Simulation and modeling of smarter large power grids

learnedbawledΗλεκτρονική - Συσκευές

24 Νοε 2013 (πριν από 3 χρόνια και 7 μήνες)

67 εμφανίσεις

Simulation and modeling of smarter
large power grids

ADVANCED

ENERGY 2012

30
-
31 Octobre 2012, New York, NY, USA

Omar
Saad
,

Researcher

IREQ/Hydro
-
Québec

Groupe


Technologie

Modern (Future) power systems

>
Increasingly complex transmission and
distribution systems

>
Evolution and upgrading of existing systems
allowing to increase the penetration of renewable
energies and to elevate security and flexibility
levels

>
Delivery of greener power

>
Large scale integration of renewable generation

>
Central and distributed generators,
microgrids

>
Proliferation of HVDC systems

>
Smart Grids


Huge needs in information and data for the operation
and planning of power systems

2

Groupe


Technologie

Large scale integration of renewable
generation

>
Deployment of intelligent controls,
computer applications and
communications

>
Smart technologies for the
interconnection of renewable energy
generators in wide geographic areas

>
Management of distributed resources

>
Power electronics application for:
control and variability

>
Sophistication of analysis methods

3

Groupe


Technologie

Trends and challenges

>
Simulation and analysis of super large networks with
wideband models


Electromagnetic and electromechanical transients

>
Simulation of super distribution grids (Smart network)

>
Challenges


Data and data portability between power system applications


Visualization and analysis of huge systems


Parallel computations


Real
-
time computations


Online analysis


Unification of simulation methods and environments


Multi
-
domain simulations

4

Groupe


Technologie

Simulation of very large systems:

Hydro
-
Québec Network in EMTP
-
RV

5

Bergeronnes
Périgny
+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+
ZnO

+

CXC04
+
2006-ajout de 19 ohms-total 44 ohms, 2300A

CXC7
+

CXC8
+

CXC23
+

CXC19
+

CXC27
+

CXC28
+

CXC29
+

CXC31
+

CXC32
+

CXC33
+

CXC51
+

CXC52
+

CXC53
+

CXC59
+

CXC70
+

CXC69
+

CXC62
+

CXC63
+

CXC76
+

CXC77
+

CXC78
+

CXC80
+

CXC81
+

CXC82
+

CXC84
+

CXC85
+

CXC86
+

CXC92
+

CXC93
+

CXC94
1
2
abitibi_T61T62
+
ZnO

CP2
+
L7084_7085
192.3

CP
+
L7094
286.6

CP
+
L7059
273.6

CP
+
251.4
L7078

CP
+
L7086
195

CP
+
L7027
181.6

CP
+
60.2
L7011

CP
+
L7028
171.2

CP
+
L7029

CP
+

L7053
230.1
CP
+
L7052

CP
+
L7051

CP
+
L7008_B
CP
+
L7007_B
242
CP
+
L7097
76.0

CP
+
L7005
110.2

CP
+
L7035

CP
+
L7034
108

CP
+
L7024

CP
+
L7017
228.8

CP
+
L7025
251.9

CP
+
117.2
L7026

CP
+
L7016
246.5

CP
+
L7045
182.20

CP
+
L7044
253.670

CP
+
93.4
L7042

CP
+
46.1
L7038

CP
+
L7006
132.8

CP
+
155.3
L7060

CP
+
L7062

CP
+
L7063
262.3

CP
+
L7080
241.1

CP
+
L7081

CP
+
L7082
217.8

CP
+
31.7

CP
+
61.8
L7090

CP
+
L7004_B
187.2

CP
+
L7004_A
224.2

CP
+
L7032

CP
+
L7031
219.9

CP
+
L7033

CP
+
MiseEnService=2003
70.61
L7048

CP
+
2003
70.20
L7049

CP2
+
L7069_7070
217.7

2
3
1
+
1M
CP
+
L7002
176.8

CP
+
L7023_B
CP
+
34.8
+
ZnO

CP2
+
L7092_7093
270.6

CP
+
L7047

+
ZnO

CP2
+
L7076_7077
235.3

CP
+
L7023_A
CP
+
L7008_A
CP
+
L7007_A
137.8
CP
+
26.9

+

330 MX
+

165 MX
+

CP
+
183.1
L7018

CP
+
L7019
251.6

+
-
U1pu
I1
tilly_L7055
+
-
U1pu
I1
+
-
U1pu
I1
duvernay_L7016
+
-
U1pu
I1
+
-
U1pu
I1
+
-
U1pu
I1
+
-
U1pu
I1
+
-
U1pu
I1
saguenay_L7026
+
-
U1pu
I1
+
-
U1pu
I1
laverendrye_L7094
1
2
2
3
1
+
1M
LF
LF
421MW
39MVAR

