Hello delegates! Our names are Tristan Saggese and Jaclyn ...

guiltlesscyanΒιοτεχνολογία

3 Δεκ 2012 (πριν από 4 χρόνια και 7 μήνες)

204 εμφανίσεις


NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


Hello delegates! Our names are Tristan Saggese and Jaclyn Hirbawi, and we are the
World Health Organization chairs for the 2012 NCRC MUN conference. We’re

glad that
you have decided to participate in this year’s event and especially happy that on
December 8th you will be a part of World Health Organization (WHO).


We, the chairs, expect that each delegate produce two thoroughly researched, polished
position

papers and submit them to us through email. The information in this background
guide, pertaining to this year’s two WHO topics, should serve as a guide for your position
papers but should not replace your own research. In fact, we’d rather that you not ev
en
mention the research presented in this background guide in your position papers; we hope
that your papers revolve around your
own

work.


Things to keep in mind concerning position papers: The due date is [due date]. Delegates
who fail to email us their
positions papers by the specified due date will not be eligible
for an award, regardless of their performances at the conference. We will be handing out
some research awards for delegates with quality position papers, so make sure that yours
are top notch!

Please make sure to cite your sources and turn in your own work, because
if upon reading your papers we find any plagiarism at all, your teachers will be informed
and you will be disqualified from receiving any awards.


Stay focused delegates! If you writ
e a great position paper, you are sure to be rewarded!
And remember, writing position papers can be hard, but it can also be fun and interesting.
If you have any questions concerning position paper writing feel free to email one of us.
We promise that you
will all enjoy yourself at our conference!


Sincerely,


Tristan Saggese (
tsaggese@pacificridge.org
)

Jaclyn Hirbawi (
jhirbawi@pacificridge.org
)
















NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms






Topic A: Antibiotic
-
Resistant Bacteria:


Antibiotics play a fundamental role in preventing and curing illness and disease created
by bacteria and bacteria
-
related organisms. Typically, when a human or animal develops
a disease, one method of treatment is an antibacterial, or antibiotic, which eff
ectively kills
or hinders the growth of a given bacteria. Increased use or misuse of certain antibiotics,
however, has resulted in bacteria resistant to antimicrobial drugs. Classified as antibiotic
-
resistant bacteria, these organisms can survive and even
thrive on the very introduction of
antibiotics targeting them. Previously curable illnesses like
gonorrhea, tuberculosis, and
pneumonia have become difficult to treat with common drugs. In fact, some bacteria
known as multi
-
resistant organisms (MROs) are i
nvulnerable to many or all of the drugs
used to cure such diseases. As a result, doctors are left with no other viable option but to
use experimental drugs that are yet to be proven effective or

safe. Today, “approximately
seventy percent of infection
-
caus
ing bacteria are resistant to one or more commonly used
drugs” (Todar 1). By nature, as the number of antibiotic resistant bacteria increases, our
antibiotic pool decreases. Consequently, if preventative measures are not taken, antibiotic
resistant bacteri
a could bring “the end of modern medicine as we know it” (Moisse 1).


Signs of Antibiotic Resistance:


The first antibiotic, Penicillin, which treats Tuberculosis, was discovered by Alexander
Fleming

in 1928. This discovery led to an age in which antibiotics ruled. Soon after its
discovery, Penicillin and other antibiotics became a standard remedy for previously
incurable bacteria
-
engendered illnesses and infections. Initially, drugs like Penicillin,
Streptomycin, Chloramphenicol and Tetracycline were almost totally effective. In 1946,
however, some resistance to Penicillin, in strains of Staphylococci, was discovered.
Today, it’s assumed that almost “every known bacterial pathogen has developed
resist
ance to one or more antibiotics in clinical use” (Todar 2).


