data collecting

Auxiliary functions

Power supply control













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
12




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








M1 Cover

Tab. 8.
2

-

Auxiliary Control System main functions



LCU#4 is organized to control several functions related to the Rotator axis and auxiliaries subsystems a
s
reported in
Tab.

8.
3
.


LCU#4 control functions

Primary functions

Cassegrain rotator axis control

Rotator control

Adapter control

Shack
-
Hartman control

Lens exchanger and ADC control

Mirror tilt and Pro
be focusing control

Pin hole selector control

Laser control

High speed diagnostics management

Diagnostic and
secondary
functions

Emergencies, faults and warnings management

Auxiliary functions

Rack cooling unit control

Power supply control

Tab.

8.
3



Rotator and Auxiliary Control System main functions



LCU#5 and LCU#6 control functions

LCU#5

Shack
-
Hartman sensor control

LCU#6

Guiding CCD control

Tab. 8.
4

-

LCU#4 and LCU#5 control functions


ROT
ATOR


The rotator axis will be driven by means of two cooled preloaded motors with a geared solution. The axis will be
provided with tachometer and encoder. The speed control loop will be based on high performance 16
-
bits ADC
and DAC boards, interfacing to

the tachometer and motors driver; this is the same solution adopted for main
axes control, providing high flexibility and precision. More details and clear definition of the design will be done
along the project.


ADAPTER AND SENSOR ARM (U.D.)


The Adapte
r structure is under definition TWG will define technical specifications and design guidelines but
design and realization will be object of tenders. The adapter capabilities will be managed by LCU#4.


ACTIVE OPTICS (U.D.)














VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
13




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








This section provides a short de
scription of the hardware adopted to actively correct the M1 mirror shape and
the M2 mirror position. The M1 active optics control system is based on mirror support plates controlled through
actuators, handled by means of the APCS. The APCS will be impleme
nted with a distributed control system,
based on CAN Bus. Primary mirror is sustained by 81 active pads and three fixed pads used as references.
The active pads are controlled to produce pushing or pulling forces below the mirror. 24 radial pads are also
p
rovided, for radial forces monitoring. The APCS acts asynchronously and communicate at high level with
LCU#3 trough a serial RS
-
232 9.6 kbaud communication line. See the proper paragraph for more details


The motion control of the secondary mirror M2 is ob
tained by means of a customized hexapod system. It will be
object of tenders. Up to now the technical specifications have been almost completely designed.

The system consists of two movable platforms. The first stage (HEX#1) realized as a standard hexapod

is used
between two pointing phases. The second stage (HEX#2) is realized as a x, y, tilt table by means of 5 piezo
-
actuators. The second stage is characterized by high accuracy and resolution and is used during tracking.

The HPCS is managed by LCU#3. LCU
#3 will be able to transform all position commands given in Cartesian
coordinates to Hexapod actuator axis specific positions and velocities characterized by high accuracy and
linearity. More specifically, the HPCS is based on a dedicated LCU, providing tr
ajectory generation and closed
loop digital servo control, based on position information supplied by incremental encoders. LCU#3 will be able
to control external motors drivers, by means of Maccon MAC4 motor controller boards.

LCU#5 and LCU#6 have to mana
ge respectively the Shack.Hartman CCD and the Guiding CCD. These will be
hosted inside the same crate but each of them will have a private backplane i.e. separated.



CONTROL SYSTEM ARCHITECTURE FUNCTIONAL DIAGRAMS


In the
Fig. 8.
3
,
Fig. 8.
4

and
Fig. 8.
5

the following parts of the Hardware Control System are described:



The Main Axes Control System



The Active Optics Control System



The Rotator and Auxiliaries Control System


The Ma
in Axes Control System is reported in
Fig. 8.
3
. The diagram is applicable for both Azimuth and Altitude
axes.


For the Azimuth Axis Control the control electronics, based on LCU#1, is placed in CAB#1, and the power
electronics is

placed in CAB#6.

For the Altitude Axis Control the control electronics, based on LCU#2, is placed in CAB#2, and the power
electronics is placed in CAB#7.

Each cabinet is provided with Power Control Section and one Rack Cooling Unit.


In CAB#1 one CAN Bus

I/F Module is present to provide connection between LCU#1 and CANBUS#1.

In CAB#2 one CAN Bus I/F Module is present to provide connection between LCU#2 and CANBUS#2.