SM
churchill_A1aA11
?m
+
-
U1pu
I1
+

330 MX
+

165 MX
+

165 MX
+
ZnO

+

CXC61
CP
+
L7061
261.0

+

990 MX
+

165 MX
SM
lagrande4_A1aA9
?m
LF
+
-
U1pu
I1
LF

+
-
U1pu
I1
LF
lagrande3_A1aA12
lagrande3_A1aA12
SM
lagrande3_A1aA12
?m
LF
0

SM
lagrande2_A1aA16
?m
LF
+
-
U1pu
I1
+

330 MX
CP
+
73.3
L7096

LF

+
1M
2
3
1

735/230/12.5
+
-
U1pu
I1
+

2006
+

2006
2
3
1
2003
735/120/12.5

+
1M

+
96 MX @ 120 KV

LF

+
-
U1pu
I1
+
filtre CC

B2055_capac
2
3
1
+
1M
+
-
U1pu
I1
LF

1
2
2
3
1
+
1M
+
-
U1pu
I1
+
-
U1pu
I1
LF

levis_b2003
+
97600uS

CXC1_2_3_4
CP
+

44.7
CP
+

L3078_3079_3080_3071_A
139.020
+
-
U1pu
I1
riviereduloup_b472
LF

CP
+
L7095
102.0
1
2
1
2
CP
+
L1695
CP
+
L3039
1
2

2
3
1
+
LF
hartjaune
+
hartjaune

3 gr
LF

+
-
U1pu
I1
LF

arnaud_b1609
2
3
1
CP
+
L3115_L3116
70.46
LF

+
[R,L]

L3021_L3022_L3023_L3024
2
3
1
manicouagan_T1aT4
+
[R,L]

L3013_L3014
+
+
-
U1pu
I1
hauterive_b1643
2
3
1
LF
SM
manic2_A21aA28
?m
1
2

manic2_T1aT4
1
2
+
-
U1pu
I1
+
+
[R,L]

L3026
1
2
LF
1
2
1
2
CP
+
36
CP
+
L3020_L3012_L3011
LF
bersimis1_A1aA8
LF
bersimis2_A1aA5
LF
4MW
0.54MVAR

+
-
U1pu
I1
charlevoixA
+
-
U1pu
I1
charlevoixB
LF
357MW
10.5MVAR

LF
451MW
87MVAR

charlevoixB
CP
+
L3001_L3002_L3003_L3004
+
-
U1pu
I1
LF
1698MW
0

CP
+

87.6
L3010
CP
+
34.8

+
-
U1pu
I1
LF
768MW
138MVAR

jacquescartier_b317
2
3
1
+
1M
CP
+
L3100_L3101
83.9

CP
+
L3102_L3110_L3106_L3107
60

+

2006
B317_capac
CP
+
L3015
78.4

CP
+
L3005
117.4

CP
+
L3069
45.3
2
3
1
duvernay_T2T3T5
+
[R,L]

LCD11_LCD22

+

boundarycrt_b1025
LF

LF
2
3
1
+

1M
2
3
1
2
3
1
chenier_T4aT6
+
[R,L]