Antibacterial resistance develops in a variety of ways. It is important to keep in mind that
evolutionarily it is only natural that some bacteria develop resilience to antibiotics.
Nevertheless,

human misconduct and misuse of antibiotics has catalyzed the growth of
drug resistant bacteria. In the United States, for example, farmers often treat their
animals’ food with antibiotics to ensure that they are immune from microbes
--
because of
these farm
ers’ actions, antibiotics are often present in beef, cattle, pigs, and poultry.
These antibiotics eventually runoff from animals’ housing facilities and feeding lots,
tainting groundwater and streams, stimulating the growth of drug resistant bacteria, and
finding their way into public water system. Moreover, careless use of antibiotics in farm
animals causes antibiotic
-
resistant bacteria to grow in livestock and people who consume

NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


them. Typically, farmers place Antibiotic additives in their animals’ food to

prevent (but
not cure) the animals from acquiring bacteria
-
related illness. The frequent, improper use
of antibiotics for preventative measures increases the likelihood of the rise of drug
resistant pathogens. These new microbes replace once
-
curable bacte
ria and make diseases
resistant to antibiotics in infected animals and humans.


Often times, bacteria resistant genes are used to mark specific “genes of interest” in
GMO’s (Todar 4); the improper removal of these genes promotes their spread and growth
in
to other microbes in the environment, further spreading drug
-
resistant bacteria. The
indiscriminate use of antibiotics in medical situations in which these drugs are of little or
no need increases their circulation, increasing drug resistant bacterial grow
th further
still.

Irresponsible prescriptions of drugs by doctors and health officials has been a major
contributor to the rise of bacteria with resistance to certain antibiotics.


To cope with antibiotic resistant bacteria, new antibiotics are constantl
y being developed
and implemented; the problem continues to escalate in that already antibiotic resistant
bacteria have begun also to develop resistance to these cures to disease. For example, in
1959, after Staphylococci was discovered, scientists develop
ed Methicillin to replace the
now ineffective penicillin. Only two years after the drug was tested, Methicillin
-
resistant
bacteria were discovered. Despite these efforts, the crisis of drug resistance continues to
worsen as more bacteria become immune to o
ur antibiotics.

Past UN Action


The international problem of antibiotic
-
resistant bacteria has only recently begun to be
addressed with the urgency and care that it rightfully demands. In 2001, WHO released
the “the WHO Global Strategy for Containment of
Antimicrobial Resistance” whose
goals were the following: “reducing the disease burden and the spread of infection;
improving access to appropriate antimicrobials; improving use of antimicrobials;
strengthening health systems and their surveillance capabil
ities; enforcing regulations and
legislation; encouraging the development of appropriate new drugs and vaccines” (World
Health Org. 2). The good intentions enunciated in the plan, however, are yet to be
completely fulfilled. More recently, in 2011 on April

11, the World Health Organization
announced “Antimicrobial Resistance”

as the topic for 2011’s World Health Day. On
this special day, WHO issued “
an international call for concerted action to halt the spread
of antimicrobial resistance” and recommended “
a six
-
point policy package for
governments” (www.WHO.int).
The World Health organization’s most recent actions
reiterated the importance of the growing issue of drug resistant bacteria and, once again,
brought the issue to the public’s eye. Now WHO is focu
sing its efforts on
policy
guidance, support for surveillance, technical assistance, knowledge generation and
partnerships, including thorough disease prevention and control programmes; essential
medicines quality, supply and rational use; infection preven
tion and control; patient
safety; laboratory quality assurance (www.WHO.itr). Despite the mentioned UN activity,

NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


the issue of antibiotic
-
resistant bacteria still looms and needs to be addressed with more
specific goals and aggressive implementation efforts
.


Possible Solutions


When brainstorming solutions, it is necessary that delegates keep in mind the ways in
which antibiotic
-
resistant bacteria originate. The “Signs of Antibiotic Resistance” section
of this guide briefly details several, but not all, of these reasons. It is su
ggested that
delegates research further the causes of drug
-
resistant bacteria to better prepare
themselves to write a position paper on the topic.


Possible solutions to keep in mind are searching for new antibiotics
--
including methods
to replace old, ine
ffective treatments/cures and replenish the deteriorating pool of useful
drugs on the market; stopping the use (and growth) of antibiotics for preventative
measures on farms; and stopping unnecessary prescriptions and distribution/circulation of
antibiotic
s.