The CANBUS#1 is aimed to implement the Azimuth Motors Cooling System, Azimuth Motors tempe
rature
acquisition, Telescope Azimuth structure temperature acquisition.

The CANBUS#2 is aimed to implement the Altitude Motors Cooling System, Altitude Motors temperature
acquisition, Telescope Azimuth structure temperature acquisition.




In
Fig. 8.
4

is described the Active Optics Control System that has to perform the following tasks:



M1 Axial and Radial Pads supports and force control, via CANBUS#3 based distributed control architecture



Rotator Motors cooling control, via CANBU
S#4



Telescope Altitude structure temperature acquisition, via CANBUS#4



HEX1 DC Motors control, via external drivers and Maccon DC Motor controller board



HEX2 piezoactuators control, via Phisik Instrumente electronics













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
14




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc










The configuration of the Rotator and

Auxiliaries Control System is shown in
Fig. 8.
5
. The tasks performed by
this control system are the following:



Rotator control



Adapter control



ADC Control



Lens Exchanger control



Mirror Tilt control



Probe Focusing control



Pin Hole

Selector control



Laser in
-
out control



Laser on
-
off control


Control electronics, consisting mainly in LCU#4, is located in CAB#4. Power electronics, the rotator and
turntable motors drivers, are located in CAB#9.


The VST cabinets are numbered as in the
following list, according to the main subsystem integrated:


CAB#1: LCU#1 for AZ Axis Control

CAB#2: LCU#2 for ALT Axis Control

CAB#3: LCU#3 for Active Optics Control

CAB#4: LCU#4 for Rotator and Auxiliaries Control

CAB#5: LCU#5 and LCU#6 for techn
ical CCDs management

CAB#6: Drivers of the AZ Motors

CAB#7: Drivers of the ALT Motors

CAB#8: HEX2 Piezo actuators electronics by Phisik Instrumente

CAB#9: Drivers of the ROT Motors

CAB#10: ROT Brakes Power Supply



The CAN Bus used to implement the envis
aged distributed control systems are the following:


CANBUS#1: AZ Motors cooling system, AZ Motors temperature acquisition, AZ structure temperature
acquisition (connected to LCU#1)

CANBUS#2: ALT Motors cooling system, ALT Motors temperature acquisition, A
Z structure temperature
acquisition (connected to LCU#2)

CANBUS#3: M1 Axial and Radial Pads control (connected to LCU#3)

CANBUS#4: ROT Motors cooling system, ROT Motors temperature acquisition, ALT structure temperature
acquisition (connected to LCU#3)
















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
15




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc











Fig. 8.
3

-

Main Axes Control System Hardware Architecture



MVME-2604
CPU Card
TIM
IK 320.V
AVME 9481
Digital I/O
VMIVME4116
DAC
VMIVME3119
ADC
ISER-8
Serial I/O
E.M.I.F.
Motor#4
Telescope Control LAN
Controller
Absolute
Head
4 Reading Heads Encoder
CAN Bus I/F
Modul e
Power supply
Motor driver
E.M.I.F.
Motor#3
Motor driver
E.M.I.F.
Motor#2
Motor driver
E.M.I.F.
Motor#1
Motor driver
Rack cooli ng
unit
Power control
section
To Brakes
Power control
section
Field signals
CAB#1(CAB#2)
RS-485
LCU#1(LCU#2)
Interlock
Temperature
Acquisition
Module
Temperature
sensors
...
CAN Bus
Tacho#1
Tacho#2
Tacho#3
Tacho#4
IK 320.V
TRS from
SCP
CAB#6(CAB#7)
Rack cooli ng unit
Cooling Fluid Inlet
Cooling Fluid Outlet
Cooling Fluid Inlet
Cooling Fluid Outlet
RS-422
CAN Bus
...
Motor Cooling
Controller
El ectro
valve
Out2
Out1
In
Temperature
sensors
Motor Cooling
Controller
El ectro
valve
Out2
Out1
In
Temperature
sensors
Motor Cooling
Controller
El ectro
valve
Out2
Out1
In
Temperature
sensors
Motor Cooling
Controller
El ectro
valve
Out2
Out1
In
Temperature
sensors
...
...
...
Temperature
Acquisition
Module
Temperature
sensors
Other TBD












VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
16




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc














Fig. 8.
4



Active Optics Control System Hardware Architecture

MVME-2604
CPU Card
TIM
AVME 9481
Digital I/O
ISER-8
Serial I/O
Telescope Control LAN
Power control
section
Field signals
CAB#3
LCU#3
CAN Bus I/F
Modul e
CAN Bus
SW Li mi t
Swi tches
Field
Power Bus
....
Field
Power Bus
Astatic Lever
Controller #n
Load
Cell
DC
Motor
HW
Limit
Swi tches
Astatic Lever
Controller #1
Load
Cell
DC
Motor
HW
Limit
Swi tches
SW Li mi t
Swi tches
M1 Axial
and Radial
Pads
MACCON
MAC4/INC
MACCON
MAC4/INC
HEX1
6xDC Motors
DC
Motors
Drivers
CAN Bus
CAN Bus I/F
Modul e
...
ROT Motor1
Cooli ng
Controller
El ectro
valve
Out2
Out1
In
Temperature
sensors
ROT Motor 2
Cooli ng
Controller
El ectro
valve
Out2
Out1
In
Temperature
sensors
...
Temperature
Acquisition
Module
Temperature
sensors
Temperature
Acquisition
Module
Temperature
sensors
...
M1 Cover
CAB#8
PI Piezo
Actuators
Electronics #1
PI Piezo
Actuators
Electronics #2
HEX2 Piezo
Actuators
Other TBD
VMIVME4116
DAC
3
2












VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
17




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc









Fig. 8.
5

-

Rotator and Auxiliaries Control System

Hardware Architecture





VMIVME3119
ADC
AVME 9481
Digital I/O
ISER-8
Serial I/O
OPTICAL SECTION:
ADC,
Lens Exchanger,
Mi rror Til t,
Probe Focusi ng
Pin Hole Selector
(6x Stepper Motors)
Motor#1
E.M.I.F.
Motor#2
E.M.I.F.
VMIVME4116
DAC
Rotator
Rotator
Tacho#1
Rotator
Tacho#2
Rotator
Stepper Motor
Driver
STP Maccon
Controller
Stepper Motor
Driver
STP Maccon
Controller
Rack Cooling
Unit
Power control
section
Motor
dri ver
Control
Power
suppl y
Motor
dri ver
Control
Power
suppl y
Motor
dri ver
MVME2604
CPU Card
TIM
Telescope Control LAN
Rotator Encoder
IK 320V
Adapter
(SH, Guiding)
Turntable
Encoder
DC Maccon
Controller
Turntable
DC Motor
Tacho
Arm
Rotator
Motor
Turntable
E.M.I.F.
Stepper
To Brakes
Field signals
CAB #9
Cooling Fluid Inlet
Cooling Fluid Outlet
Cooling
Fluid Outlet
CAB #4
Rack cooli ng
unit
Power control
section
LCU #4
RS-422
RS-485
RS-422
Cooling
Fluid Inlet
Laser In-out
Laser on-off












VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
18




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








CAN BUS OVERVIEW


The CAN (Communication Area Network) serial Bus was originally developed for automotive application, but
has been employed in several industrial applications, embedded applications and building automation.

Th
e main application are industrial control systems and embedded networks.

The CAN Bus is in general suitable when several microcontrolled subsystem have to communicate each other.

The implemented features of error detection and fault confinement make the C
ANBus suitable for critical
applications and harsh environments.


Several microcontrolled modules can be connected to a CAN Bus; the microcontroller is needed for
communication management and for module hardware control.

Another main components of the mod
ules is the CANBus communication controller, usually integrated in the
microcontroller itself.

All CAN Communication Controllers have a common structure consisting mainly of a CAN protocol controller, a
hardware acceptance filter, message memory, and a CPU

interface. The CAN protocol controller is responsible
for handling all messages transferred via CAN bus lines. This includes tasks such as synchronization, error
handling, arbitration, parallel to serial and serial to parallel conversions.


A general arch
itecture diagram of a microcontrolled module for CAN Bus is depicted in the picture 8.3.


The microcontroller has integrated inside the CAN Bus Communication Controller for protocol management;
ROM for firmware storage, ALU and RAM for control program exec
ution.


The following components are also present on the module: CANBus and RS
-
232 line drivers ; optoisolated
driver for motors or electrovalves activation; optoisolated serial ADC and conditioning electronics to interface
external analog sensors, such a
s temperature sensors and load cells.

