(ACCIDENTAL) INSIGHT INTO

greenbeansneedlesΛογισμικό & κατασκευή λογ/κού

13 Δεκ 2013 (πριν από 3 χρόνια και 6 μήνες)

68 εμφανίσεις

CAN BLIND PROGRAMMERS PROVIDE
(ACCIDENTAL) INSIGHT INTO
PROGRAMMING LANGUAGE DESIGN?

Andreas Stefik, Ph.D.

Assistant Professor

Computer Science

Southern Illinois University Edwardsville

BLIND
INDIVIDUALS
FACE
UNIQUE
CHALLENGES WHEN
LEARNING TO PROGRAM

Integrated development environments are
often poorly accessible

NetBeans




XCode



Visualization is (obviously) not a sensible
option for Blind Individuals

Alice




Unity 3D



Given that programming languages use text, they are a
viable option for blind students

How well do
programming
languages “read”
through a screen
reader?

SYNTAX IS HARDER TO
UNDERSTAND THROUGH AUDIO

C
-
style syntax is hard to understand
using audio



for(
int

i

= 0;
i

< 10;
i
++) {


System.out.println
(
i
);

}


This translates to
:

for
int

i

equals zero semicolon
i

less
than ten semicolon
i

plus plus right
parent left brace

Initially, we thought a new language might be
easier to “read” with a screen reader



integer
i

= 0

r
epeat 10 times


print I


i

=
i

+ 1

e
nd


1)
Use plain English

2)
minimize the use of
esoteric symbols (e.g.,
{}, ||, &&, ===)

3)
Be terse, but clear

We also used statistical measures of auditory
comprehension to design talking debuggers




Talking Debugger

Artifact Encoding

Loop Iteration 1

Loop Iteration 2

1 Nested If True

1 Nested If False

End Loop

Me
a
s
u
r
e
S
c
o
p
i
n
g
C
u
e
s
Ex
p
e
r
i
e
n
c
e
p-
v
al
Y
e
s
N
o
p-
v
al
Y
e
s
N
o
Sc
opi
ng
.
001


M
=
79
.
8
M
=
59
.
2
.
841
M
=
69
.
0
M
=
70
.
3
S D
=
13
.
1
S D
=
10
.
1
S D
=
14
.
35
S D
=
17
.
5
Co
m
p
r
e
h
e
n
s
i
o
n
.
051
M
=
62
.
53
M
=
52
.
26
.
038

M
=
64
.
69
M
=
52
.
72
S D
=
25
S D
=
16
.
8
S D
=
20
.
9
S D
=
22
.
0
Mi
s
s
i
n
g
i
f
.
451
M
=
25
.
13
M
=
18
.
97
.
008


M
=
9
.
60
M
=
30
.
03
S D
=
29
.
9
S D
=
31
.
5
S D
=
10
.
5
S D
=
36
.
31
Mi
s
s
i
n
g
l
o
o
p
.
102
M
=
8
.
81
M
=
5
.
16
.
005


M
=
3
.
12
M
=
9
.
46
S D
=
9
.
7
S D
=
8
.
35
S D
=
3
.
29
S D
=
10
.
8
Fl
i
p
p
e
d
b
o
o
l
e
a
n
.
144
M
=
7
.
6
M
=
5
.
4
.
750
M
=
6
.
2
M
=
6
.
7
S D
=
8
.
1
S D
=
4
.
7
S D
=
8
.
3
S D
=
5
.
4
Ta
b
l
e
3
:
A
s
u
m
m
a
r
y
t
a
b
l
e
o
f
t
h
e
e
x
p
e
r
i
m
e
n
t
a
l
r
e
s
u
l
t
s
(