Questions to consider:


1.

What viable alternatives to antibiotics might this committee consider in its
endeavor to solve the problem of drug resistant bacteria?

2.

What immediate
and

long term precautions should be taken to slow the growth of
antibiotic r
esistant bacteria?






















NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


Works Cited

"Antibiotic Resistant Bacteria."
Home
. 2012 State Government of Victoria, n.d. Web. 12
Sept.
2012.<
http://www.betterhealth.vic.gov.au/bhcv2/bhcarticles.nsf/pages/Antibiotic_resistan
t_bacteria>.


Todar, Kennath. "Bacterial Resistance to Antibiotics."
Bacterial Resistance to
Antibiotics
. N.p., n.d. Web. 12 Sept. 2012.
<
http://textbookofbacteriology.net/resantimicrobial_3.html>.


Moisse, Katie. "Antibiotic Resistance Could Bring ‘End of Modern Medicine’."
ABC
News
. ABC News Network, 16 Mar. 2011. Web. 12 Sept. 2012.
<
http://abcnews.go.com/blogs
/health/2012/03/16/antibiotic
-
resistance
-
could
-
bring
-
end
-
of
-
modern
-
medicine/>.


"World Health Day: April 7, 2011."
WHO
. N.p., n.d. Web. 12 Sept. 2012.
<
http://www.who.int/world
-
health
-
day/2011/en/index.html>.


Stamm, Professor W
., Professor ML Grayson, Professor L. Nicolle, and Dr. M. Powell.
"WHO Global Strategy for Containment of Antimicrobial Resistance." (2001): 1
-
99.
2001. Web. 12 Sept. 2012.
<
http://www.who.int/drugresistance/WHO_Global_Strategy_
English.pdf>.


"Antimicrobial Resistance."
WHO
. © WHO 2012, n.d. Web. 12 Sept. 2012.
<http://www.who.int/mediacentre/factsheets/fs194/en/>.




















NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


Topic B: Genetically Modified Organisms


Genetically modified organisms (GMOs) are organisms whose genetic material (DNA)
has been altered in a way that does not occur naturally. Scientists can use biotechnology
to alter the genetic makeup of organisms such as animals, plants, and bacteria. The
p
urpose of Genetically Modified Organisms is simply to improve the lives of humans,
specifically farmers and everyday consumers. For example, ordinary crops are genetically
modified to increase yields, protect crops from insects and disease, and increase cr
ops’
tolerance to heat, drought, and other environmental stress. In addition, crops are
frequently genetically modified to optimize their benefits to consumers by increasing the
amount of protein and healthy oils they provide. Moreover, the use of genetica
lly
modified seeds can have environmental benefits that help reduce agriculture’s impact on
the land, including soil and energy conservation and minimizing the use of herbicides.


Common genetically modified crops currently cultivated include soybeans, co
rn (maize),
rice, cotton, papaya, tomatoes, canola, potatoes, and sugar cane. As of late, scientists are
conducting tests and comprehensive research to assess the safety of Genetically Modified
animals; thus far, however, no GM animals have been approved f
or human
consumption.

Many of the crops presently being cultivated are used extensively in the
production of processed foods (for example, corn, soybean and rapeseed oils) or are
staples in the diets of people around the world (for example, rice and potat
oes). Since
labeling and transparency standards for GMOs differ among nations, the usage of GMOs
is unregulated. Many opponents of GMOs, especially in European countries and North
America, have raised suspicions regarding their safety and implementation. M
ost of
GMOs challengers’ concerns relate to allergenicity, gene transfer inside the human body,
and outcrossing of GM genes into wild species, all of which are said to be potential
results of GMOs. The World Health Organization recently declared that no al
lergenic
repercussions have resulted from GM foods currently on the market. Furthermore, the
WHO deemed the possibility of gene transfer into the human body as a result of GMO
consumption relatively low.