L3170_L3171
1
2
CP
+

107.07
L3168_L3169
CP
+

83.4
L3172_L3173
LF
LF
laforge2_A1A2
CP
+

54.9
LF
2
3
1

765/315/12.5
1
2
CP
+
45.90
L3016

+

990 MX
+

1320 MX
+

330 MX
+

330 MX
+

660 MX
CP
+
L7055

CP
+
L7056
120.6

+

330 MX
CP
+
L7057

104.3
+

165 MX
+

495 MX
1
2
outardes3_T31aT34
LF
outardes3_A1aA4
+
[R,L]
L2375


+
[R,L]
L2329


2
3
1
+
-
U1pu
I1
thetford_b2290
LF
234MW
46.5MVAR

+
B2290_capac

+
1M
+

330 MX
+

+

330 MX
LF

2
3
1
+
-
U1pu
I1
lanaudiere_b1262
+

+
1M
2
3
1
+
1M
2
3
1
+
-
U1pu
I1
LF
460MW
66MVAR

+
1M
+
1M
LF
bouchervilleslack
2
3
1
+
-
U1pu
I1
LF
943MW
420MVAR

+
1M
2
3
1
chibougamau_T2T3
+
-
U1pu
I1
LF
91MW
3MVAR

chibougamau_b1683
+
1M
CP
+
L3150
CP
+
L3151
2
3
1
abitibi_T1aT3
+
-
U1pu
I1
lebel_b528
LF
590MW
48MVAR

+
1M
LF
+
-
U1pu
I1
+
-
U1pu
I1
LF
nemiscauCLC
LF
albanelCLC
+
-
U1pu
I1
LF
chibougamauCLC
+
-
U1pu
I1
LF
chamouchouaneCLC
LF
1
2
stemarguerite3_T1T2

+
1M
2
3
1

+
1M
LF
radissonslack
-2000 MW du RNCC
1
2
1
2
LF
1
2
lagrande1_T21T27
LF

17MW
3MVAR
CP
+
L3152_L3153
+


-1/1E15/0
+

660 MX
+
[R,L]


L1498
+
[R,L]


L7088
+
[R,L]


L7089
CP
+
L7054

LF
laurentidesCLC
P=0
Q=0
Phase:14
+
-
U1pu
I1
CP
+
88.980

L7040
LF
massena_b818
+

massena_b818
1
2
+
2
3
1
+
[R,L]
L3027_L3028

LF
SM
?m
manic3_A1aA6
+
[R,L]
L3035_L3036

1
2
1
2
1
2
2
3
1
CP
+
107.7
L3031_L3032

CP
+
L3033_L3034
CP
+
2005
55
L3123
LF

manic5_b41
LF
SM
?m
outardes4_A1aA4
LF
SM
?m
manic5PA_A1aA4
LF
SM
manic5_A1aA8
?m
1
2

2005
LF
+
2
3
1

+
1M

1
2
315/13.8

LF
CP
+
2006
5.90000E+01
L3176_3177
1
2
735/13.8

1
2
735/13.8

1
2
735/13.8

CP
+
34
Mauricie sud
gentilly_b2100
nicolet_b2007
Mauricie nord
mauricie_b488
trois-rivières_b2268
2
3
1
+
1M
LF
abitibi_CS1CS2
LF
LF
SM
?m
AVR
-exst1
-pss1a
(pu)
AVR
-ieeex1
(pu)
SM
?m
SM
outardes2_A1aA3
?m
AVR
-exst1
-pss1a
(pu)
CP
+
42.58
+
-
U1pu
I1
AVR
-exst1
-pss2a
(pu)
+
-
U1pu
I1
SM
stemarguerite3_A1A2
?m
SM
eastman_A1aA3
?m
+
1m

SM
?m
abitibi_CS1CS2
LF
levis_CLC
P=0
Q=0
Phase:14
+
-
U1pu
I1
SM
?m
levis_CS1CS2
SM
?m
LF
AVR
-expci1
-pss2a
(pu)
expci1 partiel
AVR
-expci1
-pss2a
(pu)
expci1 partiel
SM
brisay_A1A2
?m
SM
laforge2_A1A2
?m
SM
laforge1_A11aA16
?m
AVR
-expci1
-pss2a
(pu)
expci1 partiel
Réglage Planificateur
SM
lagrande1_A1aA12
?m
SM
?m
AVR
-exst1
-ieeevc (s.o.)
-pss4b
(pu)
out
in
Vct
AVR
-exst1
-ieeevc (s.o.)
-pss4b
(pu)
out
in
Vct
+
-
U1pu
I1
+
-
U1pu
I1
+
-
U1pu
I1
2
3
1
+
1M
+
[R,L]
L3162_L3163