=
α
<
0
.
05,


=
α
<
.
01)
.
T
he
s
c
opi
ng
a
nd
c
om
pr
e
he
ns
i
on
m
e
a
s
ur
e
s
a
r
e
pe
r
c
e
nt
a
ge
co
r
r
ect
m
eas
u
r
es
wi
t
h
a
m
a
x
i
m
u
m
v
a
l
u
e
o
f
1
0
0
%
,
wh
e
r
e
a
s
t
h
e
m
i
s
s
i
n
g
i
f
,
l
o
o
p
,
a
n
d fl
i
p
p
e
d b
o
o
l
e
a
n
s
m
e
a
s
u
r
e
s
a
r
e
c
o
u
n
t
s
o
f
t
h
e
p
a
r
t
i
c
i
p
a
n
t
s
m
i
st
a
k
e
s.
Fi
g
u
r
e
1
0
:
T
h
i
s
fig
u
r
e
s
h
o
ws
t
h
e
p
e
r
c
e
n
t
c
o
r
r
e
c
t
f
o
r
t
h
e
a
g
g
r
e
ga
t
e
a
r
t
i
f
a
c
t
e
n-
co
d
in
g
s
co
r
e,
called
co
m
p
r
eh
en
s
io
n
,
o
n
th
e
y
-
ax
is
.
O
n
th
e
x
-
ax
is
is
th
e
in
-
de
pe
nde
nt
v
a
r
i
a
bl
e
of
s
c
opi
ng
c
ue
s
,
e
i
t
he
r
w
i
t
hout
t
he
m
(
l
e
ft
),
o
r
w
i
t
h
t
h
e
m
(ri
g
h
t
).
Fi
g
u
r
e
1
1
:
T
h
i
s
fig
u
r
e
s
h
o
ws
t
h
e
p
e
r
c
e
n
t
c
o
r
r
e
c
t
f
o
r
t
h
e
a
g
g
r
e
ga
t
e
a
r
t
i
f
a
c
t
e
n-
co
d
in
g
s
co
r
e,
co
m
p
r
eh
en
s
io
n
,
o
n
th
e
y
-
ax
is
.
O
n
th
e
x
-
ax
is
is
th
e
in
d
ep
en
d
en
t
va
r
i
a
b
l
e
o
f
e
x
p
e
r
i
e
n
c
e
,
w
h
e
t
h
e
r
t
h
e
p
r
e
v
i
o
u
s
n
u
m
b
e
r
o
f
p
r
o
g
ra
m
m
i
n
g
c
l
a
s
s
e
s
pa
r
t
i
c
i
pa
nt
s
ha
d
t
a
k
e
n
w
a
s
e
i
t
he
r
0
(
l
e
f
t
)
,
or
1
or
m
or
e
(
r
i
gh
t)
.
9
2011 Java Innovation Award

OUR SCREEN READER FRIENDLY
PROGRAMMING LANGUAGE “SEEMED”
EASIER TO UNDERSTAND IN GENERAL

Before starting the design of Quorum, we
thought, let’s ask novices what they think

I
n
t
u
i
t
i
v
e
n
e
s
s
0
2
4
6
8
10
0
2
4
6
8
10




























a
g
a
i
n
c
y
c
l
e
d
o
d
u
p
l
i
c
a
t
e
e
c
h
o
f
o
r
f
o
r
e
a
c
h
i
t
e
r
a
t
e
l
o
o
p
r
e
d
o
r
e
o
c
c
u
r
r
e
p
e
a
t
r
e
r
u
n
w
h
i
l
e
N
o
n

p
r
o
g
r
a
m
m
e
r
P
r
o
g
r
a
m
m
e
r
The words
for
,
while
, and
foreach

make
no sense.

Our broad goal of these surveys was to find out, “What
words/symbols do novices think we should use in a
programming language?”