Issues concerning outcrossing, the practice of usin
g
unrelated genetic material into a breeding line, remains hotly contested, and most
concerns relate to “the capability of the GMO to escape and potentially introduce the
engineered genes into wild populations; the persistence of the gene after the GMO has

been harvested; the susceptibility of non
-
target organisms (e.g. insects which are not
pests) to the gene product; the stability of the gene; the reduction in the spectrum of other
plants including loss of biodiversity; and increased use of chemicals in a
griculture”
(WHO).

However, the WHO surmises that the probability of horizontal outcrossing is
relatively low as well.


However, all GM crops, as well as GM foods produced by these crops, must undergo

strict assessments to test their safety for human con
sumption
.

Therefore, all GM crops
and
foods currently available on the international market have passed risk
assessments.

Furthermore, there are different assessments undertaken to test whether

NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


GM crops are safe to grow and whether GM foods are safe to e
at: some crops are
approved for animal feed but not for human consumption.

The World Health
Organization (WHO), as well as many other international, regional, and national health
monitoring bodies, has concluded that crops and foods that pass these tests
are not likely
to present risks for human health and can be considered safe for human
consumption.

Moreover, the WHO has reported that there have been no reliably
documented effects on human health resulting from consumption of GM foods by the
general pop
ulation in the countries where they have been approved.

However, it is
important to note that, in regard to national regulations for GMOs, different nations have
different standards of regulations and
not all nations regulate GMOs.


Humans have been alter
ing the genomes of plants and animals for thousands of years

through artificial selection (more commonly known as breedin
g).

From the
domestication of
wild plants in prehistoric times to the relatively recent creation of

new
species such as the
loganberry (a cross between a raspberry and a blackberry), humans
have always sought to alter natural selection to better their own lives.

However, genetic
modification is different.

Artificial selection had been previously confined to natural
occurring
varieties that were close enough in genetic makeup to mix traits.

Today,
genetic modification allows genes from one species to be spliced into organisms in
another species, often in circumstances previously impossible. The first commercially
grown genetic
ally modified food crop was a tomato created by California company in the
early 1990s called the FlavrSavr.

It was approved for commercial production in 1992,
and was genetically altered so that it took longer to decompose after being picked.

In
1994, th
e first European genetically engineered crop, tobacco, was approved in
France.

Initially, genetic modification was introduced to improve crop protection, but
recently benefits to consumers have also been highlighted


Today, GM crops are currently planted
in twenty
-
nine countries. The
dominant crops
being cultivated are soybean and cotton, and the dominant traits are herbicide

tolerance and insect resistance.

Most of the cultivat
ion occurs in the Americas, but

recently there
has been a large jump in GMO c
ultivation in Southeast Asia.

Between
1996 and 2009, almost
half (46 percent) of the global hectarage of GM crops was plante
d
by developing countries, and
of the estimated 14 million farmers who planted GM crops,
90 percent (1
3 million) were small
resourc
e
-
poor farmers.


Corporations play a larger role in biotechnology and GM crops than in any other

agricultural sub
-
sector.

As GM seeds are developed in laboratories, the corporations that

develop these new seeds own rights to them, and farmers must

purc
hase these seeds from
the
corporation that owns the rights.

As such, companies like Mon
santo and Sygneta that
develop
new seeds also control what crops and traits are produced.

There have been
criticisms that the GMO industry is too profit
-
driven and tha
t its actions do not accede
with its claims of creating
food security and improving people’s lives.

Many important
crop
s, such as pulses, vegetables,
and fodder, and certain traits, such as drought
-

and

NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


aluminum
-
tolerance
, are still almost entirely
neglected, even though they may be the
most useful to developing nations


Past UN Action


The joint FAO
-
WHO body, the Codex Alimentarius
, is perhaps the most authoritative
reference for global food safety standards. Established in 1961, the Codex has established
standards of food safety that are consistent from nation to nation, and its role as a
coordinating mechanism for developing food
standards is unquestioned. No modern
international or regional body would consider developing such standards outside the
Codex mechanism. From 1999
-
2008 the Codex Alimentarius Commission (CAC),
established an Intergovernmental Task Force on Foods Derived f
rom Biotechnology to
consider the health and nutritional implications of such foods. The Task Force established
a list of available analytical methods for the detection or identification of foods or food
ingredients derived from biotechnology, and indicate
d the performance criteria and status
of each method. However, despite addressing the labeling of GM foods at each meeting,
the Task Force was unable to reach a conclusion on this topic.