+
[R,L]

L7079
+
[R,L]

L7020
+
L3166_L3167


+
[R,L]

L3104
+


+
L3029_L3030


+
[R,L]

L3009
+
[R,L]

L2385_A
+
L7010


LF
2162MW
0

+

SM
toulnustouc_A1A2
?m
+
-
U1pu
I1
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
Tw=0.03s au lieu de 0.08s
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
Réglage Planificateur
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
AVR
-exst1
-pss1a
(pu)
+

SM
?m
AVR
-expci1
-pss1a
(pu)
expci1 partiel
Planificateur
+

660 MX
+

330 MX
AVR
-exst1
-pss4b
(pu)
KG=0
AVR
-exst1
-pss4b
(pu)
Load-Flow
OFF
I/O FILES
Start EMTP
Simulation
Options
Simulation web
Show Load-Flow
AVR
-exst1
-pss4b
(pu)
ks=1
AVR
-exst1
-pss4b
(pu)
KG=1
+

1M
1
2
V
I
V
I
albanel_CLC
V
I
chibougamauCLC
V
I
chamouchouane_CLC
V
I
laurentidesCLC
V
I
levis_CLC
V
I
laverendrye_CLC
+
3600Ohm

L1
View Steady-State
+

165 MX
+
1M
PI
+
L7046


PI
+
L7036


PI
+
L7009


2
3
1
+
1M
+
-
U1pu
I1
LF

CP
+
L7014
51.90

+
1M
+

165 MX
2
3
1

+
1M
2
3
1
+
1M
AVR
-exst1
-pss4b
(pu)
+
345.7 MX @ 315 KV. Fusible externe

XC4_boucherville
740.09/_6.4
grandbrule_b770
751.51/_26.2
saguenay_b718
759.06/_36.0
chibougamau_b783
752.38/_41.1
arnaud_b709
759.34/_30.0
chamouchouane_b731
753.88/_9.0
appalaches_b790
754.73/_34.4
abitibi_b713
752.87/_20.7
laverendrye_b714
748.11/_49.6
montagnais_b710
749.84/_3.7
descantons_b755
748.57/_1.0
monteregie_b784
738.42/_57.9
churchill_b760
763.82/_60.1
742.28/_1.9
carignan_b730
arnaud_b309
750.03/_34.2
manicouagan_b705
hauterive_b643
748.86/_6.0
nicolet_b707
751.38/_-0.8
chateauguay_b719
322.03/_79.2
767.32/_58.5
lemoyne_b723
768.86/_63.5
tilly_b724
radisson_b1020
radisson_b320
755.52/_60.3
lagrande2_b749
radisson_b720
micoua_b306
toulnustouc_b476
748.42/_37.7
micoua_b706
a
a
b
b
c
c
c
b
a
a
b
c
305.45/_-1.8
mauricie_b488
758.77/_45.7
nemiscau_b780
760.56/_46.3
albanel_b782
733.88/_0.3
duvernay_b702
739.58/_1.4
chenier_b715
746.90/_-0.7
hertel_b708
748.78/_14.7
jacquescartier_b717
326.63/_86.5
310.02/_5.0
jacquescartier_b317
314.24/_8.7
laurentides_b304
manicouagan_b305
317.28/_33.0
bersimis1_b433
315.42/_33.7
bersimis2_b434
749.82/_14.5
laurentides_b704
752.80/_13.5
levis_b703
boucherville_b701
742.00/_-0.0

1100 lines


296 3
-
ph transformers


532 loads


7 SVC


32 Synchronous
Condenser


99 SM

Groupe


Technologie

EMTP model of Gasp
ésie

system:

Integration of wind generation

6

RIVIÈRE-DU-LOUP
315/230/120 kV
36 MVAR
TO 735 kV
SYSTEM
LÉVIS
735/315 kV
KAMOURASKA
315 kV
GOÉMON
230/161/69 kV
Mont-Louis
GE 100.5 MW
Viger
REpower 25 MW
TO NEW-BRUNSWICK
RIMOUSKI 230/69 kV
RIMOUSKI 315/230 kV
MICMAC
230/161 kV
CASCAPÉDIA
230/69 kV
MATAPÉDIA
315/230 kV
Gros Morne
GE 211.5 MW
Carleton
GE 109.5 MW
Vent du Kempt
Enercon100 MW
St-Damase
Enercon 24 MW
Le Plateau
Enercon 161 MW
Temiscouata
Enercon 25 MW
DC
TO NEW-BRUNSWICK
New Richmond
Enercon 66 MW
St-Ulric/St-Léandre
GE127.5 MW
Lac Alf red
REpower 325 MW
Nordais-1
Neg Micon 43 MW
Mont Copper
Vestas 54 MW
Montagne-Sèche
GE 58.5 MW
Anse-à-Valleau
GE 100.5 MW
Baie-des-Sables
GE109.5 MW
Mont Miller
Vestas 54 MW
Nordais-2
Neg Micon 57 MW
DC
LESBOULES
230/120 kV
230 kV
315 kV
315 kV
230 kV
230 kV
230 kV
161 kV
161 kV
230 kV
230 kV
315 kV
315 kV
Three-Winding Transf ormer
Riv ière-Sainte-Anne
Capacitiv e Div ider
AC Filters
AC Filters
Two-Winding Transf ormer
DC
Sy nchronous Condenser
HVDC Interconnection
Zigzag Grounding Transf ormer
Collector Sy stem For WPP
Load
315 kV Lines
230 kV Lines
120 kV Lines
161 kV Lines
69 kV Lines
34,5 kV Lines
25 kV or less Lines
+
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
+
+
+
+
+
+
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
+
LF
+
+
CP
+
CP2
CP
+
CP
+
CP
+
CP2
CP2
CP2
CP2
+
+
+
CP
+
+
+
CP2
CP2
CP2
CP
+
CP
+
DF
REpower
Enerc on
+
Wi nd
Ves tas
V 80
Opti s l i p
LVRT
VRCC
AG04
DF
GE
DF
GE
DF
GE
+
Wi nd
Ves tas
V 80
Opti s l i p
LVRT
VRCC
AG04
+
CP
+
CP
+
+
CP
+
CP
+
CP2
CP
+
CP2
+
+
+
+
CP
+
CP
+
CP
+
CP2
CP
+
CP
+
CP
+
CP
+
CP2
CP
+
CP
+
CP
+
CP
+
CP
+
+
CP
+
CP
+
+
CP
+
+
CP
+
CP
+
LF
+
NEG
MICON
750 k W
MAS à
cage
d'écur euil
N1
43MW
NM750/48
+
NEG
MICON
750 k W
MAS à
cage
d'écur euil
N2
57MW
NM750/48
CP
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CP
+
+
+
+
+
CP2
CP2
CP2
CP2
+
+
+
+
+
DF
REpower
Enerc on
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
LF
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
EXP
+
+
Enerc on
EXP
CP
+
LF
LF
DF
GE
+
+
DF
GE
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
CP2
1
2
1
2
2
3
1
2
3
1
2
3
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
3
1
2
3
1
2
3
1
2
3
1
1
2
1
2
1
2
2
3
1
1
2
1
2
1
2
1
2
1
2
1
2
2
3
1
2
3
1
2
3
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
3
1
2
3
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
3
1
2
3
1
2
3
1
2
3
1
1
2
2
3
1
2
3
1
EXP
+
+
+
+
+
CP2
CP2
CP
+
+
1
2
2
3
1
LF
LF
LF
Enerc on
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
1
2
1
2
LF
CP
+
EXP
2
3
1
ZnO
KAMOURASKA
2
3
1
CP2
2
3
1
CP2
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
CP
+
Enerc on
CP
+
2
3
1
+
+
+
+
+
+
EXP
CP2
EXP
1
2
EXP
CP
+
CP
+
CP
+
CP
+
CP
+
LF
CP
+
DF
GE
LF
+
DF
GE
+
LF
EXP
1
2
1
2
+
SC
1
2
CP
+
1
2
EXP
CP
+
CP
+
CP
+
EXP
EXP
EXP
EXP
1
2
1
2
1
2
1
2
EXP
1
2
1
2
EXP
EXP
1
2
1
2
CP
+
+
+
+
CP
+
SC
+
+
+
+
+
+
+
+
+
+
CP
+
2
3
1
2
3
1
1
2
SC
+
+
LF
+
+
+
+
+
+
+
+
+
+
+
Groupe