I
n
t
u
i
t
i
v
e
n
e
s
s
0
2
4
6
8
10
0
2
4
6
8
10


















C++
Go
J
a
v
a
P
er
l
PHP
Python
Quor
um
Rub
y
Smalltalk
N
o
n

p
r
o
g
r
a
m
m
e
r
P
r
o
g
r
a
m
m
e
r
Functions with return values

I
n
t
u
i
t
i
v
e
n
e
s
s
0
2
4
6
8
10
0
2
4
6
8
10






























c
h
i
l
d
c
o
n
s
t
a
n
t
d
e
s
t
i
n
a
t
i
o
n
h
e
r
e
h
o
m
e
m
e
m
y
s
e
l
f
o
f
f
s
p
r
i
n
g
p
a
r
e
n
t
p
o
i
n
t
e
r
r
e
s
i
d
e
n
t
i
a
l
s
e
e
d
s
e
l
f
s
o
u
r
c
e
t
h
i
s
N
o
n

p
r
o
g
r
a
m
m
e
r
P
r
o
g
r
a
m
m
e
r
I
n
t
u
i
t
i
v
e
n
e
s
s
0
2
4
6
8
10
0
2
4
6
8
10
































a
l
a
r
m
a
l
e
r
t
c
a
l
l
c
o
r
r
e
c
t
d
o
e
r
r
o
r
f
i
x
h
a
n
d
l
e
h
a
n
d
l
e
r
h
o
l
d
m
a
n
a
g
e
r
a
i
s
e
r
e
p
a
i
r
s
i
g
n
a
l
t
h
r
o
w
t
o
g
g
l
e
N
o
n

p
r
o
g
r
a
m
m
e
r
P
r
o
g
r
a
m
m
e
r
I
n
t
u
i
t
i
v
e
n
e
s
s
0
2
4
6
8
10
0
2
4
6
8
10






























b
a
r
e
b
l
a
n
k
d
e
f
i
n
e
d
e
m
p
t
y
n
i
l
n
o
n
e
n
o
t
h
i
n
g
n
u
l
l
s
e
l
e
c
t
e
d
u
n
d
e
f
i
n
e
d
u
n
u
s
e
d
v
a
c
a
n
t
v
o
i
d
w
i
t
h
o
u
t
z
e
r
o
N
o
n

p
r
o
g
r
a
m
m
e
r
P
r
o
g
r
a
m
m
e
r
This

Null

Exceptions/Throw

We

asked

hundreds

of

novices

what

they

thought

the

syntax

of

a

programming

language

“should”

be
.

When we talk to novices about programming
languages, they say …

Standard Java
Syntax
:


for
(
int

i = 0; i < 10; i++) {

}

That’s not
Greek,
it’s
Klingon
*

From a news article comparing Quorum
to Perl
:

http
://
www.fastcodesign.com
/1665735/why
-
arent
-
computer
-
programming
-
languages
-
designed
-
better

EMPIRICAL STUDIES WITH NOVICES
MAY REVEAL IMPROVEMENTS FOR
PROGRAMMING LANGUAGES

We setup a study on novice accuracy rates between
three programming languages

Randomo

From medicine, we
adapted the idea of a
“Placebo” by randomly
selecting syntax from the
ASCII table

Novice Perl users could not program significantly more accurately than
those using a programming language with randomly generated
keywords

T
asks
A
c
c
u
r
a
c
y
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0


















1
2
3
4
5
6
P
e
r
l
Q
u
o
r
u
m
R
a
n
d
o
m
o
Results show Quorum > (Perl =
Randomo
)

Quorum: (M=.628, SD=.198)

Perl: (M=.432, SD=.179)

Randomo
: (M=.341, SD=.173)

Perl users performed no
better than those using a
Placebo?
Let’s run a
replication
.