Fig. 8.
6



Microcontrolled Module for CANBus General Architecture

RS-232
Line drivers
and Receiver
RAM
ROM
ALU
I/O
CAN
Communication
Controller
Microcontroller
Serial
Comm.
Controller
CAN Bus
Line drivers
and Receiver
DC/DC
Converter
Optoisolated
Power Drivers
Optoisolated
ADC and
Conditioning
Electronics
+5V.
CANBus Power Lines
CANBus Data Lines
To
Electromechanical
Devices
From Sensors
(Temperature sensors;
Load cells)
+12V.
GND
from Field
Power BUS












VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
19




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc










The CANBus networks that will be implemented for VST have the same configuration (refer to
Fig. 8.
3

and
Fig.
8.
4
); a CANBus I/F Module will be present for connection with one of the LCUs, via RS
-
232 serial I/F. This
module, that has to perform protocol conversion from RS
-
232 to CANBus, is the master of the CANBus network
and can

address one of the slave modules to send configuration parameters or to request data. The address
mechanism is based on

the acceptance filtering capability. All CAN implementations provide some hardware
acceptance filters to relieve the microcontroller fr
om the task of filtering those messages which are needed from
those which are not of interest.


The address space managed by the acceptance filter is equal to 127 devices (sufficient for VST application),
but it can also be expanded allocating one or more
bytes of the data field of the CANBus standard packet as
auxiliary address.


The physical layer is based on a twisted pair for data transmission; two other wires are present to distribute
12Vdc power to all modules connected to the network.

The maximum dat
a rate envisaged for the CANBus is equal to 1 Mbit/s.


For VST, Four CAN Busses will be used, as specified above, to implement distributed control systems, with the
aim to control the APCS, to control the temperature of the motors and to perform telescope

temperature
acquisition.

Each CAN Bus is connected to one LCU by means serial I/O port; the CAN Bus I/F Module is envisaged to
implement the connection between RS
-
232 asynchronous serial line, and the CAN Bus.


On the CAN Bus the connection of the three

kinds of modules is envisaged:



Astatic Lever Controller (CAN Bus#3)



Motor Cooling Controller (CAN Bus#1
-
2
-
4)



Temperature Acquisition Module (CAN Bus#1
-
2
-
4)


The power supply for the electronics envisaged for the modules will be provided by the CAN Bus

; o
ne DC
-
DC
converter for each module will perform +12/+5 [V] conversion.

The power supply for all the actuator, sensor and the electronics connected after the insulation barrier will be
distributed by a Field Power Bus. The configuration of the Field Power
Bus is not frozen yet, because the power
budget for the actuators has to be still analyzed.


All the mentioned modules are provided with microcontroller for communication protocol management and to
control the hardware devices present on the module. From t
he LCU, via serial I/F and CAN Bus, the functioning
parameters are communicated to one module; then the module will implement the closed loop control locally
without other intervention of the LCUs.

The advantages of the distributed control system are in te
rms of redundancy, reliability and low LCUs software
overhead.


The
Astatic Lever Controller

is devoted to the Astatic Pad DC Motor control

; it will be based on

:



Microcontroller for communication with CAN Bus



CAN Bus Interface drivers



Opto
-
insulated Loa
d Cell Interface



Opto
-
insulated DC Motor Driver



Software Limit Switches interface



RS
-
232 serial port for monitoring and debugging functions













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
20




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc









Two levels of limit switches could be provided

: software and hardware limit switches. The SW Limit Switches
are r
ead out by the microcontroller and are the ones normally used to avoid out of range actuator movement.
The HW Limit Switches are providing further out of range movement protection, if the related SW Limit Switch
is not correctly acquired.


The
Motor Coolin
g Controller

is devoted to implement the closed loop control of the temperature of the main
axes and rotator motors. The temperature are acquired from several sensors by means ADC and conditioning
electronics present on the module. The cooling liquid flow
is controlled with an electrovalve powered by an
electronic driver. More details about the motor cooling system are given in the paragraph
8.4.6
.