Technologie

Hydro
-
Québec

>
Pioneered important research and development
works on advanced simulation methods for large
scale and complex power systems

>
Advanced real
-
time simulation methods

>
Advance off
-
line simulation methods

>
Sophisticated utilization of simulation tools for
transmission and distribution network studies

>
Integration of wind generation: 4 GW by 2015


Based on detailed studies of electromagnetic and
electromechanical transients

>
At Hydro
-
Québec (
TransÉnergie
) the frequency
range of simulation models has been constantly
increasing with increasing computer speed,
improved models and numerical performance.

7

Groupe


Technologie

Real
-
Time simulator

>
Capability to solve power systems quickly enough
to
produce
outputs synchronized with the real
-
time clock


A second of simulation = 1 second of clock time when testing equipment

>
A real
-
time simulator can be connected directly to power system
control and protection equipment to test the equipment under
realistic conditions


For detecting abnormal operating conditions that cannot be found through
numerical models


For super
-
fast contingency analysis

>
Hydro
-
Québec develops HYPERSIM: a real
-
time simulator


Develop, improve and assess new protection and control
concepts


Optimize the operation and the maintenance power systems


Decrease the time required to commission protection relays and
control systems (FACTS, HVDC, SVC, etc..)


Reproduce
events
that occurred in the power system by using the
actual protection and control
systems

8

Groupe


Technologie

EMTP
-
RV

>
Simulation and analysis of electromagnetic transients

>
General purpose circuit analysis tool: wideband, from
steady
-
state to time
-
domain

>
Detailed
simulation and analysis of large scale electrical
systems

>
Network analysis: network separation, power quality,
geomagnetic storm, interaction between compensation
and control components, wind generation

>
Synchronous machines: SSR, auto
-
excitation, control

>
Multiterminal

HVDC
systems, Power electronics

>
Series compensation: MOV energy absorption, short
-
circuit conditions, network interaction

>
Transmission line systems: insulation coordination,
switching, design, wideband line and cable models

>
Switchgear: TRV, shunt compensation, current chopping,
delayed
-
current zero conditions

>
Protection: power oscillations, saturation
problems

>
Detailed transient stability analysis: more and
more

>
Off
-
line tool:
May save millions in design and operation!




9

Groupe


Technologie

Simulation and Analysis

>
The basis of all problems!

>
Modern power grids require advanced study
and analysis methods


for power system design


operation


post
-
mortem analysis

>
Numerical models and solution methods now
play a dominant role and contribute to all
research and development levels.

>
The needs for grid simulations increase
significantly faster than the capability of
researchers to deliver models and faster
simulations methods.

10

Groupe


Technologie

Simulation and Analysis

>
Simulation and modeling are essential for the evolution
and operation of modern power systems

>
Can we build an electronic copy of the operated
system?

>
Can we merge real
-
time and off
-
line simulation tools?

>
Can we replicate analog simulator style with numerical
simulators?

>
What is the highest computational speed?

>
How far: wideband and size

>
Can we unify simulation environments to work with
unique data sets and various analysis methods?

>
Can we create portable models and data?

>
Use Concurrent and multi
-
domain simulation methods

11

Groupe


Technologie

New trends: Cloud computing

>
Applications for power systems


Generation scheduling, unit commitment


Complex optimization problems


Load
-
flow


Probabilistic methods


Transient stability and electromagnetic transients


Acceleration of simulations


Sensitivity analysis


Contingency analysis

>
Dispatching of computing jobs into a resource pool

>
Simulation services with centralized and shared data

>
Increased utilization of available computing services

>
Higher automation levels


Reduced human intervention


Private cloud systems


Public cloud systems


Community cloud: organizations working together

12

Groupe


Technologie

New Trends: Parallel computing

>
Availability of increasing calculation capabilities
through multicore computers

>
Power system simulations involve the solution of linear
sparse systems

>
Traditional methods are generally sequential and
use
only one CPU

>
The matrices are very sparse, moderate size, coupled
and unsymmetrical

>
For Load flow and steady
-
state studies the matrices are
coupled but the solution is performed once

>
For time domain it is possible to use the natural delay of
the lines to decouple the system. Not always feasible!