Java and Perl users performed no better than Placebo
Users (Ruby, Python, and Quorum users did)

0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0




































J
a
v
a
P
e
r
l
P
y
t
h
o
n
Q
u
o
r
u
m
R
a
n
d
o
m
o
R
u
b
y
1
2
3
4
5
6
T
asks
A
c
c
u
r
a
c
y
Our statistical models can estimate per
-
token
accuracy rates, leading to changes in Quorum 1.7

X:
3
0
A.
St
e

k
e
t
a
l
.
S
TEF
I
K
,A
.
AND
G
ELLEN
B
EC
K
,E
.2
0
1
1
.
E
m
p
i
r
i
c
a
l
s
t
u
d
i
e
s
o
n
p
r
o
g
r
a
m
m
i
n
g
l
a
n
g
u
a
g
e
s
t
i
m
u
l
i.
Sof
t
w
ar
e
Q
ual
i
t
y
J
our
-
nal
19,
1,
65–99.
S
TEF
I
K
,A
.
,
H
UNDHA
US
E
N
,C
.
,
AND
P
AT
T
E
R
S
O
N
,R
.
2
0
1
1
.
A
n
e
m
p
i
r
i
c
a
l
i
n
v
e
s
t
i
g
a
t
i
o
n
i
n
t
o
t
h
e
d
e
s
i
g
n
o
f
a
u
d
i
to
r
y
cu
es
to
en
h
an
ce
co
m
p
u
ter
p
r
o
g
r
am
co
m
p
r
eh
en
s
io
n
.
In
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
H
u
m
a
n
-C
o
m
p
u
t
e
r
S
t
u
d
i
e
s
6
9
,
12,
820

838.
S
TEF
I
K
,A
.
,
H
UNDHA
US
E
N
,C
.
,
AND
S
MI
T
H
,D
.
2
0
1
1
.O
n
t
h
e
d
e
s
i
g
n
o
f
a
n
e
d
u
c
a
t
i
o
n
a
l
i
n
f
r
a
s
t
r
u
c
t
u
r
e
f
o
r
th
e
b
lin
d
an
d
vi
s
ua
l
l
y
i
m
pa
i
r
e
d
i
n
c
om
put
e
r
s
c
i
e
nc
e
.
I
n
Pr
o
c
e
e
d
i
n
g
s
o
f
T
h
e
4
2
n
d
A
C
M
T
e
c
h
n
i
c
a
l
S
y
m
p
o
s
i
u
m
o
n
C
o
m
p
u
t
e
r
Sc
i
e
nc
e
Ed
u
c
a
t
i
o
n
.A
C
M
,
N
e
w
Y
o
r
k
,
N
Y
.
S
TEF
I
K
,A
.
,
S
I E
B
E
R
T
,S
.
,
S
TEF
I
K
,M
.
,
AND
S
LA
TTER
Y
,K
.2
0
1
1
.A
n
e
m
p
i
r
i
c
a
l
c
o
m
p
a
r
i
s
o
n
o
f
t
h
e
a
c
c
u
r
a
c
y
r
a
t
e
s
o
f
n
o
vi
c
e
s
us
i
ng
t
he
quor
um
,
pe
r
l
,
a
nd
r
a
ndom
o
pr
ogr
a
m
m
i
ng
l
a
ngua
ge
s
.
In
Pr
o
c
e
e
d
i
n
g
s
o
f
t
h
e
3
r
d
A
C
M
S
I
G
PL
AN
w
o
r
k
s
h
o
p
o
n
Ev
a
l
u
a
t
i
o
n
a
n
d
u
s
a
b
i
l
i
t
y
o
f
p
r
o
g
r
a
m
m
i
n
g
l
a
n
g
u
a
g
e
s
a
n
d
t
o
o
l
s
.P
L
A
T
E
A
U

1
1
.
A
C
M
,
N
e
w
Y
o
r
k
,
N
Y
,
U
S
A
,
3

8
.
S
TEI
M
A
N
N
,F
.
2
0
0
6
.
T
h
e
p
a
r
a
d
o
x
i
c
a
l
s
u
c
c
e
s
s
o
f
a
s
p
e
c
t
-
o
r
i
e
n
t
e
d
p
r
o
g
r
am
m
in
g
.
I
n
OOP
S
LA