In 2000, with assistance from the WHO, the FAO established the Cart
agena Protocol to
the Convention on Biological Diversity, the main international agreement in relation to
GMOs. It covers the transboundary movement, transit, handling and use of all GMOs
(except pharmaceuticals) that may have adverse effects on the conser
vation and
sustainable use of biological diversity. It also addresses risks to human health and allows
for standard
-
setting in relation to the handling, transport, packaging and identification of
GMOs.







The FAO and WHO have also organized several expe
rt consultations on GMOs, in order
to keep the global community as well
-
informed as possible. Moreover, clauses pertaining
to GMOs have been included in the Technical Barriers to Trade (TBT) and the Sanitary
and Phytosanitary (SPS) Agreements of the World
Trade Organization, and the
International Plant Protection Convention (IPPC) of the FAO. As a global issue that is
ever changing, more detail and factors need to be addressed in a future international
agreement.





















NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


Questions to consider:

1.

What role can GM crops play in development, especially sustainable
development?


2.

What are the ethical, environmental, and health concerns regarding GM crops and

how can these be addressed?

3.

Should the WHO (and/or FAO) regulate for what purposes crops may be

genetically modified? If yes, what guide
lines should be established?

4.

What is the impact of GM crops on the agricultural sector of the economy and of
the economy overall, both national and global?






































NCRC MUN 2012

High Tech High North County and Pacific Ridge School

World Health Organization

Antibiotic
-
Resistant Bacteria and Genetically Modified Organisms


Work Cited











1.
"The Adoption of Genetically Modified Crops: Growth Areas | The Economist." . The
Economist, 23 Feb. 2011. Web. 10 July 2011.
<http://www.economist.com/blogs/dailychart/2011/02/adoptio
n_genetically_modified_cr
ops> .

2.
Aldred, Jessica. "Worldwide Incre
ase in GM Crops, Report Shows." The Guardian 13
Feb. 2008. 13 Feb. 2008. Web. 19 June 2011.
<http://www.guardian.co.uk/environm
ent/2008/feb/13/gmcrops.food>.


3.
Fresco, Louise O. "Genetically Modified Organisms in Food and Agriculture: Where Are
We? Wher
e Are We Going?" Conference on Crop and Forest Biotechnology for the
Future. Falkenberg, Sweden. 16 Sept. 2001. Address.

4.
"Genetically Modified Crops: Most Common." Healthy Eating Politics: Alternative
Information About Diet and Health. Web. 10 July 2011
. <http://www.healthy
-
eating
-

politics.com/genetically
-
modified
-
crops.html>.

5.
Phillips, T. (2008) Genetically modified organisms (GMOs): Transgenic crops and
recombinant DNA technology. Nature Education 1(1)

6.
Randell, Alan. "Codex Alimentarius: How It

All Began." FAO. United Nations. Web.
10 July 2011. <http://www.fao.org/docrep/v7700t/v7700t09.htm>.

7.
United Nations Environment Programme. "Genetically Modified Crops in Africa." The
Encyclopedia of Earth. 13 Apr. 2007. Web. 10 July 2011.
<http://www.
eoearth.org/article/Genetically_modified_crops_in_Africa>. Updated 17
April 2011

8.
United Nations. Food and Agriculture Organization. Committee on Agriculture,
Twenty
-

second Session. FAO International Technical Conference on Agricultural
Biotechnologies
in Developing Countries: Options and Opportunities in Crops, Forestry,
Livestock, Fisheries, and Agro
-
industry to Face the Challenges of Food Insecurity and
Climate Change. Rome, 2010. Print.

9.
United Nations. Food and Agriculture Organization, World Heal
th Organization, and
World Food Programme. Secretary
-
General’s Special Envoy for the Humanitarian Crisis
in Southern Africa,. United Nations Statement Regarding the Use of GM Foods as Food
Aid in Southern Africa. By James T. Morris. 2002. Print.