>
It is essential to explore new ways to increase the
speed of
calculations while
maintaining
accuracy

>
Hydro
-
Québec with
Ecole

Polytechnique of Montreal and
RTE (France) are collaborating in an important research
project to
increase the speed of calculations
using
the
possibilities offered by new
technologies

13

Groupe


Technologie

New Trends: Collaborative computing,
Co
-
simulation

>
Parallel computing can be done in a
collaborative approach

>
Several simulation tools addressing different
aspects, telecom, control, electromechanical
and electromagnetic transients, collaborate
together to simulate the same power system

>
Collaborative software environment can be
implemented through a co
-
simulation channel
in an indirect
interaction (FMI)

>
Use Federated simulation systems run
-
time
infrastructure (RTI) to support
interoperability (HLA)

>
Scalable performance via parallel and
distributed simulation techniques

14

Groupe


Technologie

Application: Large
-
scale Case

diverse simulators (EMTP, Simulink)

PI
+
PI3
PI
+
PI7
PI
+
PI32
PI
+
PI34
PI
+
PI33
PI
+
PI31
PI
+
PI26
PI
+
PI25
PI
+
PI21
PI
+
PI24
1
2
YgYg_np3
?
20/500
PI
+
PI29
PI
+
PI28
PI
+
PI20
PI
+
PI6
PI
+
PI9
PI
+
PI10
PI
+
PI14
PI
+
PI15
1
2
YgYg_np5
?
500/500
1
2
YgYg_np10
?
500/500
1
2
YgYg_np4
?
20/500
LF
500MW
184MVAR
Load2
PI
+
PI11
PI
+
PI12
PI
+
PI18
PI
+
PI17
PI
+
PI19
PI
+
PI22
LF
320MW
153MVAR
Load6
LF
628MW
103MVAR
Load9
LF
224MW
47.2MVAR
Load13
LF
139MW
17MVAR
Load14
LF
206MW
27.6MVAR
Load16
1
2
YgYg_np9
?
20/500
1
2
YgYg_np11
?
20/500
1
2
YgYg_np8
?
20/500
PI
+
PI23
LF
LF9
P=830MW
V=20.8kVRMSLL
SM:G9
LF
LF7
P=560MW
V=20.2kVRMSLL
SM:G7
+
SW1
?vi
1E15|1E15|0
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
Network frequency
or rotor speed (pu)
out
in
avr_sexs_ieeest_govG3_pu
AVR_Gov_9
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
Network frequency
or rotor speed (pu)
out
in
avr_sexs_ieeest_govG3_pu
AVR_Gov_5
SM
20kV
1000MVA
PVbus:LF5
?m
G5
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
Network frequency
or rotor speed (pu)
out
in
avr_sexs_ieeest_govG3_pu
AVR_Gov_7
SM
20kV
1000MVA
PVbus:LF7
?m
G7
LF
LF6
P=650MW
V=20.1kVRMSLL
SM:G6
LF
247.5MW
84.6MVAR
Load11
SM
?m
G9
PQ
DEV2
PI
+
PI5
+
SW8
?vi
1E15|1E15|0
+
SW14
?vi
-1|1E15|0
+
SW16
?vi
-1|1E15|0
+
SW20
?vi
-1|1E15|0
+
SW25
?vi
-1|1E15|0
+
SW26
?vi
-1|1E15|0
PI
+
PI1
Omega_1
Omega_1
Omega_1
PQ
DEV1
LF
LF5
P=508MW
V=20.2kVRMSLL
SM:G5
LF
158MW
30MVAR
Load8
LF
Load19
1104MW
250MVAR
LF
LF1
Slack: 502.4kVRMSLL/_0
SM:G1
Phase:0
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
Network frequency
or rotor speed (pu)
out
in
avr_sexs_ieeest_govG3_pu
AVR_Gov_1
SM
500kV
1000MVA
Slack:LF1
?m
G1