0
6
:
P
r
o
c
e
e
d
i
n
g
s
o
f
t
h
e
2
1
s
t
annual
A
C
M
SI
G
P
L
A
N
c
onf
e
r
e
nc
e
on
O
bj
e
c
t
-
or
i
e
nt
e
d
pr
o
gr
am
m
in
g
s
ys
tem
s
,
la
n
g
u
a
g
es
,
a
n
d
a
p
p
lica
tio
n
s
.A
C
M
P
r
e
s
s
,
Ne
w
Y
o
r
k
,
NY
,
4
8
1

4
9
7
.
S
TY
LO
S
,J
.
AND
C
LA
R
K
E
,S
.
2
0
0
7
.
U
s
a
b
i
l
i
t
y
i
m
p
l
i
c
a
t
i
o
n
s
o
f
r
e
q
u
i
r
i
n
g
p
a
r
a
m
e
t
e
r
s
i
n o
b
j
e
c
t
s

c
o
n
s
t
r
u
c
t
o
r
s
.
Sof
t
w
ar
e
E
ngi
-
ne
e
r
i
ng
,
2007.
I
C
SE
2007.
29t
h
I
nt
e
r
nat
i
onal
C
onf
e
r
e
nc
e
on
,5
2
9

5
3
9
.
S
TY
LO
S
,J
.
AND
M
YE
R
S
,B
.
A
.2
0
0
8
.T
h
e
i
m
p
l
i
c
a
t
i
o
n
s
o
f
m
e
t
h
o
d
p
l
a
c
e
m
e
n
t
o
n
A
P
I
l
e
a
r
na
bi
l
i
t
y
.
I
n
SI
G
SO
F
T

08/
F
SE
-
16:
Pr
o
c
e
e
d
i
n
g
s
o
f
t
h
e
1
6
t
h
A
C
M
S
I
G
S
O
FT
I
n
t
e
r
n
a
t
i
o
n
a
l
S
y
m
p
o
s
i
u
mo
n
F
o
u
n
d
a
t
i
o
n
s
o
f
S
o
f
t
w
a
r
e
E
n
g
i
n
e
e
r
i
n
g
.A
C
M
,
N
e
w
Yo
r
k
,
N
Y
,
U
S
A
,
1
0
5

1
1
2
.
T
AY
L
O
R
,J
.
1
9
9
0
.A
n
a
l
y
s
i
n
g
n
o
v
i
c
e
s
a
n
a
l
y
s
i
n
g
p
r
o
l
o
g
:
w
h
a
t
s
t
o
r
i
e
s
do
no
vi
c
e
s
t
e
l
l
t
he
m
s
e
l
v
e
s
a
bout
pr
ol
og?
In
s
t
r
u
c
t
i
o
n
a
l
Sc
i
e
nc
e
19
,2
8
3