Each controller will be based on the following components:



Microcontroller for c
ommunication with CAN Bus



CAN Bus Interface drivers



ADC and conditioning electronics for temperature sensors



Optoinsulated Electrovalve driver



RS
-
232 serial port for monitoring and debugging functions


The
Temperature Acquisition Module

is aimed at teles
cope temperature acquisition. The following main
components will be present on this module:



Microcontroller for communication with CAN Bus



CAN Bus Interface drivers



ADC and conditioning electronics for temperature sensors



RS
-
232 serial port for monitorin
g and debugging functions
















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
21




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








8.2.1.1

Cabinet Layouts

The telescope control electronics is located mainly into four standard 19'' cabinets, with external overall
dimensions of 800x800x2000 mm. The internal useful height is of 1852 mm, or 41 U (one U=44.45 mm). To
maximize the access to the VME crate and the other sub
-
racks, the cabinet is equipped with two doors, one on
the front and the other on the back. Doors and panels, are movable. The panels are opaque to prevent light
pollution from the mimic panel display.

The cabinets are provided with special features to minimize EMC
problems. In the rear side is foreseen the space to mount standard rails, on which are installed rail mounted
components, like screw terminals, relay etc. In CAB#1 and CAB#2 will be located t
he control electronics (VME
crate, I/O connections, etc...) while the motor power section will be located in CAB#6 and CAB#7. The cabinet
characteristics are summarized in
Tab. 8.
5



MAIN CABINET CHARACTERISTICS

M
anufacturer

Knurr

Model

Miracel

Type N.

1.132.142.3

External dimensions

800x800x2000 mm (WxDxH)

Useful height

41 U

Useful depth

640 mm

Weight

76 Kg

Protection

IP55

Tab. 8.
5

-

Main cabinet characteristics

The cabling and coo
ling pipe entries will be situated in the lateral panel of the cabinets.

These four cabinets will be fixed to the azimuth box.


Six other customized 13U cabinets (CAB#3, CAB#4, CAB#5, CAB#8, CAB#9, CAB#10) will be fixed to the
center piece and will host LC
U#3, LCU#4, LCU#5 and LCU#6, ROT Drivers and Piezo Actuators electronics.
These cabinets are of the same class of the others, equipped with two opaque doors and lateral panels EMC
shielded. The cabinet final dimensions have not yet been defined but the ove
rall characteristics should be those
listed in
Tab. 8.
6
.


CENTER PIECE CABINET CHARACTERISTICS

External dimensions

600x800x680 mm (WxDxH)

Useful height

13

Useful depth

> 640 mm

Weight

< 30 Kg

Protection

IP55

Tab. 8.
6



Center piece cabinet characteristics













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
22




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc









8.2.1.2

Electronic cabinet components

The main axis cabinets host the following sub
-
racks:


CAB#1 components

Description

Number of units

Height (U)

Total Height (U)

LCU1
-
VME chassis

1

6

6

Heat Exchanger

1

4

4

Fan / air flow

1

1

1

CAN Bus I/F Module

1

NA

NA

Mimic panel

1

3

3

Power supplies and
emergency button

2

3

6

Shuko socket

1

2

2

Main power switchboard

2

3

6

Free room

1

13

13

Total

41

Tab. 8.
7

-

CAB#1 components allo
cation table


CAB#2 components

Description

Number of units

Height (U)

Total Height (U)

LCU2
-
VME chassis

1

6

6

Heat Exchanger

1

4

4

Fan / air flow

1

1

1

CAN Bus I/F Module

1

NA

NA

Mimic panel

1

3

3

Power supplies and
emergency button

2

3

6

Shuko soc
ket

1

2

2

Main power switchboard

2

3

6

Free room

1

13

13

Total

41

Tab. 8.
8

-

CAB#2 components allocation table


CAB#3 components

Description

Number of units

Height (U)

Total Height (U)

LCU3
-
VME chassis

1

6

6

Fan / air flow

1

1

1

CAN Bus I/F Module

2

NA

NA

Main power switchboard
and emergency button

1

3

3

Shuko socket

1

2

2

Free room

1

1

1

Total

13

Tab. 8.
9

-

CAB#3 components allocation table













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
23




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc









CAB#4 components

Description

Number of units

Height
(U)

Total Height (U)

LCU4
-
VME chassis

1

6

6

Heat Exchanger

1

4

4

Fan / air flow

1

1

1

Free room

1

2

2

Total

13

Tab. 8.
10

-

CAB#4 components allocation table


CAB#5 components

Description

Number of units

Height (U)

Total Heigh
t (U)

LCU5/6
-
VME chassis

1

6

6

Fan / air flow

1

1

1

Power supplies

2

3

6

Free room

1

0

0

Total

13

Tab. 8.
11

-

CAB#5 components allocation table


CAB#6 components

Description

Number of units

Height (U)