Omega_1
PI
+
PI2
LF
522MW
176MVAR
Load4
PI
+
PI13
LF
233.8MW
84MVAR
Load3
LF
LF2
P=527MW
V=20.9kVRMSLL
SM:G2
Phase:0
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
Network frequency
or rotor speed (pu)
out
in
avr_sexs_ieeest_govG3_pu
AVR_Gov_2
SM
20kV
1000MVA
PVbus:LF2
?m
G2
LF
322MW
2.4MVAR
LF
Load18
9.2MW
4.6MVAR
+
SW3
?vi
1E15|1E15|0
+
SW6
?vi
1E15|1E15|0
LF
7.5MW
88MVAR
Load5
1
2
YgYg_np6
?
500/500
+
SW7
?vi
-1|1E15|0
+
SW9
?vi
-1|1E15|0
LF
329MW
32.3MVAR
Load7
LF
281MW
75.5MVAR
Load15
+
SW18
?vi
-1|1E15|0
LF
283.5MW
26.9MVAR
?i?p
Load17
SM
20kV
1000MVA
PVbus:LF6
?m
G6
AVR+Gov
(pu)
f(pu)
out
in
AVR_Gov_6
avr_sexs_ieeest_govG3_pu
Omega_1
PI
+
PI30
PI
+
PI4
PI
+
PI16
LF
308.6MW
-92MVAR
Load12
+
SW10
?vi
-1|1E15|0
+
SW27
?vi
-1|1E15|0
PI
+
PI8
+
SW4
?vi
-1|1E15|0
+
SW2
?vi
-1|1E15|0
LF
274MW
115MVAR
Load10
PI
+
PI27
Omega_1
+
SW5
?vi
-1|1E15|0
+
SW11
?vi
10|10.1|0
DFIG
Qref
GE_DFIG_mean_b19
c
-1.8e-1
Qrefb19
1
2
DYg_2
500/0.575
p
b19vRMS
PQ
PQb19
+
A
?i
Ieolb19
1
2
DYg_4
500/0.575
p
b25vRMS
PQ
PQb25
+
A
?i
Ieolb25
1
2
DYg_5
500/0.575
p
b2vRMS
PQ
PQb2
1
2
DYg_3
500/0.575
p
b10vRMS
PQ
PQb10
vab2
vbb2
vcb2
ibb2
iab2
va
vc
ia
ib
vb
interface_b2
+
A
?i
Ieolb2
vab19
vbb19
vcb19
ibb19
iab19
va
vc
ia
ib
vb
Interface_b19
vab25
vbb25
vcb25
ibb25
iab25
va
vc
ia
ib
vb
Interface_b25
+
A
?i
Ieolb10
vab10
vbb10
vcb10
ibb10
iab10
va
vc
ia
ib
vb
interface_b10
PQ
PQb10_2
+
A
?i
Ieolb10_2
vab10_2
vbb10_2
vcb10_2
ibb10_2
iab10_2
va
vc
ia
ib
vb
interface_b10_2
PQ
PQb25_2
+
A
?i
Ieolb25_2
vab25_2
vbb25_2
vcb25_2
ibb25_2
iab25_2
va
vc
ia
ib
vb
Interface_b25_2
BUS1
BUS2
BUS22
BUS9
BUS13
BUS10
BUS7
BUS8
BUS6
BUS20
BUS5
BUS17
BUS38
BUS39
BUS34
BUS18
BUS3
BUS14
BUS12
BUS29
BUS28
BUS16
BUS27
BUS24
BUS35
BUS26
BUS11
BUS15
BUS4
BUS21
BUS31
BUS23
BUS36
BUS19
BUS25
Groupe


Technologie

Challenges

>
Decoupling : Where & How ???


Delays (measurement/controlled source)


Transfer of slowly changing states: need for
filters!


Automation of decoupling!

>
Diverse solution methods:


Synchronization issues (e.g. Check for
instantaneous power injected by WTG !)

>

Global solution for all variables (not
only interface) & impact on validity
for all types of studies

Groupe


Technologie

Conclusions

>
Research on power system simulation and
analysis tools is now facing new and major
challenges:


Simulation of extremely large networks


Very complex networks, penetration of renewables
energy


Smart Grids

>
New trends and means for solving increasingly
complex problems


Parallel computations


Cloud computing


Collaborative computing


Advanced visualization methods


Data portability with CIM

>
Major research and revisions are needed in
existing simulation tools


17