3
0
9
.
T
EI
TELB
A
U
M
,T
.
AND
R
EP
S
,T
.
1
9
8
1
.
T
h
e
c
o
r
n
e
l
l
p
r
o
g
r
a
m
s
y
n
t
h
e
s
i
z
e
r
:
a
s
y
n
t
a
x
-
d
i
r
e
c
t
ed
p
r
o
g
r
am
m
in
g
en
v
ir
o
n
m
en
t.
Co
m
-
mu
n
.
A
C
M
2
4
,
9,
563–573.
V
I C
K
E
R
S
,P
.
AND
A
LT
Y
,J
.
L
.
2
0
0
2
.
W
h
e
n
b
u
g
s
s
i
n
g
.
In
t
e
r
a
c
t
i
n
g
w
i
t
h
C
o
m
p
u
t
e
r
s
1
4
,
6,
793–819.
i nt eger
.5,.42
y.
8
3
,
1
= 1
,
1
6547
1,.92
1,1
i f
1,.75
y 1
,
.
8
3
= 1
,
.
6
7
1000
1,.92
1,.83
t hen
.67,.5
y.
3
3
,
.
1
7
=.
5
,
.
2
5
y 1
,
.
7
5
+ 1
,
.
7
5
1000
1,1
.83,.92
end
.33,.08
el se
.33,.5
t hen
.17,.08
i f
1,.5
y 1
,
.
9
2
> 1
,
.
9
2
1000
1,1
1,.92
t hen
.67,.67
y.
3
3
,
.
1
7
=.
5
,
.
2
5
y 1
,
.
7
5
- 1
,
.
8
3
1000
1,1
.83,.92
end
.33,.08
el se
.5,.42
t hen
.5,.25
y.
3
3
,
.
1
7
=.
5
,
.
2
5
y 1
,
.
7
5
+ 1
,
.
8
3
2000
1,1
.83,1
end
.67,.5
end
.5,0
Fi
g
.
1
5
.T
o
k
e
n
A
c
c
u
r
a
c
y
M
a
p
f
o
r
Q
u
o
r
u
m
,
T
a
s
k
6
.
AC
M
T
r
a
n
s
a
c
t
i
o
n
s
o
n
C
o
m
p
u
t
e
r
-
H
u
m
a
n
I
n
t
e
r
a
c
t
i
o
n
,
V
o
l
.
X
,
N
o
.X
,A
r
t
i
c
l
e
X
,P
u
b
l
i
c
a
t
i
o
n
d
a
t
e
:
S
e
p
t
e
m
b
e
r
2
0
1
2
.
X:
3
0
A.
St
e

k
e
t
a
l
.
S
TEF
I
K
,A
.
AND
G
ELLEN
B
EC
K
,E
.2
0
1
1
.
E
m
p
i
r
i
c
a
l
s
t
u
d
i
e
s
o
n
p
r
o
g
r
a
m
m
i
n
g
l
a
n
g
u
a
g
e
s
t
i
m
u
l
i.
Sof
t
w
ar
e
Q
ual
i
t
y
J
our
-
nal
19,
1,
65–99.
S
TEF
I
K
,A
.
,
H
UNDHA
US
E
N
,C
.
,
AND
P
AT
T
E
R
S
O
N
,R
.
2
0
1
1
.
A
n
e
m
p
i
r
i
c
a
l
i
n
v
e
s
t
i
g
a
t
i
o
n
i
n
t
o
t
h
e
d
e
s
i
g
n
o
f
a
u
d
i
to
r
y
cu
es
to
en
h
an
ce
co
m
p
u
ter
p
r
o
g
r
am
co
m
p
r
eh
en
s
io
n
.
In
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
H
u
m
a
n
-C
o
m
p
u
t
e
r
S
t
u
d
i
e
s
6
9
,
12,
820

838.
S
TEF
I
K
,A
.
,
H
UNDHA
US
E
N
,C
.
,
AND
S
MI
T
H
,D
.
2
0
1
1
.O
n
t
h
e
d
e
s
i
g
n
o
f
a
n
e
d
u
c
a
t
i
o
n
a
l
i
n
f
r
a
s
t
r
u
c
t
u
r
e
f
o
r
th
e
b
lin
d
an
d
vi
s
ua
l
l
y
i
m
pa
i
r
e
d
i
n
c
om
put
e
r
s
c
i
e
nc
e
.
I
n
Pr
o
c
e
e
d
i
n
g
s
o
f
T
h
e
4
2
n
d
A
C
M
T
e
c
h
n
i
c
a
l
S
y
m
p
o
s
i
u
m
o
n
C
o
m
p
u
t
e
r
Sc
i
e
nc
e
Ed
u
c
a
t
i
o
n
.A
C
M
,
N
e
w
Y
o
r
k
,
N
Y
.
S
TEF
I
K
,A
.
,
S
I E
B
E
R
T
,S
.
,
S
TEF
I
K
,M
.
,
AND
S
LA
TTER
Y
,K
.2
0
1
1
.A
n
e
m
p
i
r
i
c
a
l
c
o
m
p
a
r
i
s
o
n
o
f
t
h
e
a
c
c
u
r
a
c
y
r
a
t
e
s
o
f
n
o
vi
c
e
s
us
i
ng
t
he
quor
um
,
pe
r
l
,
a
nd
r
a
ndom
o
pr
ogr
a
m
m
i
ng
l
a
ngua
ge
s
.
In
Pr
o
c
e
e
d
i
n
g
s
o
f
t
h
e
3
r
d
A
C
M
S
I
G
PL
AN
w
o
r
k
s
h
o
p
o
n
Ev
a
l
u
a
t
i
o
n
a
n
d
u
s
a
b
i
l
i
t
y
o
f
p
r
o
g
r
a
m
m
i
n
g
l
a
n
g
u
a
g
e
s
a
n
d
t
o
o
l
s
.P
L
A
T
E
A
U