Total Height (U)

Azimu
th Motors Dual Axes
Driver

2

NA

NA

Heat Exchanger

1

4

4

Power supplies

1

3

3

Main power switchboard
and emergency button

7

3

21

Shuko socket

1

2

2

Free room

1

11

11

Total

41

Tab. 8.
12

-

CAB#6 components allocation table


CAB#
7 components

Description

Number of units

Height (U)

Total Height (U)

Elevation Motors Dual
Axes Driver

2

NA

NA

Heat Exchanger

1

4

4

Power supplies

1

3

3

Main power switchboard
and emergency button

7

3

21

Shuko socket

1

2

2

Free room

1

11

11

Total

41

Tab. 8.
13

-

CAB#7 components allocation table













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
24




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc









CAB#8 components

Description

Number of units

Height (U)

Total Height (U)

Piezo actuators controller
by PI

2

3

6

Heat Exchanger

1

4

4

Free room

1

3

3

Total

13

Tab. 8.
14

-

CAB#8 components allocation table



CAB#9 components

Description

Number of units

Height (U)

Total Height (U)

Rotator Motor Driver

1

NA

NA

Main power switchboard
and emergency button

2

3

6

Free room

1

7

7

Total

13

Tab. 8.
15

-

CAB#9 components allocation table



CAB#10 components

Description

Number of units

Height (U)

Total Height (U)

Power supplies

1

3

3

HEX1 Motors Drivers

1

NA

NA

Shuko socket

1

2

2

Free room

1

8

8

Total

13

Tab. 8.
16

-

CAB#10 components allocation table



CAB#1
-
2
-
6
-
7 configurations are reported in the
Fig. 8.
7
; CAB#3
-
4
-
5
-
8
-
9
-
10 configurations are reported in
Fig.
8.
8
.













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
25




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc










Fig. 8.
7

-

CAB#1
-
2
-
6
-
7 Configuration















VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
26




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc














Fig. 8.
8

-

CAB#3
-
4
-
5
-
8
-
9
-
10 Configuration













VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
27




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc











8.2.1.3

LCU components

The main axis LCUs are equipped with the following cards:


LCU#1 and LCU#2 components

Description

Manufacturer/Model

Unit
s

CPU board

Motorola MVME 2604
-
4341 (64 MB) +
module MVME 712

1

TIM board

ESO

1

Encoder interface boards

Heidenhain IK 320V

2

Serial board

ISER
-
8

1

Digital I/O board

Acromag AVME9481

1

ADC board

VMIC VMIVME
-
3119
-
023

1

DAC board

VMIC VMIVME
-
4116
-
050

1

Power supply

Kniel FPM 1603

1

Tab. 8.
17

-

LCU#1 and LCU#2 components


A set of software tests will take place to verify if one CPU can satisfy the global computational performances.
Tab. 8.
21

reports the dimensions and the power consumption for each board.

LCU#3 is equipped with the following boards:



LCU#3 components

Description

Manufacturer/Model

Units

CPU board

Motorola MVME 2604
-
4341 (64 MB) +
module MVME 712

1

TIM board

ESO

1

Serial board

ISER
-
8

1

Digital I/O board

Acromag AVME9481

1

DAC board

VMIC VMIVME
-
4116
-
050

1

DC motor controller

Maccon MAC4/INC DC

2

Power supply

Kniel FPM 1603

1

Tab. 8.
18

-

LCU#3 components














VST Project


Osservator
io Astronomico di Capodimonte Napoli







Date:
12.09.2000

Page:
28




File Name:
locketparachute_bb3512a5
-
6cc0
-
46d3
-
b638
-
f127dc03d78f.doc








LCU#4 is equipped with the follow
ing boards:


LCU#4 components

Description

Manufacturer/Model

Units

CPU board

Motorola MVME 2604
-
4341 (64 MB) +
module MVME 712

1

TIM board

ESO

1

Encoder interface boards

Heidenhain IK 320V

1

Serial board

ISER
-
8

1

Digital I/O board

Acromag AVME9481

1

ADC board

VMIC VMIVME
-
3119
-
023

1

DAC board

VMIC VMIVME
-
4116
-
050

1

DC motor controller

Maccon MAC4/INC DC

1

Stepper motor controller

Maccon MAC4/STP

2

Stepper motor servo amplifier