Backpropagationx - kondor.etf.rs

guineanhillΤεχνίτη Νοημοσύνη και Ρομποτική

20 Οκτ 2013 (πριν από 3 χρόνια και 9 μήνες)

84 εμφανίσεις

Neural Networks:

Backpropagation

algorithm

Data Mining and Semantic Web

University

of Belgrade

School

of Electrical Engineering

Chair of Computer Engineering and

Information Theory

Miroslav

Ti
šma

tisma.etf
@gmail.com

You see this:

But the camera sees this:

What is this?

23.12.2011.




Miroslav Tišma





2/21

Computer Vision: Car detection

Testing
:



What is this?

Not a car

Cars

23.12.2011.




Miroslav Tišma





3/21

pixel 1

pixel 2

Raw image

Cars

“Non”
-
Cars

50 x 50 pixel images
→ 2500 pixels


(7500 if RGB)

pixel 1 intensity

pixel 2 intensity

pixel 2500 intensity

Quadratic features ( ): ≈3 million



features

Learning
Algorithm

pixel 1

pixel 2

23.12.2011.




Miroslav Tišma





4/21

Neural Networks


Origins: Algorithms that try to mimic the brain



Was very widely used in 80s and early 90s;
popularity diminished in late 90s.



Recent resurgence: State
-
of
-
the
-
art technique



for many applications

23.12.2011.




Miroslav Tišma





5/21

Neurons in the brain

Dendr
(I)
tes

Ax
(O)
n

23.12.2011.




Miroslav Tišma





6/21

Neuron model: Logistic unit

Sigmoid (logistic) activation function.


Θ
𝑥
=

1
1
+
𝑒

Θ
𝑇
𝑥

𝑔
𝑧
=

1
1
+
𝑒

𝑧

𝑥
0
=
1

“bias unit”

“output”

“input wires”

“weights”
-

parameters

23.12.2011.




Miroslav Tišma





7/21

Neural Network

Layer 3

Layer 1

Layer 2

“bias unit”

“output layer”

“hidden layer”

“input layer”

23.12.2011.




Miroslav Tišma





8/21

Neural Network

“activation” of unit in layer

m
atrix of weights controlling
function mapping from layer to
layer

If network has units in layer , units in layer , then


will be of dimension .

23.12.2011.




Miroslav Tišma





9/21

Simple example: AND

0

0

0

1

1

0

1

1

-
30

+20

+20


Θ
𝑥
=
𝑔
(

30
+
20
𝑥
1
+
20
𝑥
2
)

𝑔
(

30
)

0

𝑔
(

10
)

0

𝑔
(

10
)

0

𝑔
(
10
)

1



Θ
𝑥

𝑥
1

𝐴 𝐷

𝑥
2

23.12.2011.




Miroslav Tišma





10/21

Example: OR function

0

0

0

1

1

0

1

1

-
10

+20

+20


Θ
𝑥
=
𝑔
(

10
+
20
𝑥
1
+
20
𝑥
2
)

𝑔
(

10
)

0

𝑔
(
10
)

1

𝑔
(
10
)

1

𝑔
(
30
)

1



Θ
𝑥

𝑥
1

𝑅

𝑥
2

23.12.2011.




Miroslav Tišma





11/21

Multiple output units: One
-
vs
-
all.

Pedestrian

Car

Motorcycle

Truck

Want ,

w
hen pedestrian


23.12.2011.




Miroslav Tišma





12/21

when car

when motorcycle

, etc.

,

Neural Network (Classification)

Binary classification






1 output unit


Layer 1

Layer 2

Layer 3

Layer 4

Multi
-
class classification
(K classes)




K output units


t
otal no. of layers in network

no. of units (not counting bias unit) in
layer

pedestrian car motorcycle truck

E.g. , , ,

23.12.2011.




Miroslav Tišma





13/21

Cost function

Logistic regression:




23.12.2011.




Miroslav Tišma





14/21

Neural network:

Gradient computation

Need code to compute:

-


-


23.12.2011.




Miroslav Tišma





15/21

Our goal is to minimize
the
cost function

Given one training example ( , ):

Forward propagation:

Layer 1

Layer 2

Layer 3

Layer 4

𝑎
1

𝑎
2

𝑎
3

𝑎
4

23.12.2011.




Miroslav Tišma





16/21

Backpropagation

algorithm

Backpropagation

algorithm

Intuition: “error” of node in layer .

Layer 1

Layer 2

Layer 3

Layer 4

For each output unit (layer L = 4)

𝛿
4

𝛿
3

𝛿
2


𝜃
𝑥


the derivate of activation function

can be written as

𝑎
(
𝑙
)
.

(
1

𝑎
𝑙
)

𝜕
𝜕
Θ

𝐽
𝜃
=
𝑎
(
𝑙
)
𝛿
(
𝑙
+
1
)

element
-
wise multiplication operator

23.12.2011.




Miroslav Tišma





17/21

Backpropagation algorithm

Training set

Set (for all ).

For

Set

Perform forward propagation to compute for

Using , compute

Compute

u
sed to compute
𝜕
𝜕
Θ

𝐽
𝜃


23.12.2011.




Miroslav Tišma





18/21

Advantages
:

-
Relatively simple implementation

-
Standard method and generally wokrs well

-
Many practical applications:


* handwriting recognition, autonomous driving car


Disadvantages
:

-
Slow and inefficient

-
Can get stuck in local minima resulting in sub
-
optimal solutions


23.12.2011.




Miroslav Tišma





19/21

Literature
:

-
http://
en.wikipedia.org/wiki/Backpropagation

-
http://
www.ml
-
class.org

-
http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html


23.12.2011.




Miroslav Tišma





20/21

23.12.2011.




Miroslav Tišma





21/21

Thank you for your attention!