1
1
.
A
C
M
,
N
e
w
Y
o
r
k
,
N
Y
,
U
S
A
,
3

8
.
S
TEI
M
A
N
N
,F
.
2
0
0
6
.
T
h
e
p
a
r
a
d
o
x
i
c
a
l
s
u
c
c
e
s
s
o
f
a
s
p
e
c
t
-
o
r
i
e
n
t
e
d
p
r
o
g
r
am
m
in
g
.
I
n
OOP
S
LA

0
6
:
P
r
o
c
e
e
d
i
n
g
s
o
f
t
h
e
2
1
s
t
annual
A
C
M
SI
G
P
L
A
N
c
onf
e
r
e
nc
e
on
O
bj
e
c
t
-
or
i
e
nt
e
d
pr
o
gr
am
m
in
g
s
ys
tem
s
,
la
n
g
u
a
g
es
,
a
n
d
a
p
p
lica
tio
n
s
.A
C
M
P
r
e
s
s
,
Ne
w
Y
o
r
k
,
NY
,
4
8
1

4
9
7
.
S
TY
LO
S
,J
.
AND
C
LA
R
K
E
,S
.
2
0
0
7
.
U
s
a
b
i
l
i
t
y
i
m
p
l
i
c
a
t
i
o
n
s
o
f
r
e
q
u
i
r
i
n
g
p
a
r
a
m
e
t
e
r
s
i
n o
b
j
e
c
t
s

c
o
n
s
t
r
u
c
t
o
r
s
.
Sof
t
w
ar
e
E
ngi
-
ne
e
r
i
ng
,
2007.
I
C
SE
2007.
29t
h
I
nt
e
r
nat
i
onal
C
onf
e
r
e
nc
e
on
,5
2
9

5
3
9
.
S
TY
LO
S
,J
.
AND
M
YE
R
S
,B
.
A
.2
0
0
8
.T
h
e
i
m
p
l
i
c
a
t
i
o
n
s
o
f
m
e
t
h
o
d
p
l
a
c
e
m
e
n
t
o
n
A
P
I
l
e
a
r
na
bi
l
i
t
y
.
I
n
SI
G
SO
F
T

08/
F
SE
-
16:
Pr
o
c
e
e
d
i
n
g
s
o
f
t
h
e
1
6
t
h
A
C
M
S
I
G
S
O
FT
I
n
t
e
r
n
a
t
i
o
n
a
l
S
y
m
p
o
s
i
u
mo
n
F
o
u
n
d
a
t
i
o
n
s
o
f
S
o
f
t
w
a
r
e
E
n
g
i
n
e
e
r
i
n
g
.A
C
M
,
N
e
w
Yo
r
k
,
N
Y
,
U
S
A
,
1
0
5

1
1
2
.
T
AY
L
O
R
,J
.
1
9
9
0
.A
n
a
l
y
s
i
n
g
n
o
v
i
c
e
s
a
n
a
l
y
s
i
n
g
p
r
o
l
o
g
:
w
h
a
t
s
t
o
r
i
e
s
do
no
vi
c
e
s
t
e
l
l
t
he
m
s
e
l
v
e
s
a
bout
pr
ol
og?
In
s
t
r
u
c
t
i
o
n
a
l
Sc
i
e
nc
e
19
,2
8
3

3
0
9
.
T
EI
TELB
A
U
M
,T
.
AND
R
EP
S
,T
.
1
9
8
1
.
T
h
e
c
o
r
n
e
l
l
p
r
o
g
r
a
m
s
y
n
t
h
e
s
i
z
e
r
:
a
s
y
n
t
a
x
-
d
i
r
e
c
t
ed
p
r
o
g
r
am
m
in
g
en
v
ir
o
n
m
en
t.
Co
m
-
mu
n
.
A
C
M
2
4
,
9,
563–573.
V
I C
K
E
R
S
,P
.
AND
A
LT
Y
,J
.
L
.
2
0
0
2
.
W
h
e
n
b
u
g
s
s
i
n
g
.
In
t
e
r
a
c
t
i
n
g
w
i
t
h
C
o
m
p
u
t
e
r
s
1
4
,
6,
793–819.
i nt eger
.5,.42
y.
8
3
,
1
= 1
,
1
6547
1,.92
1,1
i f
1,.75
y 1
,
.
8
3
= 1
,
.
6
7
1000
1,.92
1,.83
t hen
.67,.5
y.
3
3
,
.
1
7
=.
5
,
.
2
5
y 1
,
.
7
5
+ 1
,
.
7
5
1000
1,1
.83,.92
end
.33,.08
el se
.33,.5
t hen
.17,.08
i f
1,.5
y 1
,
.
9
2
> 1
,
.
9
2
1000
1,1
1,.92
t hen
.67,.67
y.
3
3
,
.
1
7
=.
5
,
.
2
5
y 1
,
.
7
5
- 1
,
.
8
3
1000
1,1
.83,.92
end
.33,.08
el se
.5,.42
t hen
.5,.25
y.
3
3
,
.
1
7
=.
5
,
.
2
5
y 1
,
.
7
5
+ 1
,
.
8
3
2000
1,1
.83,1
end
.67,.5
end
.5,0
Fi
g
.
1
5
.T
o
k
e
n
A
c
c
u
r
a
c
y
M
a
p
f
o
r
Q
u
o
r
u
m
,
T
a
s
k
6
.
AC
M
T
r
a
n
s
a
c
t
i
o
n
s
o
n
C
o
m
p
u
t
e
r
-
H
u
m
a
n
I
n
t
e
r
a
c
t
i
o
n
,
V
o
l
.
X
,
N
o
.X
,A
r
t
i
c
l
e
X
,P
u
b
l
i
c
a
t
i
o
n
d
a
t
e
:
S
e
p
t
e
m
b
e
r
2
0
1
2
.
Quorum 1.0 Syntax

Quorum 1.7 Syntax

Results suggest Quorum should allow:

1.
Limited type inference

2.
More “Ruby
-
like” if statements

One blind student, who has programmed in Python
and Quorum, summed it up by saying:

I have been, you know
looking at it, and
.
.
. the
syntax is just very simple to
use.

I can just remember
most of the keywords and so
I just think it is pretty nice
and
flexible.

From an interview with a blind
student from Tennessee on
Quorum 1.6,
Sodbeans

3.0, and
our curriculum/textbook

Working with blind individuals made us re
-
think the
design of programming languages, which may benefit
everyone

Quorum:
http://quorum.sourceforge.net
/

Sodbeans
:
http://sodbeans.sourceforge.net
/

Quorum 1.7 and
Sodbeans

3.5

Early February